JP2960371B2 - Hydrogen combustion turbine plant - Google Patents
Hydrogen combustion turbine plantInfo
- Publication number
- JP2960371B2 JP2960371B2 JP11826097A JP11826097A JP2960371B2 JP 2960371 B2 JP2960371 B2 JP 2960371B2 JP 11826097 A JP11826097 A JP 11826097A JP 11826097 A JP11826097 A JP 11826097A JP 2960371 B2 JP2960371 B2 JP 2960371B2
- Authority
- JP
- Japan
- Prior art keywords
- turbine
- pressure
- medium
- steam
- pressure turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/005—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the working fluid being steam, created by combustion of hydrogen with oxygen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水素を燃料とし、
純酸素を酸化剤とする水素燃焼タービンプラントに係
り、特に、多段再熱ランキンサイクルをベースとし、水
素の純酸素燃焼により発生する蒸気を、タービンの構成
部品の冷却に利用する水素燃焼タービンプラントに関す
る。[0001] The present invention relates to the use of hydrogen as a fuel,
The present invention relates to a hydrogen combustion turbine plant using pure oxygen as an oxidizing agent, and more particularly to a hydrogen combustion turbine plant based on a multi-stage reheat Rankine cycle and utilizing steam generated by pure oxygen combustion of hydrogen for cooling components of a turbine. .
【0002】[0002]
【従来の技術】最近の火力発電プラントでは、プラント
の高熱効率化,プラントの起動時間短縮化が高く評価さ
れ、ガスタービンプラントに、蒸気タービンプラントお
よび排熱回収ボイラを組み合せたコンバインドサイクル
発電プラントが実用機として数多く運転されている。2. Description of the Related Art Recent thermal power plants have been highly evaluated for their high thermal efficiency and shortened plant start-up time. A combined cycle power plant combining a gas turbine plant with a steam turbine plant and an exhaust heat recovery boiler has been developed. It is operated in many practical applications.
【0003】しかし、このコンバインドサイクル発電プ
ラントにおいては、ガスタービンプラントの燃料に、液
化天然ガスや石油(灯油)等の天然資源を使用している
が、何分にもガスタービンプラントの燃料が時間当り数
百トンと多量に消費することを考えると、天然資源の埋
蔵量に限界があり、自ずと代替燃料が必要になってきて
いる。また、天然資源は、クリーンなエネルギと言えど
も、NOx,CO等の有害廃棄物を皆無にすることがで
きず、高出力化が求められている今日、その燃料消費を
考えると、有害廃棄物の極めて少ない代替燃料が必要で
ある。また、各家庭を含めた民生部門での電力消費が依
然として延びている今日、この需要に応えるために、ガ
スタービンプラントよりも高い出力が出せる代替原動機
が必要である。[0003] In this combined cycle power plant, however, natural resources such as liquefied natural gas and petroleum (kerosene) are used as fuel for the gas turbine plant. Considering the large consumption of several hundred tons per hour, the reserves of natural resources are limited and alternative fuels are naturally needed. Also, natural resources are clean energy, but harmful wastes such as NOx and CO cannot be completely eliminated, and high output is demanded today. Very few alternative fuels are needed. In addition, today's electricity consumption in the consumer sector, including households, is still growing, and to meet this demand, alternative prime movers that can produce higher power than gas turbine plants are needed.
【0004】このような社会的ニーズ・シーズに対し、
最近、燃料に水素を用い、また酸化剤に純酸素を用い、
水素の純酸素燃焼により生成される廃棄物をクリーン化
させ、さらに発生する蒸気を超高温化させ、この超高温
蒸気をタービン駆動蒸気にする水素燃焼タービンプラン
トに、排熱回収ボイラを組み合せたコンバインドサイク
ル発電プラントが特開平7−293207号公報や新エ
ネルギ・産業技術総合開発機構の平成6年度成果報告書
(No. NEDO−WE−NET−9483)で公表さ
れ、商業ベースへの実現性を高い期待をもって見守られ
ている。[0004] Such social needs seeds,
Recently, using hydrogen as fuel and pure oxygen as oxidizer,
Combination of an exhaust heat recovery boiler and a hydrogen combustion turbine plant that cleans the waste generated by pure oxygen combustion of hydrogen, raises the generated steam to ultra-high temperature, and turns this ultra-high temperature steam into turbine-driven steam The cycle power plant has been published in Japanese Unexamined Patent Publication No. Hei 7-293207 and in the 1994 report of the New Energy and Industrial Technology Development Organization (No. NEDO-WE-NET-9483), and its commercial feasibility is high. Watched with expectation.
【0005】この水素燃焼タービンプラントは、図4に
示すように、高圧タービン1と低圧タービン2との間
に、中高圧タービン3aと中低圧タービン3bを組み合
せた中圧タービン3を備え、中高圧タービン3a、中低
圧タービン3bのそれぞれに高圧水素燃焼器4a、低圧
水素燃焼器4bから発生する超高温蒸気(水蒸気)を供
給させるようになっている。As shown in FIG. 4, this hydrogen-fired turbine plant includes a medium-pressure turbine 3 having a combination of a medium-high-pressure turbine 3a and a medium-low-pressure turbine 3b between a high-pressure turbine 1 and a low-pressure turbine 2. Ultra-high-temperature steam (steam) generated from the high-pressure hydrogen combustor 4a and the low-pressure hydrogen combustor 4b is supplied to each of the turbine 3a and the medium- and low-pressure turbines 3b.
【0006】また、中圧タービン3の中高圧タービン3
aおよび中低圧タービン3bのタービン排気側に排熱回
収ボイラ5a,5bをそれぞれ設け、各排熱回収ボイラ
5a,5bで復水給水系6からの高圧の給水を加熱させ
て超高温蒸気を発生させている。[0006] The medium-pressure turbine 3
The exhaust heat recovery boilers 5a and 5b are respectively provided on the turbine exhaust side of the a and middle and low pressure turbines 3b, and the exhaust heat recovery boilers 5a and 5b heat the high pressure feed water from the condensate water supply system 6 to generate ultra-high temperature steam. Let me.
【0007】各排熱回収ボイラ5a,5bで発生した超
高温蒸気は、合流後、高圧タービン1を駆動し、そのタ
ービン排気が高圧水素燃焼器4aで水素と純酸素との当
量燃焼により再加熱されて中高圧タービン3aに案内さ
れ、ここで膨張仕事をした後、上述給水の蒸気発生の加
熱源として排熱回収ボイラ5aに案内される。[0007] The ultra-high-temperature steam generated in each of the waste heat recovery boilers 5a and 5b drives the high-pressure turbine 1 after merging, and the turbine exhaust is reheated by the equivalent combustion of hydrogen and pure oxygen in the high-pressure hydrogen combustor 4a. The steam is then guided to the medium-high pressure turbine 3a, where it performs expansion work, and then guided to the exhaust heat recovery boiler 5a as a heating source for the steam generation of the feedwater.
【0008】排熱回収ボイラ5aで温度降下した蒸気
は、低圧水素燃焼器4bで再び水素と純酸素との当量燃
焼により再加熱されて中低圧タービン3bで膨張仕事を
し、そのタービン排気が排熱回収ボイラ5bに案内さ
れ、ここで上述給水を過熱蒸気にした後、低圧タービン
2を駆動して発電機7を回転駆動している。The steam whose temperature has dropped in the exhaust heat recovery boiler 5a is reheated again by the equivalent combustion of hydrogen and pure oxygen in the low-pressure hydrogen combustor 4b, and performs expansion work in the medium- and low-pressure turbine 3b. The heat is supplied to the heat recovery boiler 5b, where the supply water is turned into superheated steam, and then the low pressure turbine 2 is driven to rotate the generator 7.
【0009】このように、最近、開示された水素燃焼タ
ービンプラントは、高低圧水素燃焼器4a,4bを備
え、水素の純酸素燃焼により1700℃以上の超高温蒸
気を発生させることができるようになっており、この超
高温化に伴って48万KW以上の電気出力が出せ、民生
部門の電力需要に応えようとしている。なお、48万K
W以上の電気出力は、この種の単機容量として世界最大
級である。As described above, the recently disclosed hydrogen combustion turbine plant is provided with the high and low pressure hydrogen combustors 4a and 4b so that ultrahigh temperature steam of 1700 ° C. or more can be generated by the pure oxygen combustion of hydrogen. With this ultra-high temperature, electric power of more than 480,000 KW can be output, and it is trying to meet the electric power demand of the consumer sector. 480,000K
An electric output of W or more is one of the largest in the world as this type of single unit capacity.
【0010】[0010]
【発明が解決しようとする課題】図4で示した水素燃焼
タービンプラントでは、中高圧タービン3aおよび中低
圧タービン3bの駆動蒸気が1700℃以上の超高温に
なっているため、各タービン3a,3bの構成部品、例
えばタービン静翼、タービン動翼等の材力強度維持を確
保しておく必要がある。このため、図4で示した水素燃
焼タービンプラントには、中高圧タービン3aおよび中
低圧タービン3bの各構成部品を、蒸気のもつ高い比熱
を利用して効果的に冷却する冷却系統が既に提案されて
いる。In the hydrogen combustion turbine plant shown in FIG. 4, since the driving steam of the medium- and high-pressure turbines 3a and 3b has an extremely high temperature of 1700 ° C. or more, each of the turbines 3a and 3b It is necessary to ensure the maintenance of the material strength of the component parts, for example, the turbine stationary blade, the turbine blade, and the like. For this reason, the hydrogen combustion turbine plant shown in FIG. 4 has already been proposed with a cooling system that effectively cools the respective components of the medium- and high-pressure turbines 3a and 3b using the high specific heat of steam. ing.
【0011】この冷却系統は、図5に示すように、高圧
水素燃焼器4aの入口側からバイパスする中高圧タービ
ン用蒸気冷却供給管8a、中低圧タービン用第1蒸気冷
却供給管8bを設けるとともに、低圧水素燃焼器4bの
入口側からバイパスする中低圧タービン用第2蒸気冷却
供給管8cを設けている。As shown in FIG. 5, this cooling system is provided with a steam cooling supply pipe 8a for medium and high pressure turbines and a first steam cooling supply pipe 8b for medium and low pressure turbines, which are bypassed from the inlet side of the high pressure hydrogen combustor 4a. And a second steam cooling supply pipe 8c for a medium / low pressure turbine that is bypassed from the inlet side of the low pressure hydrogen combustor 4b.
【0012】また、中高圧タービン用蒸気冷却供給管8
aおよび中低圧タービン用第2蒸気冷却供給管8cのそ
れぞれの冷却用蒸気は、中高圧タービン3aおよび中低
圧タービン3bのそれぞれの構成部品を冷却後、駆動蒸
気して合流させる、いわゆる開放式冷却になっている。Further, a steam cooling supply pipe 8 for a medium / high pressure turbine
The cooling steam of the second steam cooling supply pipe 8c for the medium and low pressure turbines is a so-called open type cooling, in which the respective components of the medium and high pressure turbines 3a and 3b are cooled and then combined with the driving steam. It has become.
【0013】また、中低圧タービン用第1蒸気冷却供給
管8bの冷却用蒸気は、中低圧タービン3bの構成部品
を冷却後、高圧水素燃焼器4aに戻す、いわゆる回収式
冷却になっている。The cooling steam in the first steam cooling supply pipe 8b for the middle / low pressure turbine is so-called recovery cooling, in which the components of the middle / low pressure turbine 3b are cooled and then returned to the high pressure hydrogen combustor 4a.
【0014】中高圧タービン3aおよび中低圧タービン
3bのそれぞれの構成部品であるタービン静翼、タービ
ン動翼が冷却を必要とするのは、現状の翼材では700
〜800℃の強度維持が限界であり、タービン駆動蒸気
が1700℃以上であってみれば、翼材の強度維持が困
難となるからである。The reason why the turbine vanes and the turbine blades, which are the components of the medium- and high-pressure turbines 3a and 3b, need to be cooled, is that 700
This is because maintaining the strength of up to 800 ° C. is the limit, and if the turbine driving steam is 1700 ° C. or more, it becomes difficult to maintain the strength of the blade material.
【0015】また、中低圧タービン3bに翼冷却後の蒸
気の開放式冷却と回収式冷却を併用させたのは、翼内中
間部分に較べ翼前縁内および翼後縁内の冷却面積が形状
の相違から小さく、このため良好に冷却できる翼内中間
部分を通過する冷却用蒸気を回収式冷却にし、冷却しに
くい翼前縁内および翼後縁内を通過する冷却用蒸気を開
放式冷却にし、両方の有利な点を組み合せることにより
効果的な冷却と熱回収を図ることに基づく。The reason why the medium- and low-pressure turbine 3b uses both open cooling and recovery cooling of the steam after cooling the blades is that the cooling area in the leading edge and trailing edge of the blade is smaller than that in the middle part of the blade. The cooling steam passing through the middle part of the wing, which can be cooled well, is recovered by cooling, and the cooling steam passing through the wing leading edge and the wing trailing edge, which is difficult to cool, by open cooling. , Based on effective cooling and heat recovery by combining both advantages.
【0016】また、中高圧タービン3aが開放式冷却に
のみにとどめたのは、冷却用蒸気の圧力の選定が難し
く、高圧タービン1の入口側にその供給源を求めると回
収式冷却に必要な圧力よりも高すぎて翼冷却の際、不必
要な圧力損失を招き、熱精算上、プラント熱効率が低く
なり、またその供給源を高圧タービン1の出口側に求め
ると回収式冷却に必要な圧力よりも低くなり、熱回収が
難しくなることに基づく。Further, the reason that the medium-to-high pressure turbine 3a is limited to only the open type cooling is that it is difficult to select the pressure of the cooling steam, and if a supply source is required at the inlet side of the high pressure turbine 1, it is necessary for the recovery type cooling. When the blade is cooled because it is higher than the pressure, an unnecessary pressure loss is caused, and the thermal efficiency of the plant becomes low in terms of heat accounting. And heat recovery becomes more difficult.
【0017】一般に、回収式冷却と開放式冷却とは、一
長一短がある。回収式冷却は、冷却後の蒸気でも熱エネ
ルギが高いので回収後の熱エネルギが有効に活用できる
のに対し、圧力損失が高くなる。また、開放式冷却は、
冷却後の蒸気をタービン駆動蒸気に合流させるので冷却
しにくい部分に適用すると有利であるが、冷却用蒸気の
圧力が適正でないと、冷却用蒸気の翼外への流れが悪く
なり、ひいてはタービン駆動蒸気が翼内に流入するおそ
れがある。In general, recovery cooling and open cooling have advantages and disadvantages. In the recovery type cooling, the heat energy of the recovered steam can be effectively used because the heat energy of the cooled steam is high, but the pressure loss increases. In addition, open cooling
Since the cooled steam is combined with the turbine drive steam, it is advantageous to apply the cooling steam to parts that are difficult to cool.However, if the cooling steam pressure is not appropriate, the flow of the cooling steam to the outside of the blades becomes poor, and as a result, the turbine drive steam is deteriorated. Steam may flow into the wing.
【0018】このような点を考慮して図5で示した従来
の冷却系統を見直すと、中高圧タービン3aでは、冷却
用蒸気の供給源を高圧タービン1の出口側に求め、中高
圧タービン用蒸気冷却供給管8aを設けているから、タ
ービン駆動蒸気の圧力が翼内冷却用の蒸気圧力よりも高
くなっており、上述のように、タービン駆動蒸気の翼内
への流入のおそれがあり、その供給源の選定を見直す必
要がある。In consideration of the above points, the conventional cooling system shown in FIG. 5 is reviewed. In the medium-high pressure turbine 3a, the supply source of the cooling steam is determined at the outlet side of the high pressure turbine 1, Since the steam cooling supply pipe 8a is provided, the pressure of the turbine driving steam is higher than the steam pressure for cooling in the blade, and there is a possibility that the turbine driving steam may flow into the blade as described above. It is necessary to review the selection of the source.
【0019】また、中高圧タービン3aも、冷却効率の
向上とプラント熱効率の向上を図る必要上、開放式冷却
と回収式冷却の併用を採用することが好ましく、この点
からも図5で示した従来の冷却系統の冷却用蒸気の供給
源の選定を見直す必要がある。The medium and high pressure turbine 3a also preferably employs both open cooling and recovery cooling in order to improve the cooling efficiency and the heat efficiency of the plant, and this is shown in FIG. It is necessary to review the selection of the cooling steam supply source of the conventional cooling system.
【0020】本発明は、このような背景技術に基づいて
なされたもので、中圧タービンの構成部品の冷却効率の
より一層の向上と、プラント熱効率のより一層の向上を
図った水素燃焼タービンプラントを提供することを目的
とする。The present invention has been made based on such background art, and a hydrogen combustion turbine plant which has further improved the cooling efficiency of components of a medium pressure turbine and further improved the thermal efficiency of the plant. The purpose is to provide.
【0021】[0021]
【課題を解決するための手段】本発明に係る水素燃焼タ
ービンプラントは、上記目的を達成するために、請求項
1に記載したように、高圧タービンと低圧タービンとの
間に少なくとも2段以上の中圧タービンを設け、各中圧
タービンの入口蒸気を、水素と純酸素とを当量燃焼させ
る水素燃焼器により再加熱する水素燃焼タービンプラン
トにおいて、上記高圧タービンの途中段落のタービン抽
気を上記中圧タービンの構成部品に冷却用蒸気として案
内する中圧タービン用抽気蒸気冷却供給管と、上記中圧
タービンの構成部品を冷却後のタービン抽気を上記水素
燃焼器に回収させる中圧タービン用抽気蒸気回収管とを
備えたものである。In order to achieve the above object, a hydrogen combustion turbine plant according to the present invention has at least two or more stages between a high pressure turbine and a low pressure turbine. In a hydrogen combustion turbine plant in which medium-pressure turbines are provided and the inlet steam of each medium-pressure turbine is reheated by a hydrogen combustor that burns hydrogen and pure oxygen in an equivalent amount, the turbine bleed air in the middle stage of the high-pressure turbine is subjected to the medium pressure. Extraction steam cooling supply pipe for medium pressure turbine that guides the turbine component to the cooling steam, and extraction steam recovery for medium pressure turbine that allows the hydrogen combustor to collect the turbine extraction after cooling the component of the intermediate pressure turbine. And a tube.
【0022】本発明に係る水素燃焼タービンプラント
は、上記目的を達成するために、請求項2に記載したよ
うに、中圧タービンは、少なくとも中高圧タービンと中
低圧タービンとを備え、上記中高圧タービンおよび中低
圧タービンへの入口蒸気をそれぞれ加熱する高圧水素燃
焼器および低圧水素燃焼器を設けるとともに、高圧ター
ビンの途中段落のタービン抽気を上記中高圧タービンの
構成部品に冷却用蒸気として案内する中高圧タービン用
抽気蒸気冷却供給管と、上記中高圧タービンの構成部品
を冷却後のタービン抽気を上記高圧水素燃焼器に回収さ
せる中高圧タービン用抽気蒸気回収管とを備えたもので
ある。In order to achieve the above object, a hydrogen-combustion turbine plant according to the present invention is characterized in that the medium-pressure turbine includes at least a medium-to-high pressure turbine and a medium-to-low pressure turbine. A high-pressure hydrogen combustor and a low-pressure hydrogen combustor for heating the inlet steam to the turbine and the medium- and low-pressure turbines are provided, respectively, and the turbine extraction in the middle stage of the high-pressure turbine is guided to the components of the medium- and high-pressure turbine as cooling steam. A high-pressure turbine extracted steam cooling supply pipe, and a medium-high pressure turbine extracted steam recovery pipe for recovering the turbine extracted air after cooling the components of the medium-high pressure turbine to the high-pressure hydrogen combustor.
【0023】本発明に係る水素燃焼タービンプラント
は、上記目的を達成するために、請求項3に記載したよ
うに、高圧タービンと低圧タービンとの間に少なくとも
2段以上の中圧タービンを設け、各中圧タービンの入口
蒸気を、水素と純酸素とを当量燃焼させる水素燃焼器に
より再加熱する水素燃焼タービンプラントにおいて、上
記高圧タービンのタービン排気を減圧する減圧弁と、こ
の減圧弁の後流側に設けられ、上記タービン排気を上記
中圧タービンの構成部品に冷却用蒸気として案内するタ
ービン排気冷却供給管と、上記中圧タービンの構成部品
を冷却後の上記タービン排気を、上記水素燃焼器に回収
させる蒸気回収管とを備えたものである。In order to achieve the above object, the hydrogen combustion turbine plant according to the present invention is provided with at least two stages of intermediate-pressure turbines between the high-pressure turbine and the low-pressure turbine. In a hydrogen combustion turbine plant in which the inlet steam of each intermediate pressure turbine is reheated by a hydrogen combustor that burns hydrogen and pure oxygen in an equivalent amount, a pressure reducing valve for reducing the turbine exhaust of the high pressure turbine, and a downstream of the pressure reducing valve A turbine exhaust cooling supply pipe for guiding the turbine exhaust to the components of the intermediate pressure turbine as cooling steam, and the turbine exhaust after cooling the components of the intermediate pressure turbine. And a steam recovery pipe for recovery.
【0024】本発明に係る水素燃焼タービンプラント
は、上記目的を達成するために、請求項4に記載したよ
うに、中圧タービンは、少なくとも中高圧タービンと中
低圧タービンとを備え、上記中高圧タービンおよび中低
圧タービンへの入口蒸気をそれぞれ加熱する高圧水素燃
焼器および低圧水素燃焼器を設けるとともに、高圧ター
ビンのタービン排気を減圧する減圧弁と、減圧後のター
ビン排気を上記中高圧タービンの構成部品に冷却用蒸気
として案内する中高圧タービン用タービン排気蒸気冷却
供給管と、上記中高圧タービンの構成部品を冷却後の上
記タービン排気を上記高圧水素燃焼器に回収させる蒸気
回収管とを備えたものである。In order to achieve the above object, a hydrogen-combustion turbine plant according to the present invention is characterized in that the medium-pressure turbine includes at least a medium-to-high pressure turbine and a medium-to-low pressure turbine. A high-pressure hydrogen combustor and a low-pressure hydrogen combustor for heating the inlet steam to the turbine and the medium-to-low pressure turbine, respectively; a pressure reducing valve for reducing the pressure of the turbine exhaust of the high pressure turbine; A turbine-exhaust steam cooling supply pipe for a medium- and high-pressure turbine that guides the component as cooling steam, and a steam recovery pipe for recovering the turbine exhaust after cooling the components of the medium- and high-pressure turbine to the high-pressure hydrogen combustor. Things.
【0025】[0025]
【発明の実施の形態】以下、本発明に係る水素燃焼ター
ビンプラントの一実施の形態を図面を参照して説明す
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a hydrogen combustion turbine plant according to the present invention will be described below with reference to the drawings.
【0026】図1は、エネルギ供給プラントとして本発
明に係る水素燃焼タービンプラントを発電プラントに適
用した概略系統図である。FIG. 1 is a schematic system diagram in which a hydrogen combustion turbine plant according to the present invention is applied to a power plant as an energy supply plant.
【0027】この水素燃焼タービンプラント10は、高
圧タービン11と低圧タービン12との間に中高圧ター
ビン13aと中低圧タービン13bからなる2段の中圧
タービン13が設けられる。In the hydrogen combustion turbine plant 10, a two-stage intermediate-pressure turbine 13 composed of an intermediate-high-pressure turbine 13a and an intermediate-low-pressure turbine 13b is provided between a high-pressure turbine 11 and a low-pressure turbine 12.
【0028】中圧タービン13を構成する中高圧タービ
ン13aおよび中低圧タービン13bのタービン入口側
に高圧水素燃焼器14および低圧水素燃焼器15がそれ
ぞれ設置される。各水素燃焼器14,15は水素と純酸
素とを当量燃焼させ、例えば1600℃程度あるいはそ
れ以上の超高温蒸気を中高圧タービン13aおよび中低
圧タービン13bに供給するようになっている。A high-pressure hydrogen combustor 14 and a low-pressure hydrogen combustor 15 are installed on the turbine inlet side of the medium- and high-pressure turbines 13a and 13b constituting the medium-pressure turbine 13, respectively. Each of the hydrogen combustors 14 and 15 combusts hydrogen and pure oxygen in an equivalent amount, and supplies ultra-high-temperature steam of, for example, about 1600 ° C. or more to the medium- and high-pressure turbines 13a and 13b.
【0029】また、中高圧タービン13aおよび中低圧
タービン13bのタービン排気側に、高温のタービン排
気の排熱を熱回収する第1排熱回収ボイラ16および第
2排熱回収ボイラ17がそれぞれ設置される。第1およ
び第2排熱回収ボイラ16,17のそれぞれは、復水給
水系18からの給水を加熱し、高圧タービン11の駆動
蒸気を発生させるようになっている。Further, a first exhaust heat recovery boiler 16 and a second exhaust heat recovery boiler 17 for recovering the exhaust heat of the high-temperature turbine exhaust are installed on the turbine exhaust side of the middle and high pressure turbines 13a and 13b, respectively. You. Each of the first and second exhaust heat recovery boilers 16 and 17 heats the water supplied from the condensate water supply system 18 and generates steam for driving the high-pressure turbine 11.
【0030】また、中高圧タービン13aは、高圧ター
ビン11の途中段落から抽気したタービン抽気を、中高
圧タービン13aの構成部品、例えばタービン静翼およ
びタービン動翼等の翼内中間部分に冷却用として案内す
る中高圧タービン用抽気蒸気冷却供給管19aと、翼内
中間部分を冷却後、高圧水素燃焼器14に回収させる中
高圧タービン用抽気蒸気回収管19bとをそれぞれ備え
ている。The medium-to-high pressure turbine 13a uses the turbine bleed air extracted from the middle stage of the high-pressure turbine 11 to cool the components of the medium-to-high-pressure turbine 13a, for example, the intermediate portions inside the blades such as turbine vanes and turbine blades. A medium-high-pressure turbine extraction steam cooling supply pipe 19a to be guided and a medium-high-pressure turbine extraction steam recovery pipe 19b to be recovered by the high-pressure hydrogen combustor 14 after cooling the middle portion inside the blade are provided.
【0031】また、中高圧タービン13aは、高圧ター
ビン11の出口側からバイパスしたタービン排気を、中
高圧タービン13aの構成部品、例えばタービン静翼お
よびタービン動翼等の翼前縁、翼後縁に冷却用ととして
案内し、翼前縁、翼後縁を冷却後、タービン駆動蒸気に
合流させる中高圧タービン用蒸気冷却供給管19cを備
えている。The medium / high pressure turbine 13a transfers the turbine exhaust gas bypassed from the outlet side of the high pressure turbine 11 to the components of the medium / high pressure turbine 13a, for example, the leading edge and trailing edge of the turbine vanes and turbine blades. It is provided with a steam cooling supply pipe 19c for a medium-high pressure turbine, which is guided for cooling, cools the blade leading edge and the blade trailing edge, and joins the turbine driving steam.
【0032】一方、中低圧タービン13bは、高圧ター
ビン11の出口側からバイパスしたタービン排気を、例
えばタービン静翼およびタービン動翼等の翼内中間部分
に冷却用として案内する中低圧タービン用タービン排気
冷却供給管20aと、翼内中間部分を冷却後、高圧水素
燃焼器14に回収させる中低圧タービン用蒸気回収管2
0bとをそれぞれ備えている。On the other hand, the medium / low pressure turbine 13b guides the turbine exhaust bypassed from the outlet side of the high pressure turbine 11 to an intermediate portion inside the blade such as a turbine stationary blade and a turbine moving blade for cooling. A cooling supply pipe 20a and a steam recovery pipe 2 for a medium-to-low pressure turbine which is recovered by the high-pressure hydrogen combustor 14 after cooling the middle part in the blade.
0b.
【0033】また、中低圧タービン13bは、第1排熱
回収ボイラ16の出口側からバイパスしたバイパス蒸気
を、例えばタービン静翼およびタービン動翼等の翼前
縁、翼後縁に冷却用として案内し、翼前縁、翼後縁を冷
却後、タービン駆動蒸気に合流させる中低圧タービン用
バイパス蒸気冷却供給管20cを備えている。The middle and low pressure turbine 13b guides the bypass steam bypassed from the outlet side of the first exhaust heat recovery boiler 16 to the leading and trailing edges of the blades such as turbine vanes and turbine blades for cooling. After cooling the leading edge and trailing edge of the blade, the cooling device further includes a bypass steam cooling supply pipe 20c for the medium / low pressure turbine that joins the turbine driving steam.
【0034】この水素燃焼タービンプラント10は、水
素燃焼タービン発電プラントとして機能し、高圧タービ
ン11、各中圧タービン13および低圧タービン12を
駆動させることにより、各タービン11,12,13が
膨張仕事をし、発電機21を回転駆動させ、電気出力を
得るようにするとともに、中圧タービン13を構成する
中高圧タービン13aおよび中低圧タービン13bのそ
れぞれのタービン静翼およびタービン動翼等のタービン
構成部品の冷却化、タービン構成部品冷却後の回収化に
対処できるように図られている。The hydrogen-fired turbine plant 10 functions as a hydrogen-fired turbine power plant, and drives the high-pressure turbine 11, each medium-pressure turbine 13 and the low-pressure turbine 12 so that each turbine 11, 12, 13 performs expansion work. In addition to rotating the generator 21 to obtain an electric output, turbine components such as turbine stationary blades and turbine blades of the medium- and high-pressure turbines 13a and 13b constituting the medium-pressure turbine 13 It is designed to be able to cope with cooling of turbines and recovery after cooling turbine component parts.
【0035】また、低圧タービン12で仕事をし、膨張
したタービン排気は、続いて復水器22に案内され、こ
こで冷却され、凝集作用を受けて復水となる。この復水
は、復水ポンプ23により復水給水系18に案内され
る。一部の復水は、必要に応じて系外に排出される。The turbine exhaust which has been working in the low-pressure turbine 12 and expanded is subsequently guided to a condenser 22 where it is cooled and condensed to be condensed. This condensate is guided to the condensate water supply system 18 by the condensate pump 23. Some condensate is discharged out of the system as needed.
【0036】一方、復水給水系18には多段の低圧給水
加熱器24a,24b、脱気器25、高圧給水加熱器2
6が順次設置される。復水給水系18を通る復水は、低
圧給水加熱器24a,24bおよび高圧給水加熱器26
で、それぞれ順次加熱され、段階的に温度上昇する。復
水給水の加熱蒸気は、低圧タービン12や中圧タービン
13からのタービン排気である。一方、復水給水系18
を通る復水や給水は復水ポンプ23および給水ポンプ2
7によりポンプアップされ、加圧される。On the other hand, the condensate water supply system 18 has a multi-stage low pressure feed water heater 24a, 24b, a deaerator 25, and a high pressure feed water heater 2.
6 are sequentially installed. Condensate passing through the condensate water supply system 18 is supplied to the low pressure feed water heaters 24a and 24b and the high pressure feed water heater 26.
Are sequentially heated, and the temperature rises stepwise. The heating steam of the condensed feed water is turbine exhaust from the low-pressure turbine 12 and the medium-pressure turbine 13. On the other hand, condensate water supply system 18
Condensate and water supply through the condensate pump 23 and feed water pump 2
Pumped up by 7 and pressurized.
【0037】復水給水系18の各給水加熱器24a,2
4b,26で加熱された高温(例えば200℃程度)で
高圧(例えば350ata 〜500ata )の給水は、第1
排熱回収ボイラ16および第2排熱回収ボイラ17のそ
れぞれに案内され、各排熱回収ボイラ16,17で中高
圧タービン13aおよび中低圧タービン13bで膨張し
たタービン排気(例えば温度1100℃程度)と熱交換
し、より高温高圧の高圧タービン駆動用蒸気が生成され
る。この蒸気は、高圧タービン11の入口側に戻され、
2段再熱ランキンサイクルが構成される。Each feed water heater 24a, 2a of the condensate feed water system 18
4b, 26, the high-temperature (for example, about 200 ° C.) and high-pressure (for example, 350 to 500 at) water supply is performed by the first method.
Turbine exhaust (for example, at a temperature of about 1100 ° C.) guided by the exhaust heat recovery boiler 16 and the second exhaust heat recovery boiler 17 and expanded by the medium and high pressure turbines 13 a and 13 b in the respective heat recovery boilers 16 and 17. The heat is exchanged to generate higher-temperature, higher-pressure steam for driving the high-pressure turbine. This steam is returned to the inlet side of the high-pressure turbine 11,
A two-stage reheat Rankine cycle is configured.
【0038】次に、水素燃焼タービンプラントの作用を
説明する。Next, the operation of the hydrogen combustion turbine plant will be described.
【0039】水素燃焼タービンプラント10は、図2で
示すT−S線図に基づいて運転される。復水給水系18
を通る給水は、低圧給水加熱器24a,24b、高圧給
水加熱器26により加熱され、高温高圧(例えば200
℃、370ata 程度)となる。この給水は続いて排熱回
収ボイラ16,17で中高圧タービン13aおよび中低
圧タービン13bのそれぞれからのタービン抽気により
加熱され、過熱蒸気となる。この過熱蒸気は、例えば6
50℃、350ata 程度の高圧タービン駆動用蒸気とな
って高圧タービン11に供給され、この高圧タービン1
1を駆動させる。高圧タービン11で膨張し、仕事をし
たタービン排気は、例えば385℃、75ata 程度にな
って高圧水素燃焼器14に案内される。このタービン排
気は、高圧水素燃焼器14で水素と純酸素との当量燃焼
により温度上昇し、例えば1600〜1700℃、70
ata の超高温蒸気となって中圧タービン13の中高圧タ
ービン13aに案内され、この中高圧タービン13aを
超高温蒸気で駆動させる。The hydrogen combustion turbine plant 10 is operated based on the TS diagram shown in FIG. Condensate water supply system 18
Is heated by low-pressure feed water heaters 24a and 24b and high-pressure feed water heater 26,
° C, about 370ata). The feedwater is subsequently heated by the exhaust heat recovery boilers 16 and 17 by turbine bleed air from each of the medium- and high-pressure turbines 13a and 13b to become superheated steam. This superheated steam is, for example, 6
The steam is supplied to the high-pressure turbine 11 as high-pressure turbine driving steam at 50 ° C. and about 350 ata.
1 is driven. The turbine exhaust that has expanded and worked in the high-pressure turbine 11 is guided to the high-pressure hydrogen combustor 14 at, for example, 385 ° C. and about 75 ata. The temperature of this turbine exhaust rises due to equivalent combustion of hydrogen and pure oxygen in the high-pressure hydrogen combustor 14, for example, 1600 to 1700 ° C., 70 ° C.
The super high temperature steam of ata is guided to the medium high pressure turbine 13a of the medium pressure turbine 13, and the medium high pressure turbine 13a is driven by the ultra high temperature steam.
【0040】一方、高圧タービン11の途中段落から抽
気されたタービン抽気は、中高圧タービン用抽気蒸気冷
却供給管19aを経て中圧タービン13aの構成部品で
あるタービン静翼およびタービン動翼等の翼内中間部分
に案内され、ここで各翼内中間部分を冷却後、中高圧タ
ービン用抽気蒸気回収管19bを経て高圧水素燃焼器1
4に回収される。また、高圧タービン11の出口側から
バイパスしたタービン排気は、中高圧タービン用蒸気冷
却供給管19cを経て中圧タービン13aのタービン静
翼およびタービン動翼の翼前縁および翼後縁のそれぞれ
に案内され、ここで翼前縁および翼後縁を冷却後、ター
ビン駆動蒸気に合流する。On the other hand, the turbine bleed air extracted from the middle stage of the high-pressure turbine 11 passes through a medium-high-pressure turbine bleed steam cooling supply pipe 19a, and the blades such as turbine vanes and turbine blades, which are components of the medium-pressure turbine 13a. After being cooled to the middle portion of each blade, the middle portion of each blade is cooled and then passed through the extraction steam recovery pipe 19b for a medium-to-high pressure turbine.
Collected in 4. Further, the turbine exhaust gas bypassed from the outlet side of the high-pressure turbine 11 is guided to the turbine leading blade and the blade trailing edge of the turbine stationary blade and the turbine rotor blade of the medium-pressure turbine 13a via the medium-high-pressure turbine steam cooling supply pipe 19c. Here, the leading edge and trailing edge of the blade are cooled, and then join the turbine drive steam.
【0041】中高圧タービン13aで膨張し、仕事をし
たタービン排気は、例えば1100℃、19ata となっ
て第1排熱回収ボイラ16に案内され、この第1排熱回
収ボイラ16で復水給水系18からの給水を加熱する。
第1排熱回収ボイラ16で給水を加熱して約350℃に
温度降下した蒸気は、低圧水素燃焼器15に案内され
る。低圧水素燃焼器15で、水素と酸素の当量燃焼によ
り再加熱され、例えば1700℃、17ata の超高温と
なった過熱蒸気は中低圧タービン13bに案内され、こ
こで仕事をし、中低圧タービン13bを駆動させる。The turbine exhaust that has expanded and worked in the medium-to-high pressure turbine 13a is guided to the first exhaust heat recovery boiler 16 at 1100 ° C. and 19 atata, for example. Heat the water supply from 18.
The steam whose temperature has dropped to about 350 ° C. by heating the feed water in the first exhaust heat recovery boiler 16 is guided to the low-pressure hydrogen combustor 15. In the low-pressure hydrogen combustor 15, the superheated steam, which has been reheated by the equivalent combustion of hydrogen and oxygen and has become a very high temperature of, for example, 1700 ° C. and 17 ata, is guided to the medium- and low-pressure turbine 13b, where it works, and works there. Drive.
【0042】一方、高圧タービン11の出口側からバイ
パスしたタービン排気は、中低圧タービン用タービン排
気冷却供給管20aを経て中低圧タービン13bのター
ビン静翼およびタービン動翼等の翼内中間部分に案内さ
れ、ここで翼内中間部分を冷却後、中低圧タービン用蒸
気回収管20bを経て高圧水素燃焼器14に回収され
る。また、第1排熱回収ボイラ16の出口側からバイパ
スしたバイパス蒸気は、中低圧用バイパス蒸気冷却供給
管20cを経てタービン静翼およびタービン動翼のそれ
ぞれの翼前縁および翼後縁に案内され、ここで翼前縁お
よび翼後縁のそれぞれを冷却後、タービン駆動蒸気に合
流する。On the other hand, the turbine exhaust gas bypassed from the outlet side of the high-pressure turbine 11 is guided through the turbine exhaust cooling supply pipe 20a for the medium-to-low pressure turbine to the intermediate portion inside the blades such as the turbine stationary blade and the turbine moving blade of the medium-to-low pressure turbine 13b. Then, after cooling the intermediate portion in the blade, the blade is recovered to the high-pressure hydrogen combustor 14 via the steam recovery pipe 20b for a medium-to-low pressure turbine. Further, the bypass steam bypassed from the outlet side of the first exhaust heat recovery boiler 16 is guided to the leading and trailing edges of the turbine stationary blade and the turbine moving blade, respectively, via the middle / low pressure bypass steam cooling supply pipe 20c. Here, each of the blade leading edge and the blade trailing edge is cooled, and then joins the turbine drive steam.
【0043】中低圧タービン13bで膨張仕事をしたタ
ービン排気は、約1.4ata 、1000℃となって第2
排熱回収ボイラ17に案内され、この第2排熱回収ボイ
ラ17で復水給水系18からの給水を加熱する。The turbine exhaust that has been expanded by the medium-to-low pressure turbine 13b has a temperature of about 1.4 ata and 1000 ° C.
It is guided to the waste heat recovery boiler 17, and the second waste heat recovery boiler 17 heats the water supplied from the condensate water supply system 18.
【0044】第2排熱回収ボイラ17で給水を加熱して
約150℃程度に温度降下したタービン排気は、続いて
低圧タービン12に案内され、ここで再び仕事をして低
圧タービンを駆動させる。各タービン11,12,13
の駆動により発電機21が回転駆動され、電気出力が得
られる。The turbine exhaust gas whose temperature has been lowered to about 150 ° C. by heating the feed water in the second exhaust heat recovery boiler 17 is subsequently guided to the low pressure turbine 12, where it works again to drive the low pressure turbine. Each turbine 11, 12, 13
Drives the generator 21 to rotate, and an electric output is obtained.
【0045】低圧タービン12で仕事をしたタービン排
気は、温度が例えば33℃で負圧状態になって復水器2
2に案内され、この復水器22で冷却され、復水とな
る。この復水は、復水給水系18の各給水加熱器24
a,24b,26を通る間に多段に加熱される一方、復
水ポンプ23や給水ポンプ27で加圧され、高温(20
0℃程度)、高圧(350ata 程度)となって第2排熱
回収ボイラ16および第2排熱回収ボイラ17のそれぞ
れに案内される。The turbine exhaust that has worked in the low-pressure turbine 12 has a temperature of, for example, 33 ° C. and is in a negative pressure state.
2 and is cooled by the condenser 22 to be condensed. This condensed water is supplied to each feed water heater 24 of the condensed water supply system 18.
a, 24b, and 26, while being heated in multiple stages, while being pressurized by the condensing pump 23 and the water supply pump 27,
(About 0 ° C.) and high pressure (about 350 ata) and are guided to the second heat recovery steam generator 16 and the second heat recovery steam generator 17, respectively.
【0046】このように、本実施形態に係る水素燃焼タ
ービンプラント10では、高圧タービン11の途中段落
から抽気した冷却用として適温のタービン抽気を、中高
圧タービン用抽気蒸気冷却供給管19aを介して中高圧
タービン13aのタービン静翼およびタービン動翼のそ
れぞれの翼内中間部分に案内し、冷却後、中高圧タービ
ン用抽気蒸気回収管19bを介して高圧水素燃焼器14
に回収させるようにしたので、プラント熱効率を従来よ
りも大幅に向上させることができ、翼前縁、翼後縁の冷
却化とともに翼内中間部分の冷却化に伴ってタービン駆
動蒸気の超高温化に対して翼等のタービン構成部分を充
分に対処させることができる。As described above, in the hydrogen combustion turbine plant 10 according to the present embodiment, the turbine bleed at a suitable temperature for cooling extracted from the middle stage of the high-pressure turbine 11 is cooled through the medium-high-pressure turbine bleed steam cooling supply pipe 19a. After being guided to intermediate portions in the respective turbine vanes and turbine blades of the medium-high pressure turbine 13a and cooled, the high-pressure hydrogen combustor 14 is passed through a medium-high-pressure turbine extraction steam recovery pipe 19b.
The thermal efficiency of the plant can be significantly improved compared to the conventional method. Therefore, it is possible to sufficiently deal with the turbine components such as the blades.
【0047】図3は、本発明に係る水素燃焼タービンプ
ラントの第2実施形態を示す概略系統図である。なお、
第1実施形態の構成部品と同一部分には同一符号を付
し、その重複説明を省略する。FIG. 3 is a schematic system diagram showing a second embodiment of the hydrogen combustion turbine plant according to the present invention. In addition,
The same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof will not be repeated.
【0048】本実施形態は、高圧タービン11の出口側
からバイパスしたタービン排気を、中高圧タービン13
aの構成部品、例えばタービン静翼およびタービン動翼
の翼内中間部分に冷却用として案内する中高圧タービン
用タービン排気蒸気冷却供給管28と減圧弁29を設け
たものである。In the present embodiment, the turbine exhaust bypassed from the outlet side of the high pressure turbine 11 is
A component, for example, a turbine exhaust steam cooling / supply pipe 28 for a medium and high pressure turbine and a pressure reducing valve 29 which are guided for cooling at an intermediate portion in a blade of a turbine stationary blade and a turbine rotor blade are provided.
【0049】本実施形態は、減圧弁29を設けて高圧タ
ービン11のタービン排気を適正な圧力に調整後、その
タービン排気を冷却用として中高圧タービン用タービン
排気蒸気冷却供給管28を介して中高圧タービン13a
のタービン静翼およびタービン動翼の翼内中間部分に案
内し、翼内中間部分を冷却後、中高圧タービン用抽気蒸
気回収管19bを介して高圧水素燃焼器14に回収させ
るので、中高圧タービン13aも冷却用蒸気による開放
式冷却と回収式冷却を併用させることができる。In this embodiment, after the pressure of the turbine exhaust of the high-pressure turbine 11 is adjusted to an appropriate pressure by providing the pressure reducing valve 29, the turbine exhaust is cooled for cooling through the medium-high pressure turbine turbine exhaust steam cooling supply pipe 28 for cooling. High pressure turbine 13a
Of the turbine vanes and turbine blades, and after cooling the intermediate portions in the blades, the high-pressure hydrogen combustor 14 collects the extracted intermediate steam through the medium-high-pressure turbine extraction steam recovery pipe 19b. 13a can also use both open-type cooling with cooling steam and recovery-type cooling.
【0050】したがって、本実施形態によれば、中高圧
タービン13aの冷却用蒸気による開放式冷却と回収式
冷却を併用できるので、従来の開放式冷却のみに較べて
プラント熱効率を大幅に向上させることができる。な
お、本実施形態では、中高圧タービン13aの構成物品
を冷却するに必要な蒸気圧力を減圧弁29で調整した
が、この実施形態に限らず、高圧水素燃焼器14の圧力
損失を高くしても良く、また高圧水素燃焼器14の圧力
損失を増加させるとともに、上述減圧弁29を組み合せ
ても良い。すなわち、中高圧タービン13aの冷却用蒸
気の適正化を図ったものであれば、いずれの手段を講じ
ても良い。Therefore, according to the present embodiment, the open cooling with the steam for cooling the medium and high pressure turbine 13a can be used in combination with the recovery cooling, so that the plant thermal efficiency can be greatly improved as compared with the conventional open cooling alone. Can be. In the present embodiment, the steam pressure required to cool the components of the medium-high pressure turbine 13a is adjusted by the pressure reducing valve 29. However, the present invention is not limited to this embodiment, and the pressure loss of the high-pressure hydrogen combustor 14 is increased. The pressure loss of the high-pressure hydrogen combustor 14 may be increased, and the pressure reducing valve 29 may be combined. That is, any means may be employed as long as the cooling steam for the medium-high pressure turbine 13a is appropriately adjusted.
【0051】[0051]
【発明の効果】以上の説明の通り、本発明に係る水素燃
焼タービンプラントは、高圧タービンの途中段落のター
ビン抽気を、中高圧タービンの構成部品に冷却用蒸気と
して案内する中高圧タービン用抽気蒸気冷却供給管を設
けるとともに、中高圧タービンの構成部品を冷却後のタ
ービン抽気を、高圧水素燃焼器に回収させる中高圧ター
ビン用抽気蒸気回収管を設けたので、中高圧タービンに
開放式冷却と回収式冷却とを併用させることができ、従
来の開放式冷却に較べ大幅にプラント熱効率を向上させ
ることができる。As described above, in the hydrogen combustion turbine plant according to the present invention, the extracted steam for the medium- and high-pressure turbine guides the turbine extraction in the middle stage of the high-pressure turbine to the components of the medium- and high-pressure turbine as cooling steam. In addition to providing a cooling supply pipe, a medium-high-pressure turbine bleed steam recovery pipe is provided to recover the turbine bleed air after cooling the components of the medium-high-pressure turbine to a high-pressure hydrogen combustor. It can be used in combination with the type cooling, and the plant thermal efficiency can be greatly improved as compared with the conventional open type cooling.
【図1】本発明に係る水素燃焼タービンプラントの第1
実施形態を示す概略系統図。FIG. 1 shows a first embodiment of a hydrogen combustion turbine plant according to the present invention.
1 is a schematic system diagram showing an embodiment.
【図2】図1に示された水素燃焼タービンプラントに相
当するT−S線図。FIG. 2 is a TS diagram corresponding to the hydrogen combustion turbine plant shown in FIG.
【図3】本発明に係る水素燃焼タービンプラントの第2
実施形態を示す概略系統図。FIG. 3 shows a second embodiment of the hydrogen combustion turbine plant according to the present invention.
1 is a schematic system diagram showing an embodiment.
【図4】従来の水素燃焼タービンプラントの実施形態を
示す概略系統図。FIG. 4 is a schematic system diagram showing an embodiment of a conventional hydrogen combustion turbine plant.
【図5】従来の水素燃焼タービンプラントの別の実施形
態を示す概略系統図。FIG. 5 is a schematic system diagram showing another embodiment of a conventional hydrogen combustion turbine plant.
1 高圧タービン 2 低圧タービン 3a 中高圧タービン 3b 中低圧タービン 4a 高圧水素燃焼タービン 4b 低圧水素燃焼タービン 5a,5b 排熱回収ボイラ 6 復水給水系 7 発電機 8a 中高圧タービン用蒸気冷却供給管 8b 中低圧タービン用第1蒸気冷却供給管 8c 中低圧タービン用第2蒸気冷却供給管 10 水素燃焼タービンプラント 11 高圧タービン 12 低圧タービン 13 中圧タービン 13a 中高圧タービン 13b 中低圧タービン 14 高圧水素燃焼器 15 低圧水素燃焼器 16 第1排熱回収ボイラ 17 第2排熱回収ボイラ 18 復水給水系 19a 中高圧タービン用抽気蒸気冷却供給管 19b 中高圧タービン用抽気蒸気回収管 19c 中高圧タービン用蒸気冷却供給管 20a 中低圧タービン用タービン排気冷却供給管 20b 中低圧タービン用蒸気回収管 20c 中低圧タービン用バイパス蒸気冷却供給管 21 発電機 22 復水器 23 復水ポンプ 24a,24b 低圧給水加熱器 25 脱気器 26 高圧給水加熱器 27 給水ポンプ 28 中高圧タービン用タービン排気蒸気冷却供給管 29 減圧弁 DESCRIPTION OF SYMBOLS 1 High-pressure turbine 2 Low-pressure turbine 3a Medium-high-pressure turbine 3b Medium-low-pressure turbine 4a High-pressure hydrogen combustion turbine 4b Low-pressure hydrogen combustion turbine 5a, 5b Exhaust heat recovery boiler 6 Condensate water supply system 7 Generator 8a Steam cooling supply pipe for medium-high pressure turbine 8b Medium First steam cooling supply pipe for low pressure turbine 8c Second steam cooling supply pipe for medium / low pressure turbine 10 Hydrogen combustion turbine plant 11 High pressure turbine 12 Low pressure turbine 13 Medium pressure turbine 13a Medium / high pressure turbine 13b Medium / low pressure turbine 14 High pressure hydrogen combustor 15 Low pressure Hydrogen combustor 16 First waste heat recovery boiler 17 Second waste heat recovery boiler 18 Condensate water supply system 19a Extraction steam cooling supply pipe for medium and high pressure turbine 19b Extraction steam recovery pipe for medium and high pressure turbine 19c Steam cooling supply pipe for medium and high pressure turbine 20a Turbine exhaust cooling supply for medium and low pressure turbines 20b Steam recovery pipe for medium / low pressure turbine 20c Bypass steam cooling supply pipe for medium / low pressure turbine 21 Generator 22 Condenser 23 Condensate pump 24a, 24b Low pressure feedwater heater 25 Deaerator 26 High pressure feedwater heater 27 Feedwater pump 28 Medium Turbine exhaust steam cooling supply pipe for high pressure turbine 29 Pressure reducing valve
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02C 3/34 F02C 3/34 7/18 7/18 E (56)参考文献 特開 平7−293207(JP,A) 特開 平2−130204(JP,A) 特開 平2−75731(JP,A) 特開 平5−141267(JP,A) 特開 平10−89086(JP,A) 特開 平9−273402(JP,A) (58)調査した分野(Int.Cl.6,DB名) F01K 25/00 F01K 7/38 102 F01K 7/44 F02B 43/10 F02C 3/30 F02C 3/34 F02C 7/18 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification code FI F02C 3/34 F02C 3/34 7/18 7/18 E (56) References JP-A-7-293207 (JP, A) JP-A-2-130204 (JP, A) JP-A-2-75731 (JP, A) JP-A-5-141267 (JP, A) JP-A-10-89086 (JP, A) JP-A-9-273402 (JP JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) F01K 25/00 F01K 7/38 102 F01K 7/44 F02B 43/10 F02C 3/30 F02C 3/34 F02C 7/18
Claims (4)
なくとも2段以上の中圧タービンを設け、各中圧タービ
ンの入口蒸気を、水素と純酸素とを当量燃焼させる水素
燃焼器により再加熱する水素燃焼タービンプラントにお
いて、上記高圧タービンの途中段落のタービン抽気を、
上記中圧タービンの構成部品に冷却用蒸気として案内す
る中圧タービン用抽気蒸気冷却供給管と、上記中圧ター
ビンの構成部品を冷却後のタービン抽気を、上記水素燃
焼器に回収させる中圧タービン用抽気蒸気回収管とを備
えたことを特徴とする水素燃焼タービンプラント。At least two stages of intermediate-pressure turbines are provided between a high-pressure turbine and a low-pressure turbine, and inlet steam of each of the intermediate-pressure turbines is reheated by a hydrogen combustor for burning equivalent amounts of hydrogen and pure oxygen. In the hydrogen combustion turbine plant, the turbine bleed in the middle stage of the high pressure turbine,
A medium-pressure turbine bleed steam cooling supply pipe for guiding the medium-pressure turbine components as cooling steam, and a medium-pressure turbine for recovering the turbine bleed air after cooling the medium-pressure turbine components to the hydrogen combustor A hydrogen combustion turbine plant comprising: a bleed steam recovery pipe.
ビンと中低圧タービンとを備え、上記中高圧タービンお
よび中低圧タービンへの入口蒸気をそれぞれ加熱する高
圧水素燃焼器および低圧水素燃焼器を設けるとともに、
高圧タービンの途中段落のタービン抽気を、上記中高圧
タービンの構成部品に冷却用蒸気として案内する中高圧
タービン用抽気蒸気冷却供給管と、上記中高圧タービン
の構成部品を冷却後のタービン抽気を、上記高圧水素燃
焼器に回収させる中高圧タービン用抽気蒸気回収管とを
備えたことを特徴とする請求項1記載の水素燃焼タービ
ンプラント。2. The medium-pressure turbine includes at least a medium-high-pressure turbine and a medium-low-pressure turbine, and includes a high-pressure hydrogen combustor and a low-pressure hydrogen combustor for heating inlet steam to the medium-high-pressure turbine and the medium-low-pressure turbine, respectively. ,
Turbine bleed in the middle stage of the high-pressure turbine, a medium-high-pressure turbine bleed steam cooling supply pipe that guides the medium-high-pressure turbine components as cooling steam, and turbine bleed after cooling the medium-high-pressure turbine components, 2. The hydrogen combustion turbine plant according to claim 1, further comprising a bleed steam recovery pipe for a medium-to-high pressure turbine to be recovered by the high pressure hydrogen combustor.
なくとも2段以上の中圧タービンを設け、各中圧タービ
ンの入口蒸気を、水素と純酸素とを当量燃焼させる水素
燃焼器により再加熱する水素燃焼タービンプラントにお
いて、上記高圧タービンのタービン排気を減圧する減圧
弁と、この減圧弁の後流側に設けられ、上記タービン排
気を、上記中圧タービンの構成部品に冷却用蒸気として
案内するタービン排気冷却供給管と、上記中圧タービン
の構成部品を冷却後の上記タービン排気を、上記水素燃
焼器に回収させる蒸気回収管とを備えたことを特徴とす
る水素燃焼タービンプラント。3. At least two stages of intermediate-pressure turbines are provided between a high-pressure turbine and a low-pressure turbine, and inlet steam of each of the intermediate-pressure turbines is reheated by a hydrogen combustor for burning equivalent amounts of hydrogen and pure oxygen. In a hydrogen combustion turbine plant, a pressure reducing valve for reducing the pressure of the turbine exhaust gas of the high pressure turbine, and a turbine provided downstream of the pressure reducing valve for guiding the turbine exhaust gas to the components of the medium pressure turbine as cooling steam A hydrogen combustion turbine plant comprising: an exhaust cooling supply pipe; and a steam recovery pipe for recovering the turbine exhaust after cooling the components of the intermediate pressure turbine to the hydrogen combustor.
ビンと中低圧タービンとを備え、上記中高圧タービンお
よび中低圧タービンへの入口蒸気をそれぞれ加熱する高
圧水素燃焼器および低圧水素燃焼器を設けるとともに、
高圧タービンのタービン排気を減圧する減圧弁と、減圧
後のタービン排気を、上記中高圧タービンの構成部品に
冷却用蒸気として案内する中高圧タービン用タービン排
気蒸気冷却供給管と、上記中高圧タービンの構成部品を
冷却後の上記タービン排気を、上記高圧水素燃焼器に回
収させる蒸気回収管とを備えたことを特徴とする請求項
3記載の水素燃焼タービンプラント。4. The medium-pressure turbine includes at least a medium-high-pressure turbine and a medium-low-pressure turbine, and includes a high-pressure hydrogen combustor and a low-pressure hydrogen combustor for heating inlet steam to the medium-high-pressure turbine and the medium-low-pressure turbine, respectively. ,
A pressure reducing valve for reducing the pressure of the turbine exhaust of the high pressure turbine, a turbine exhaust steam cooling supply pipe for the medium pressure turbine for guiding the turbine exhaust after the pressure reduction to the components of the medium pressure turbine as cooling steam, The hydrogen combustion turbine plant according to claim 3, further comprising: a steam recovery pipe for recovering the turbine exhaust after cooling the component parts to the high-pressure hydrogen combustor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11826097A JP2960371B2 (en) | 1997-05-08 | 1997-05-08 | Hydrogen combustion turbine plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11826097A JP2960371B2 (en) | 1997-05-08 | 1997-05-08 | Hydrogen combustion turbine plant |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10306709A JPH10306709A (en) | 1998-11-17 |
JP2960371B2 true JP2960371B2 (en) | 1999-10-06 |
Family
ID=14732229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11826097A Expired - Fee Related JP2960371B2 (en) | 1997-05-08 | 1997-05-08 | Hydrogen combustion turbine plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2960371B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6109577B2 (en) * | 2013-01-08 | 2017-04-05 | 一般財団法人電力中央研究所 | Hydrogen gas turbine combined cycle power plant |
JP6783160B2 (en) | 2017-02-03 | 2020-11-11 | 川崎重工業株式会社 | Hydrogen oxygen equivalent combustion turbine system |
-
1997
- 1997-05-08 JP JP11826097A patent/JP2960371B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10306709A (en) | 1998-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5678401A (en) | Energy supply system utilizing gas and steam turbines | |
JP3890104B2 (en) | Combined cycle power plant and steam supply method for cooling the same | |
JP3652962B2 (en) | Gas turbine combined cycle | |
EP2204554A2 (en) | Method for expanding compressor discharge bleed air | |
JPH06264763A (en) | Combined plant system | |
JPH11247669A (en) | Gas turbine combined cycle | |
JP3782567B2 (en) | Thermal power plant | |
JP3905967B2 (en) | Power generation / hot water system | |
JP2699808B2 (en) | Steam-cooled gas turbine combined plant | |
JP3961653B2 (en) | Power plant | |
JP2960371B2 (en) | Hydrogen combustion turbine plant | |
JPH1113488A (en) | Full fired heat recovery combined plant using steam cooling type gas turbine | |
JP3017937B2 (en) | Hydrogen combustion turbine plant | |
WO1999037889A1 (en) | Combined cycle power plant | |
JP4488787B2 (en) | Steam turbine plant and method for cooling intermediate pressure turbine thereof | |
JPH11280412A (en) | Combined cycle power generation plant | |
JP3059115B2 (en) | Hydrogen combustion turbine plant | |
JPH09280010A (en) | Gas turbine, combined cycle plant provided with the gas turbine, and driving method thereof | |
JPH11148315A (en) | Combined cycle power plant | |
JPS60138213A (en) | Composite cycle waste heat recovery power generating plant | |
JPH06330709A (en) | Power generation plant | |
JP4209060B2 (en) | Steam cooling rapid start system | |
JP2004150356A (en) | Power generation plant | |
JP4343610B2 (en) | Power generation apparatus and power generation method | |
JPH08312905A (en) | Combined cycle power generating facility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080730 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |