JP2958467B2 - Method for manufacturing silicon oxide film of semiconductor device - Google Patents
Method for manufacturing silicon oxide film of semiconductor deviceInfo
- Publication number
- JP2958467B2 JP2958467B2 JP18832290A JP18832290A JP2958467B2 JP 2958467 B2 JP2958467 B2 JP 2958467B2 JP 18832290 A JP18832290 A JP 18832290A JP 18832290 A JP18832290 A JP 18832290A JP 2958467 B2 JP2958467 B2 JP 2958467B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- semiconductor device
- sio
- cvd
- tetraethoxysilane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Formation Of Insulating Films (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、新規な液体原料を用いてSiO2膜をCVD法で
形成する半導体装置のシリコン酸化膜の製造法に関す
る。Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a silicon oxide film of a semiconductor device in which an SiO 2 film is formed by a CVD method using a novel liquid material.
(従来の技術) CVD法は薄膜を構成する元素からなる一種または二種
以上の化合物気体を基板表面に送り、基板表面上で化学
反応させて所望の薄膜を形成する方法である。(Prior Art) The CVD method is a method of forming a desired thin film by sending one or more compound gases composed of elements constituting a thin film to a substrate surface and causing a chemical reaction on the substrate surface.
従来からSiO2系CVD成膜材料としては、SiH4気体原料
が用いられてきた。Conventionally, a SiH 4 gaseous raw material has been used as a SiO 2 -based CVD film forming material.
しかし、集積回路に使用されるパターン寸法は回路パ
ターンの高密度化とともに年々微細化の一途をたどり、
今やサブミクロンの時代に入っている。また、LSIの微
細化、高集積化に伴い、配線のチップに占める面積が大
きくなり、配線の多層化がますます進展している。さら
に、今後の多層配線においては、配線抵抗を小さく維持
する必要から配線のアスペクト比が大きくなり、その結
果、基板表面の凹凸はますます激しくなっている。した
がって、SiO2のような絶縁膜の平坦化は欠くことのでき
ない必須技術となっている。However, the pattern dimensions used for integrated circuits have continued to shrink with the increasing density of circuit patterns,
We are now in the submicron era. In addition, as LSIs become finer and more highly integrated, the area occupied by the wiring in the chip increases, and the number of wiring layers has further increased. Further, in the future multilayer wiring, the aspect ratio of the wiring has been increased due to the need to keep the wiring resistance small, and as a result, the unevenness of the substrate surface has become more and more severe. Therefore, planarization of an insulating film such as SiO 2 is an indispensable technology.
従来のSiH4気体原料を用いるCVDプロセスでは基板上
の段差や凹凸を平坦化できない。In a conventional CVD process using a SiH 4 gas source, steps and irregularities on a substrate cannot be flattened.
また、このCVDプロセスでは狭い電極間やゲートのト
レンチにボイドを形成し著しく膜特性を悪化させる。Further, in this CVD process, voids are formed between narrow electrodes or in a trench of a gate, and the film characteristics are remarkably deteriorated.
さらに、SiH4は自己発火性で極めて危険な原料であ
る。In addition, SiH 4 is a self-igniting and extremely dangerous raw material.
以上のような欠点を克服するために、最近、SiH4に代
わって液体原料であるテトラエトキシシランSi(OC
2H5)4を用いるCVD法が実用化され、盛んになってきて
いる。In order to overcome the above drawbacks, recently, instead of SiH 4 , a liquid raw material, tetraethoxysilane Si (OC
2 H 5) CVD method using 4 are commercialized, it has become popular.
これはテトラエトキシシランを蒸気化し、CVD反応室
に導入するものである。In this method, tetraethoxysilane is vaporized and introduced into a CVD reaction chamber.
テトラエトキシシランを用いるCVD法で成長させた膜
は段差被覆性、平坦化性等に優れており、かつ、テトラ
エトキシシランは自己発火性もなく、半導体装置の製造
工程上極めて安全な原料である。The film grown by the CVD method using tetraethoxysilane has excellent step coverage, flattenability, etc., and tetraethoxysilane has no self-ignition property and is a very safe raw material in the manufacturing process of semiconductor devices. .
また、平坦化CVD膜の特徴として、高密度なパターン
部においてもリフロー処理によってボイドのない平坦化
膜が達成できる。Further, as a feature of the flattening CVD film, even in a high-density pattern portion, a flattening film without voids can be achieved by reflow processing.
しかし、テトラエトキシシランを用いるCVD法で成長
させた膜は、その緻密性、クラック耐性、絶縁性等の膜
質にまだ問題点を残しており、この問題点を軽減するよ
うに成膜するには600〜700℃の基板加熱を必要とする。However, the film grown by the CVD method using tetraethoxysilane still has problems in the film quality such as its denseness, crack resistance, and insulating properties, and it is difficult to form a film so as to reduce this problem. Requires substrate heating of 600-700 ° C.
したがって、アルミ配線上にテトラエトキシシランを
用いるCVD法でSiO2膜を成膜する場合、アルミ配線を著
しく劣化させる欠点がある。Therefore, when the SiO 2 film is formed on the aluminum wiring by the CVD method using tetraethoxysilane, there is a disadvantage that the aluminum wiring is significantly deteriorated.
このため高温の基板加熱を必要とせず、テトラエトキ
シシランより低温でSiO2膜を成膜できるCVD液体原料が
望まれていた。Therefore, a CVD liquid raw material that does not require high-temperature substrate heating and can form an SiO 2 film at a lower temperature than tetraethoxysilane has been desired.
(解決しようとする問題点) 本発明者等は、テトラエトキシシランより低温でSiO2
膜を成膜でき、かつ、段差被覆性、平坦化性等に優れて
おり、さらに緻密性,クラック耐性、絶縁性等の膜質も
優れた新規な液体原料を用いる半導体装置のSiO2膜の製
造法を特許出願した。(特願平成2−20121号) 本発明は、この製造法の改良に関するものである。(Problems to be Solved) The present inventors have found that SiO 2 can be used at a lower temperature than tetraethoxysilane.
Manufacture of SiO 2 film for semiconductor devices using a novel liquid raw material that can form a film, is excellent in step coverage, flatness, etc., and is also excellent in film quality such as denseness, crack resistance, insulation, etc. The law has applied for a patent. (Japanese Patent Application No. Hei 2-20121) The present invention relates to an improvement of this production method.
(問題を解決するための手段) 本発明は、CVD法で半導体装置のSiO2膜を製造する場
合、新規な液体原料としてトリプロポキシシランあるい
はトリブトキシシランのようなH基1個を有するトリア
ルコキシシラン、あるいは、ジプロポキシシランあるい
はジブトキシシランのようなH基2個を有するジアルコ
キシシランを用いることを特徴とする。(Means for Solving the Problem) The present invention relates to a trialkoxy having one H group such as tripropoxysilane or tributoxysilane as a novel liquid material when an SiO 2 film of a semiconductor device is manufactured by a CVD method. It is characterized by using silane or dialkoxysilane having two H groups such as dipropoxysilane or dibutoxysilane.
テトラエトキシシランはエトキシ基4個がSiについた
構造であるが、トリプロポキシシランはプロポキシ基3
個と水素1個がSiにつき、トリブトキシシランはブトキ
シ基3個と水素1個がSiにつき、ジプロポキシシランは
プロポキシ基2個と水素2個がSiにつき、ジブトキシシ
ランはブトキシ基2個と水素2個がSiについた構造であ
り、常温で無色透明な液体である。Tetraethoxysilane has a structure in which four ethoxy groups are attached to Si, whereas tripropoxysilane has a structure in which propoxy groups 3
And one hydrogen per Si, tributoxysilane has three butoxy groups and one hydrogen per Si, dipropoxysilane has two propoxy groups and two hydrogen per Si, and dibutoxysilane has two butoxy groups. It has a structure in which two hydrogen atoms are attached to Si, and is a colorless and transparent liquid at normal temperature.
トリプロポキシシランはn−HSi(OC3H7)3、i−HS
i(OC3H7)3等を含み、トリブトキシシランはn−HSi
(OC4H9)3、i−HSi(OC4H9)3、t−HSi(OC4H9)
3、sec−HSi(OC4H9)3等を含む。Tripropoxysilane is n-HSi (OC 3 H 7 ) 3 , i-HS
i (OC 3 H 7 ) 3 etc., and tributoxysilane is n-HSi
(OC 4 H 9 ) 3 , i-HSi (OC 4 H 9 ) 3 , t-HSi (OC 4 H 9 )
3 , sec-HSi (OC 4 H 9 ) 3 and the like.
ジプロポキシシランはn−H2Si(OC3H7)2、i−H2S
i(OC3H7)2等を含み、ジブトキシシランはn−H2Si
(OC4H9)2、i−H2Si(OC4H9)2、t−H2Si(OC
4H9)2、sec−H2Si(OC4H9)2等を含む。Dipropoxy silane n-H 2 Si (OC 3 H 7) 2, i-H 2 S
i (OC 3 H 7 ) 2 etc., and dibutoxysilane is n-H 2 Si
(OC 4 H 9) 2, i-H 2 Si (OC 4 H 9) 2, t-H 2 Si (OC
4 including H 9) 2, sec-H 2 Si (OC 4 H 9) 2 and the like.
本発明は、熱分解ガスクロマトグラフィーとプラズマ
分解装置を用いて種々のアルコラートの分解を研究中に
得た次の三つの事実に基ずくものである。The present invention is based on the following three facts obtained during the study of the decomposition of various alcoholates using pyrolysis gas chromatography and a plasma decomposition apparatus.
(1)金属アルコラートの最終熱分解温度は、金属につ
く側鎖のうち最も分解しにくい側鎖によってきまる。(1) The final thermal decomposition temperature of the metal alcoholate is determined by the side chain which is least likely to decompose among the side chains attached to the metal.
金属としてSiを例にとると、メトキシ基700℃、エト
キシ基550℃、プロポキシ基類480℃、ブトイシ基類450
℃というように炭素数が多い程最終分解温度が低くな
る。Taking Si as an example of a metal, methoxy group 700 ° C, ethoxy group 550 ° C, propoxy group 480 ° C, butoxy group 450
The higher the number of carbon atoms, such as ° C, the lower the final decomposition temperature.
(2)側鎖の炭素数が多くなると分解してできた金属酸
化膜中に炭素分が残留し易い傾向がある。(2) When the number of carbon atoms in the side chain increases, carbon tends to remain in the metal oxide film formed by decomposition.
(3)Siアルコキシド用い、プラズマ速度を弱くしてい
くと、蒸気圧が低い低粘性の液体をシリコン基板上に造
ることができる。(3) A low-viscosity liquid having a low vapor pressure can be formed on a silicon substrate by using an Si alkoxide and decreasing the plasma velocity.
このうち(3)は、テトラエトキシシランをCVD材料
として用いると平坦な酸化膜ができる理由を明かにした
ものである。すなわち、従来、この理由として擬液体が
できると説明されてきたが、そうではなく液体そのもの
であることを明確にした。Among them, (3) clarifies the reason why a flat oxide film can be formed by using tetraethoxysilane as a CVD material. That is, conventionally, it has been explained that a pseudo liquid is formed as the reason, but it is clarified that the pseudo liquid is not a liquid itself.
この発見により、分解過程で得られる液体が分解が進
んでも粘性の低い液体になり続け易いCVD原料が、平坦
化の上で有利であることがわかった。From this finding, it has been found that a CVD raw material that tends to become a low-viscosity liquid even when the liquid obtained in the decomposition process progresses is advantageous for flattening.
分解してできるポリ金属アルコラートは直鎖状分子の
時最も粘性が低く、環状や立体的な構造をもつと固体化
や高粘性化することはシリコン樹脂等の例でよく知られ
た事実である。It is a well-known fact that polymetal alcoholate formed by decomposition has the lowest viscosity when it is a linear molecule, and solidifies or becomes highly viscous when it has a cyclic or three-dimensional structure. .
本発明の一つの骨子、金属、特にシリコンアルコキシ
ドの側鎖のうち一つまたは二つを特に分解し易い基と
し、残りの基を多少分解しにくい基にして、分解、縮合
過程でより粘性率の小さい状態にすることである。One gist of the present invention, one or two of the side chains of a metal, particularly silicon alkoxide, is a group that is particularly easily decomposed, and the remaining group is a group that is hardly decomposed. Is to make it small.
シリコンのアルコキシドの分解は、オゾン等の活性酸
素を用いることにより分解開始温度が200〜300℃に低下
することは周知の事実であり、この条件下では、側鎖と
して水素基を持ったアルコキシドの方が分解され易い。It is a well-known fact that the decomposition start temperature of silicon alkoxides is reduced to 200 to 300 ° C. by using active oxygen such as ozone.Under these conditions, alkoxides having a hydrogen group as a side chain are decomposed. Is easier to disassemble.
本発明のもう一つの骨子は、上記の水素基の分解し易
さによって直鎖状分子を造るに適した構造のアルコキシ
ドを選択することである。Another gist of the present invention is to select an alkoxide having a structure suitable for producing a linear molecule due to the ease of decomposition of the hydrogen group.
側鎖の水素基は三つ以上になると三次元的な立体構造
をとり易く好ましくない。If the number of side-chain hydrogen groups is three or more, a three-dimensional steric structure is easily formed, which is not preferable.
また、側鎖の炭素数が5以上のアルコキシドは形成し
た酸化膜中に炭素分が残留し易く、かつ、多孔質膜とな
り易く好ましくない。An alkoxide having 5 or more carbon atoms in the side chain is not preferred because carbon tends to remain in the formed oxide film and tends to become a porous film.
上記のように、熱分解温度は一例として、HSi(OC
2H5)3よりHSi(OC3H7)3の方が低く、HSi(OC3H7)
3よりHSi(OC4H9)3の方がさらに低い。As described above, the thermal decomposition temperature is, for example, HSi (OC
2 H 5) 3 than HSi (OC 3 H 7) 3 towards low, HSi (OC 3 H 7)
3 from HSi (OC 4 H 9) 3 further lower the.
したがって、CVD法で半導体装置のSiO2膜を製造する
場合、液体原料としてHSi(OC2H5)3よりHSi(OC3H7)
3あるいはHSi(OC4H9)3を用いた法がより低温でSiO2
膜を成膜できることがわかった。Therefore, when the SiO 2 film of a semiconductor device is manufactured by the CVD method, HSi (OC 3 H 7 ) 3 is used instead of HSi (OC 2 H 5 ) 3 as a liquid material.
3 or HSi (OC 4 H 9) 3 SiO 2 at lower temperatures is the law using
It was found that a film could be formed.
テトラエトキシシランがSiO2になる過程は一気にSiO2
になるのではなく、 (H5C2O)3SiOSi(0C2H5)3、(H5C2O)3SiOSi(0C
2H5)2OSi(OC2H5)3 等のテトラエトキシシランの二量体、三量体等の中間縮
合物を経てSiO2になることが知られており、この中間縮
合物が流動性を帯びているために、良好な段差被覆性、
平坦化性を有するものである。Process of tetraethoxysilane is SiO 2 is once SiO 2
Instead of (H 5 C 2 O) 3 SiOSi (0C 2 H 5 ) 3 , (H 5 C 2 O) 3 SiOSi (0C
It is known that the intermediate condensate is converted to SiO 2 via an intermediate condensate such as a dimer or trimer of tetraethoxysilane such as 2 H 5 ) 2 OSi (OC 2 H 5 ) 3. Good step coverage,
It has a flattening property.
トリプロポキシシランあるいはトリブトキシシラン、
あるいは、ジプロポキシシランあるいはジブトキシシラ
ンは分子中のHが離脱しOが入り易く、このためテトラ
エトキシシランより二量体、三量体等の中間縮合物を生
成し易いため段差被覆性、平坦化性に優れている。Tripropoxysilane or tributoxysilane,
Alternatively, dipropoxy silane or dibutoxy silane easily removes H in the molecule and enters O, and thus easily produces an intermediate condensate such as dimer or trimer than tetraethoxy silane. Excellent in chemical properties.
また、分解物が環状分子ではなく直鎖状分子にする作
用がある。In addition, the decomposition product has an effect of converting the molecule into a linear molecule instead of a cyclic molecule.
さらに、トリプロポキシシランあるいはトリブトキシ
シラン、あるいは、ジプロポキシシランあるいはジブト
キシシランを用いるCVD法で成長させた膜は緻密性、ク
ラック耐性、絶縁性等の膜質も極めて優れていることが
わかった。Furthermore, it was found that the films grown by CVD using tripropoxysilane, tributoxysilane, or dipropoxysilane or dibutoxysilane also have extremely excellent film quality such as denseness, crack resistance, and insulating properties.
また、これらのCVD原料はテトラエトキシシランと同
様に半導体装置の製造工程上極めて安全な原料である。Further, these CVD raw materials are extremely safe raw materials in the manufacturing process of semiconductor devices, like tetraethoxysilane.
(実施例1) プラズマCVD装置内にSi基板を設置し、その基板を350
℃に加熱した。(Example 1) An Si substrate was placed in a plasma CVD apparatus, and the
Heated to ° C.
25℃でi−HSi(OC3H7)3をHeキヤリアガスでバブリ
ングしてプラズマCVD装置内に導入し、装置内で酸素と
混合し、プラズマによりSiO2膜をSi基板上に成膜した。At 25 ° C., i-HSi (OC 3 H 7 ) 3 was bubbled with a He carrier gas, introduced into a plasma CVD apparatus, mixed with oxygen in the apparatus, and a SiO 2 film was formed on a Si substrate by plasma.
この膜とテトラエトキシシランを用いたプラズマCVD
膜とを硬度計を用いて膜の硬度を比較した結果、i−HS
i(OC3H7)3を用いたプラズマCVD膜の方が硬度が大き
く、充分に緻密な膜であることがわかった。Plasma CVD using this film and tetraethoxysilane
As a result of comparing the film hardness with the film using a hardness meter, i-HS
It was found that the plasma CVD film using i (OC 3 H 7 ) 3 had higher hardness and was sufficiently dense.
(実施例2) プラズマCVD装置内にSi基板を設置し、その基板を300
℃に加熱した。(Example 2) An Si substrate was set in a plasma CVD apparatus, and the substrate was
Heated to ° C.
25℃でn−HSi(OC4H9)3をHeキヤリアガスでバブリ
ングしてブラズマCVD装置内に導入し、装置内で酸素と
混合し、プラズマによりSiO2膜をSi基板上に成膜した。At 25 ° C., n-HSi (OC 4 H 9 ) 3 was bubbled with a He carrier gas, introduced into a plasma CVD apparatus, mixed with oxygen in the apparatus, and a SiO 2 film was formed on a Si substrate by plasma.
この膜とテトラエトキシシランを用いたプラズマCVD
膜とを硬度計を用いて膜の硬度を比較した結果、トリブ
トキシシランを用いたプラズマCVD膜の方が硬度が大き
く、充分に緻密な膜であることがわかった。Plasma CVD using this film and tetraethoxysilane
As a result of comparing the film hardness with the film using a hardness meter, it was found that the plasma CVD film using tributoxysilane had a higher hardness and was a sufficiently dense film.
(発明の効果) 本発明によれば、テトラエトキシシランあるいはトリ
エトキシシランより低温でSiO2膜を成膜することがで
き、かつ、その膜は段差被覆性、平坦化性に優れ、硬
度、緻密性等の膜質も極めて優れている特徴がある。(Effects of the Invention) According to the present invention, an SiO 2 film can be formed at a lower temperature than tetraethoxysilane or triethoxysilane, and the film is excellent in step coverage and flattening property, hardness, and density. There is a feature that the film quality such as properties is also extremely excellent.
また、クラック耐性、絶縁性等の膜質も極めて優れて
いる特徴がある。In addition, it has a feature that the film quality such as crack resistance and insulating property is extremely excellent.
さらに、半導体装置の製造工程上極めて安全性が高い
特徴がある。Further, there is a feature that the safety is extremely high in the manufacturing process of the semiconductor device.
Claims (2)
CVD法で形成する場合、該液体原料にH基1個を有する
トリアルコキシシランあるいはH基2個を有するジアル
コキシシランを用いることを特徴とする半導体装置のシ
リコン酸化膜の製造法。An SiO 2 film for a semiconductor device is formed by using a liquid material.
A method for producing a silicon oxide film for a semiconductor device, comprising using, as the liquid material, trialkoxysilane having one H group or dialkoxysilane having two H groups as the liquid material.
トリプロポキシシランあるいはトリブトキシシランであ
り、H基2個を有するジアルコキシシランがジプロポキ
シシランあるいはジブトキシシランである特許請求の範
囲第1項記載の半導体装置のシリコン酸化膜の製造法。2. The trialkoxysilane having one H group is tripropoxysilane or tributoxysilane, and the dialkoxysilane having two H groups is dipropoxysilane or dibutoxysilane. 13. The method for producing a silicon oxide film of a semiconductor device according to claim 12.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18832290A JP2958467B2 (en) | 1990-07-17 | 1990-07-17 | Method for manufacturing silicon oxide film of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18832290A JP2958467B2 (en) | 1990-07-17 | 1990-07-17 | Method for manufacturing silicon oxide film of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0474424A JPH0474424A (en) | 1992-03-09 |
JP2958467B2 true JP2958467B2 (en) | 1999-10-06 |
Family
ID=16221577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18832290A Expired - Fee Related JP2958467B2 (en) | 1990-07-17 | 1990-07-17 | Method for manufacturing silicon oxide film of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2958467B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5293112B2 (en) * | 2008-11-25 | 2013-09-18 | トヨタ自動車株式会社 | Method for producing active material and method for producing electrode body |
-
1990
- 1990-07-17 JP JP18832290A patent/JP2958467B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0474424A (en) | 1992-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101157683B1 (en) | Method for Producing Silicon Oxide Film | |
US5166101A (en) | Method for forming a boron phosphorus silicate glass composite layer on a semiconductor wafer | |
KR960013151B1 (en) | Chemical depositing method for silicon oxide film | |
KR100440233B1 (en) | Method and apparatus for depositing a planarized dielectric layer on a semiconductor substrate | |
JP3954577B2 (en) | Precursor and process for depositing silicon-containing films | |
JPH05195228A (en) | Low temperatured chemical vapor deposition method | |
JPH053258A (en) | Formation of interlayer insulating film | |
EP2813467A1 (en) | Inorganic polysilazane resin | |
EP0421203B1 (en) | An integrated circuit structure with a boron phosphorus silicate glass composite layer on semiconductor wafer and improved method for forming same | |
JP3120302B2 (en) | Method for manufacturing silicon oxide film of semiconductor device | |
JP2958467B2 (en) | Method for manufacturing silicon oxide film of semiconductor device | |
KR100339820B1 (en) | Film formation method and manufacturing method semiconductor device | |
KR101934773B1 (en) | Low temperature process for forming a silicon-containing thin layer | |
US6432839B2 (en) | Film forming method and manufacturing method of semiconductor device | |
JPH05299412A (en) | Manufacture of silicon oxide film in semiconductor device | |
KR100200888B1 (en) | Method of forming an inter-layer insulating film | |
JP3038566B2 (en) | Method of manufacturing silicon oxide film for semiconductor device | |
EP0412644A2 (en) | Low temperature low pressure thermal CVD process for forming conformal group III and/or group V-doped silicate glass coating of uniform thickness on integrated structure | |
JPH05275420A (en) | Manufacture of silicon oxide film of semiconductor device | |
JPH0693451A (en) | Production of silicon oxide film | |
JP3049523B2 (en) | Method for manufacturing silicon oxide film of semiconductor device | |
JPH08321499A (en) | Silicon compound film and forming method thereof | |
JPH03225826A (en) | Manufacture of silicon oxide film for semiconductor device | |
JPH09293716A (en) | Forming method of insulating film containing fluorine | |
JPH03123029A (en) | Manufacture of semiconductor device and device thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |