JP2953812B2 - Bleed tube - Google Patents
Bleed tubeInfo
- Publication number
- JP2953812B2 JP2953812B2 JP11172791A JP11172791A JP2953812B2 JP 2953812 B2 JP2953812 B2 JP 2953812B2 JP 11172791 A JP11172791 A JP 11172791A JP 11172791 A JP11172791 A JP 11172791A JP 2953812 B2 JP2953812 B2 JP 2953812B2
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- steam
- liquid
- branch pipe
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Separating Particles In Gases By Inertia (AREA)
- Pipeline Systems (AREA)
Description
【0001】[発明の目的][Object of the Invention]
【0002】[0002]
【産業上の利用分野】本発明は、原子力発電プラントの
湿分を含んだ蒸気が流れる抽気系統で湿分分離器に導く
抽気管に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bleed pipe which leads to a moisture separator in a bleed system in which steam containing moisture flows in a nuclear power plant.
【0003】[0003]
【従来の技術】従来の原子力発電プラントにおいて、湿
分を含んだ蒸気が流れる抽気系統の湿分分離器への適用
例について説明する。例えば、沸騰水型原子力発電プラ
ントは図5に示すような系統構成になっている。すなわ
ち、原子炉11で発生した主蒸気は、約68kg/cm
2 absの飽和蒸気であって、主蒸気管12を経て高圧
タービン13の入口に流入する。この高圧タービン13
で仕事をした蒸気は、定格運転時で約12%〜13%の
湿った蒸気となって、その出口からクロスアラウンド管
14に流入する。そのため、このクロスアラウンド管1
4内の流体の流れは気液二相流となっていて、管の壁面
を液膜が流れ、また、管内を液滴が流れるいわゆる“環
状噴霧流”となっている。そこで、これらの湿分を蒸気
から除去するためにクロスアラウンド管14に湿分分離
器15が接続されていて、クロスアラウンド管14を経
て湿分分離器15内に流入した気液二相流は、液と蒸気
とに分離される。ここで、分離された蒸気は、低圧ター
ビン17a,17bの入口に導入されるとともに、液は
M/Sドレン管16を経て高圧給水加熱器23bに流入
されてそこで熱回収を行うようになっている。2. Description of the Related Art In a conventional nuclear power plant, an example of application to a moisture separator of an extraction system in which steam containing moisture flows will be described. For example, a boiling water nuclear power plant has a system configuration as shown in FIG. That is, the main steam generated in the reactor 11 is about 68 kg / cm
The saturated steam of 2 abs flows into the inlet of the high-pressure turbine 13 through the main steam pipe 12. This high pressure turbine 13
The steam which has been worked in the above becomes wet steam of about 12% to 13% at the time of rated operation, and flows into the cross-around pipe 14 from its outlet. Therefore, this cross-around tube 1
The flow of the fluid in 4 is a gas-liquid two-phase flow, which is a so-called "annular spray flow" in which a liquid film flows on the wall surface of the tube and droplets flow in the tube. Therefore, a moisture separator 15 is connected to the cross-around pipe 14 in order to remove these moisture from the steam, and the gas-liquid two-phase flow flowing into the moisture separator 15 through the cross-around pipe 14 is , Separated into liquid and vapor. Here, the separated steam is introduced into the inlets of the low-pressure turbines 17a and 17b, and the liquid flows into the high-pressure feed water heater 23b through the M / S drain pipe 16, where heat is recovered. I have.
【0004】一方、低圧タービン17a,17bで仕事
をし発電機18を駆動させた蒸気は、低圧タービン17
a,17bの出口から流出して復水器19に入って凝縮
して復水となる。この復水は、復水ポンプ20、低圧給
水加熱器21a,21b,21c、原子炉給水ポンプ2
2および高圧給水加熱器23a,23bを経て原子炉1
1に戻る。また、蒸気は高圧タービン13および低圧タ
ービン17a,17bから抽気管24a,24b,24
c,24d,24eを介して抽気され高圧給水加熱器2
3a,23bおよび低圧給水加熱器21a,21b,2
1cにそれぞれ導入され、復水および給水を加熱する。
これらタービンからの抽気蒸気は、湿り蒸気であって、
抽気管24a,24b,24c,24d,24e内の流
体の流れは、湿り度4%〜40%の気液二相流となって
いる。On the other hand, the steam that has been working in the low-pressure turbines 17a and 17b and has driven the generator 18 is supplied to the low-pressure turbine 17a.
The water flows out of the outlets a and 17b and enters the condenser 19 to be condensed and condensed. This condensate is supplied to the condensate pump 20,
Water heaters 21a, 21b, 21c, reactor feed pump 2
2 and high pressure feed water heaters 23a and 23b
Return to 1. Further, steam is supplied from the high-pressure turbine 13 and the low-pressure turbines 17a, 17b to the bleed tubes 24a, 24b, 24.
high pressure feed water heater 2 bleed through c, 24d, 24e
3a, 23b and low pressure feedwater heaters 21a, 21b, 2
1c respectively to heat the condensate and feed water.
The extracted steam from these turbines is wet steam,
The flow of the fluid in the bleed tubes 24a, 24b, 24c, 24d, 24e is a gas-liquid two-phase flow having a wetness of 4% to 40%.
【0005】さらに、原子力発電プラントでは、機器の
配置構成上、湿分分離器15に接続されるクロスアラウ
ンド管14および各給水加熱器に入る抽気管24a,2
4b,24c,24d,24eを分岐することがある。
図6は、気液二相流分岐管の一例を示したものである。
ここでは、高圧タービン13から二台の湿分分離器15
a,15bに湿り蒸気を分配するためにクロスアラウン
ド管14をY分岐管26を用いて二又に分岐するように
なっている。そして、湿分を分離された蒸気は低圧ター
ビン17a,17bへ供給されるとともに、液はM/S
ドレン管16から排出される。Further, in the nuclear power plant, due to the arrangement of the equipment, the cross-around pipe 14 connected to the moisture separator 15 and the bleed pipes 24a, 2 entering each feed water heater.
4b, 24c, 24d, and 24e may be branched.
FIG. 6 shows an example of a gas-liquid two-phase flow branch pipe.
Here, two moisture separators 15 are provided from the high pressure turbine 13.
The cross-around pipe 14 is bifurcated using a Y-branch pipe 26 in order to distribute the wet steam to the a and 15b. The steam from which the moisture has been separated is supplied to the low-pressure turbines 17a and 17b, and the liquid is subjected to M / S
It is discharged from the drain pipe 16.
【0006】[0006]
【発明が解決しようとする課題】上述したように、従来
のY分岐管26による気液二相流の分岐方法は、蒸気の
みの単相流を分配する方法と同じ方法を用いているの
で、各湿分分離器に同量の蒸気量が流入するように分岐
後の損失を合わせた配管構成としている。しかしなが
ら、最近の気液二相流のT分岐管(T−Junction)によ
る蒸気−水の分配試験結果報告(M. T. Rubel, et al,
"Phase Distribution during Steam-water Flow in a
Horizontal T-junction", Int. J. Multiphase Flow, V
ol. 14, No. 425-438, 1988)によると、蒸気の分配比
と水の分配比が同等にならず、湿り度、分配比によって
分岐後の蒸気・水の分配比が変わることを示唆してい
る。As described above, the conventional method of branching the gas-liquid two-phase flow by the Y branch pipe 26 uses the same method as the method of distributing a single-phase flow of only steam. The piping configuration is such that the loss after branching is adjusted so that the same amount of steam flows into each moisture separator. However, recent results of steam-water distribution test using a T-junction for gas-liquid two-phase flow (MT Rubel, et al,
"Phase Distribution during Steam-water Flow in a
Horizontal T-junction ", Int. J. Multiphase Flow, V
ol. 14, No. 425-438, 1988), suggests that the distribution ratio of steam and water is not the same, and that the distribution ratio of steam and water after branching varies depending on the humidity and distribution ratio. doing.
【0007】図4(a)は、気液二相流分岐管の蒸気量
と水量の分配比を測定する試験装置の概略構成を示して
いる。この試験装置は、上流母管7、下流母管8および
これらから直角方向に分岐した枝管9からなるT継手構
成となっている。そして、この試験装置により測定した
上流母管7を流れる蒸気量WG1、水量WL1、また枝管9
を流れる蒸気量WG3、水量WL3から分岐前の上流母管7
と分岐後の枝管9の蒸気量分配比(WG3/WG1)と水量
分配比(WL3/WL1)の試験結果に基づく関係を図示し
たのが図4(b)である。図4(b)では、横軸に水量
分配比(WL3/WL1)が、また、縦軸に蒸気量分配比
(WG3/WG1)が示されている。ここで、WG3/WG1=
WL3/WL1=1の場合は、枝管9に全流量が流れた場合
を表わす。また、図4(b)中45°の斜線は、蒸気量
と水量とが同じ比率で分れる場合を示す。FIG. 4A shows a schematic configuration of a test apparatus for measuring a distribution ratio of a steam amount and a water amount in a gas-liquid two-phase flow branch pipe. This test apparatus has a T-joint configuration including an upstream mother pipe 7, a downstream mother pipe 8, and a branch pipe 9 branched from the upstream mother pipe 7 and the downstream mother pipe 8 at right angles. The amount of steam W G1 flowing through the upstream main pipe 7 as measured by the test apparatus, water W L1, also branch pipe 9
Steam amount flowing W G3, before branching from water W L3 upstream header tube 7
FIG. 4B shows the relationship based on the test results of the steam distribution ratio ( WG3 / WG1 ) and the water distribution ratio ( WL3 / WL1 ) of the branch pipe 9 after branching. In FIG. 4B, the horizontal axis shows the water amount distribution ratio (W L3 / W L1 ), and the vertical axis shows the steam amount distribution ratio (W G3 / W G1 ). Here, W G3 / W G1 =
When W L3 / W L1 = 1, it indicates a case where the entire flow rate flows through the branch pipe 9. In addition, a 45 ° oblique line in FIG. 4B indicates a case where the steam amount and the water amount are separated at the same ratio.
【0008】この試験結果は、蒸気の見掛けの平均流速
がVGs=18.2m/sの場合である。ここで、蒸気の
湿り度が小さい場合(図4(b)中に示す+印のデータ
(水(液滴)の見掛けの平均流速がVLs=0.0054
4m/s))は、蒸気量と水量の分配比は、45°の斜
線にほぼ重なっており両者はほぼ同一比率で分配され
る。しかし、湿り度が大きくなると(図4(b)中に示
す◇印(VLs=0.0198m/s)と□印のデータ
(VLs=0.0342m/s))、枝管9へ流れる蒸気
量に対し水量が少なくなる。◇印のデータ(VLs=0.
0198m/s)では、蒸気量分配比が0.5の場合、
水量分配比が0.22となっていて、このことは、湿り
度が大きくなると水量の分配比にかなりの偏差が生じる
ことを示している。[0008] The test results are for a case where the apparent average flow velocity of the steam is V Gs = 18.2 m / s. Here, when the wetness of the steam is small (the data indicated by the + mark in FIG. 4B (the apparent average flow velocity of water (droplets) is V Ls = 0.0054).
4m / s)), the distribution ratio of the steam amount and the water amount almost overlaps the 45 ° oblique line, and both are distributed at substantially the same ratio. However, when the wetness increases (shown in FIG. 4 (b) ◇ indicia (V Ls = 0.0198m / s) and symbol □ Data (V Ls = 0.0342m / s) ), flows into the branch pipe 9 The amount of water is smaller than the amount of steam. ◇ mark of data (V Ls = 0.
0198 m / s), when the steam amount distribution ratio is 0.5,
The water volume distribution ratio is 0.22, which indicates that the distribution ratio of the water volume has a considerable deviation as the wetness increases.
【0009】また、別のT分岐管の環状二相流分配試験
結果報告(B. J. Azzopardi, et al, "ANNULAR TWO-PHA
SE FLOW SPLIT AT AN IMPACTING T", Int. J. Multipha
se Flow Vol. 13 No. 5 pp605-614, 1987 )では、T分
岐管上流側に曲り部があると、さらに水量の分配比に影
響を与えかなりの偏差を生じる結果を示している。[0009] Also, a report on the results of an annular two-phase flow distribution test of another T-branch tube (BJ Azzopardi, et al, "ANNULAR TWO-PHA
SE FLOW SPLIT AT AN IMPACTING T ", Int. J. Multipha
se Flow Vol. 13 No. 5 pp605-614, 1987) shows that the presence of a bend on the upstream side of the T-branch pipe further affects the water distribution ratio and causes considerable deviation.
【0010】このように、気液二相流の分岐管による分
配は、蒸気単相流の分配と異なり蒸気の分配量を同じに
しても水分の分配は必ずしも同一とならないことを示し
ている。しかも原子力発電プラントの配管ルートは、レ
イアウト上分岐管の上流側に十分な直管距離を確保する
ことはむずかしいため、曲り部が分岐部の上流側に配置
される構成となるので、さらに水分の偏りを促進する傾
向がある。そして、これらの蒸気・水量分配比の差異
は、とくに蒸気の湿り度が大きい場合には、原子力発電
プラントの各機器の設計点以外の湿り度となり、その性
能上問題点を生じる。また、水量の分配による偏りは湿
分分離器では分離ドレン量(水量)の偏りとして現出
し、ドレン系システムにアンバランスを生じるおそれが
ある。さらに、気液二相流配管では、エロージョン、コ
ロージョンによる配管内壁の減肉の問題が従来から発生
している。これは、管内の流速、湿り度、温度、水質、
配管形状等によって配管内壁の減肉の進行速度が異な
り、とくに蒸気の湿り度については、他の条件が同一の
場合、湿り度が大きくなるほど減肉率が大となるからで
ある。これらの問題点を回避するために、気液二相流の
分岐管による分配は、蒸気単相流の分配とは違って、蒸
気の分配比と液(水)の分配比とが等しくなるような構
成にする必要がある。As described above, the distribution of the gas-liquid two-phase flow by the branch pipe indicates that the distribution of the moisture is not always the same even if the distribution amount of the vapor is the same, unlike the distribution of the single-phase vapor flow. Moreover, the piping route of the nuclear power plant is difficult to secure a sufficient straight pipe distance on the upstream side of the branch pipe due to the layout.Therefore, the bent section is arranged on the upstream side of the branch section. It tends to promote bias. These differences in the distribution ratio of steam and water, especially when the wetness of the steam is high, result in wetness other than the design point of each device of the nuclear power plant, causing a problem in its performance. Further, the deviation due to the distribution of the water amount appears as a deviation in the separated drain amount (water amount) in the moisture separator, and may cause imbalance in the drain system. Further, in the gas-liquid two-phase flow pipe, a problem of wall thickness reduction of the pipe inner wall due to erosion and corrosion has conventionally occurred. This depends on the flow velocity, wetness, temperature, water quality,
This is because the progression rate of wall thinning of the pipe inner wall differs depending on the pipe shape and the like, and particularly with respect to the wetness of steam, when the other conditions are the same, the thinner the wettability, the greater the thinning rate. In order to avoid these problems, the distribution of the gas-liquid two-phase flow through the branch pipe is different from the distribution of the single-phase vapor flow such that the distribution ratio of the vapor and the distribution ratio of the liquid (water) are equal. It is necessary to make a configuration.
【0011】本発明は上記事情に鑑みてなされたもの
で、その目的は接続する機器の配置構成上分岐管を設置
する場合蒸気量と水量とがほぼ同等に分配できるように
した気液二相流分岐管を有する抽気管を提供することに
ある。 [発明の構成]SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a gas-liquid two-phase system in which the amount of steam and the amount of water can be distributed almost equally when a branch pipe is installed due to the arrangement of connected devices. An object of the present invention is to provide a bleed pipe having a flow branch pipe. [Configuration of the Invention]
【0012】[0012]
【課題を解決するための手段】本発明は、上記目的を達
成するために、蒸気タービンの湿分を含んだ蒸気を湿分
分離器と給水加熱器とに分岐して導入するものであっ
て、前記蒸気タービンと前記湿分分離器蒸気を接続する
抽気母管と、この抽気母管の途中に設けた曲り管と。こ
の曲り管の直ぐ下流側でこの曲り管背側方向より分岐し
前記給水加熱器に接続される分岐管を備え、前記曲り管
にガイドベーンを設けるとともに、前記抽気母管の前記
分岐管分岐部の下流側に前記抽気母管の内径の3〜4倍
の長さの直管部を設けたことを特徴とする。Means for Solving the Problems The present invention, be those in order to achieve the above object, introducing branches into a vapor containing moisture of the steam turbine and the moisture separator and the feed water heater
Connecting the steam turbine and the moisture separator steam
A bleed air pipe and a bent pipe provided in the middle of the bleed air pipe. This
Branching from the back of this bend just downstream of the bend.
A bent pipe provided with a branch pipe connected to the feed water heater;
A guide vane is provided on the
Characterized in that a straight pipe section 3-4 times the length of the inner diameter of the extraction mother tube on the downstream side of the branch pipe bifurcation.
【0013】[0013]
【作用】上記のように構成された気液二相流分岐管を含
む抽気管では、蒸気タービンより導入された気液二相流
は曲り管を通過する際、管内の液膜と液滴に遠心力が作
用するため液膜と液滴は曲り管背側に偏るので、曲り管
直後に設けた分岐管で多くの水分を分離でき、その後の
母管全体の湿分は減少し、しかも曲り管にはガイドベー
ンが付いているので、その後の流れは整流化されて均等
に分岐管に流入するので、蒸気量と水量とがほぼ同等に
分配される。[Action] In the extraction pipe comprising a gas-liquid two-phase flow branch pipe constructed as described above, when the gas-liquid two-phase flow introduced from the steam turbine to pass through the song Ri tube, the liquid film and droplets in the tube Since the liquid film and the droplets are biased to the back side of the bent pipe due to the centrifugal force acting on the pipe, a large amount of water can be separated by the branch pipe provided immediately after the bent pipe, and the moisture content of the entire mother pipe after that is reduced, and Since the bent pipe is provided with the guide vane, the subsequent flow is rectified and uniformly flows into the branch pipe, so that the steam amount and the water amount are substantially equally distributed.
【0014】[0014]
【実施例】以下、本発明の実施例を図を参照して説明す
る。図1は本発明の一実施例である気液二相流分岐管を
含む抽気管の概略構成図である。図1に示すように、高
圧タービン13からの湿分を含んだ蒸気を湿分分離器1
5の2つの入口座5に導入する抽気母管1には、Y分岐
管3の上流側の曲り管2には図3に示すようなガイドベ
ーン6を取付け、しかもこの曲り管2のすぐ直後に高圧
給水加熱器23bに分岐する抽気管24bを曲り管2の
背側の方向、すなわちこの場合は、抽気母管1の下部よ
り分岐する構造とし、この分岐後、約3〜4D(Dは抽
気母管1の内径)の直管の抽気母管1を配設した後、Y
分岐管3を設け各々同じ長さの枝管4を介して湿分分離
器15の入口座5に連結した構成としている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of an extraction pipe including a gas-liquid two-phase flow branch pipe according to one embodiment of the present invention. As shown in FIG. 1, steam containing moisture from the high-pressure turbine 13 is
5 two to extraction header tube 1 for introducing the incoming account 5, the song Ri pipe 2 on the upstream side of the Y branch pipe 3 fitted with a guide vane 6, as shown in FIG. 3, yet this song Ri tube 2 immediately dorsal direction of the high-pressure feed water heater extraction pipe 24b songs Ri pipe 2 branches to 23b immediately after, i.e. in this case, a structure that branches from the lower portion of the bleed mother tube 1, after the branch, about 3~4D (D is extracted
After arranging a straight bleeding mother pipe 1 of the inner diameter of the pneumatic mother pipe 1 ) , Y
A branch pipe 3 is provided and connected to the deposit account 5 of the moisture separator 15 via the branch pipes 4 of the same length.
【0015】このように構成された湿分を含んだ蒸気ラ
インの気液二相流分岐管において、まず高圧タービン1
3からの気液二相流は抽気母管1に流入し、管内を湿分
を含んだ蒸気流が流れると液膜が増加した環状噴霧流と
なる。この環状噴霧流が曲り管2に流入すると遠心力で
液膜は曲り管2の背側に偏るため、背側から取出した抽
気管24bには、液量の多い気液二相流となって流入し
高圧給水加熱器23bに入る。それ故この抽気管24b
後の抽気母管1内の流れは曲り管2の上流側の湿り蒸気
より湿分の少ない気液二相流になるため、前記したごと
く湿分が減少すると蒸気量の分配に対する水量の偏りも
少なくなる。また、曲り管2にはガイドベーン6が設置
されているので、高圧タービン13からの乱れた排気流
を整流する効果が得られ、しかもY分岐管3の上流側に
は直管距離を約3〜4D確保しているので、曲り管2に
よる流れの偏りは最小限にすることができる。In the gas-liquid two-phase flow branch pipe of the steam line containing moisture configured as described above, first, the high-pressure turbine 1
The gas-liquid two-phase flow from 3 flows into the bleeding mother pipe 1, and when a steam flow containing moisture flows in the pipe, an annular spray flow with an increased liquid film is formed. Thus the annular mist flow flows into the song Ri tube 2 liquid film by centrifugal force biased to the back side of the bent pipe 2, taken out from the dorsal extraction
The gas flows into the trachea 24b as a gas-liquid two-phase flow with a large amount of liquid, and enters the high-pressure feed water heater 23b. Therefore this bleed tube 24b
Since the subsequent flow in the bleeding mother pipe 1 becomes a gas-liquid two-phase flow having less moisture than the wet steam on the upstream side of the curved pipe 2, if the moisture decreases as described above, the deviation of the water amount with respect to the distribution of the steam amount also decreases. Less. In addition, since the guide vane 6 is provided in the bent pipe 2, an effect of rectifying the turbulent exhaust flow from the high-pressure turbine 13 is obtained. Since 4D is ensured, the deviation of the flow due to the bent pipe 2 can be minimized.
【0016】さらに、Y分岐管3の構造は上流側流れ方
向に対し対称となる構造とし、Y分岐管3から湿分分離
器15の入口座5までの枝管の長さは同じになるように
配置しているので、蒸気量と水量とをほぼ同等に、それ
ぞれ分岐管へ分配できるようになる。Furthermore, the structure of the Y branch pipe 3 is symmetrical with respect to the upstream flow direction, and the length of the branch pipe from the Y branch pipe 3 to the inlet account 5 of the moisture separator 15 is the same. , The amount of steam and the amount of water can be distributed to the branch pipes almost equally.
【0017】本実施例の気液二相流分岐管を含む抽気管
では、曲り管で偏った液膜を抽気管24bで排出できる
のでY分岐管3の入口側の湿分は減少することができ、
しかも曲り管による流れの偏りを最小限にすることがで
き機器に蒸気・気液ともに均等に分配することが可能と
なり、各機器に対する設計上の湿り度が確保され、結
局、各機器の性能が確保される。また、液体が分岐管に
均等に分配されるためドレン系システムのバランスが健
全に保たれる。さらに、分配後の各分岐管内の湿り度が
均一化されるので、エロージョン、コロージョンによる
配管内壁の減肉が極力防止される。In the bleeding tube including the gas-liquid two-phase flow branching tube of the present embodiment, the liquid film deflected by the curved tube can be discharged by the bleeding tube 24b , so that the moisture on the inlet side of the Y-branch tube 3 can be reduced. Can,
In addition, the deviation of the flow due to the bent pipe can be minimized, and the vapor and gas-liquid can be evenly distributed to the equipment, and the design wetness of each equipment is ensured. Secured. Further, since the liquid is evenly distributed to the branch pipe, the balance of the drain system is kept healthy. Further, since the wetness in each branch pipe after the distribution is made uniform, the wall thickness of the pipe inner wall due to erosion and corrosion is prevented as much as possible.
【0018】図2は本発明の他の実施例の概略構成図で
ある。同図に示すように、本実施例は抽気母管1の水平
曲り管2の背側(この場合は抽気母管の横側)から抽気
管24bを取出した配管レイアウトであり、しかも各曲
り管2にはガイドベーン(図示せず)が設けられてお
り、さらにY分岐管3の上流には直管距離約3〜4Dが
設けられている。FIG. 2 is a schematic structural view of another embodiment of the present invention. As shown in the figure, the extraction from this example the back side of the horizontal bent pipe 2 bleed mother tube 1 (the side in this case the extraction mother pipe)
This is a piping layout in which the pipe 24b is taken out, and furthermore, each bent pipe 2 is provided with a guide vane (not shown), and a straight pipe distance of about 3 to 4D is provided upstream of the Y branch pipe 3. I have.
【0019】このように構成された抽気管では、気液二
相流は、上記実施例と同じように均等に分配される。本
実施例の抽気管では、Y分岐管3の前の曲り管の上流で
液膜を枝管に排出するので、Y分岐管3と上流側曲り管
の直管距離も短くでき、配管の設置スペースの節約が可
能となり、全体として原子力発電プラントのコンパクト
化が可能となる。In the bleed tube configured as described above, the gas-liquid two-phase flow is equally distributed as in the above embodiment. The extraction pipe according to this embodiment, since the exhaust branch pipe upstream in the liquid film of the curved pipe in front of the Y branch pipe 3, also shorter straight tube length of Y branch pipe 3 and the upstream side bent pipe, installation of the piping Space can be saved, and the nuclear power plant can be made more compact as a whole.
【0020】[0020]
【発明の効果】以上説明したように、本発明によれば、
気液二相流の液膜を曲り管で偏らせこれに続く枝管で液
分を多く含む気液二相流を排出するので、その後の湿り
度は減少し、しかも曲り管内にガイドベーンを設けてY
分岐管入口側には直管距離約3〜4Dを設けているので
流れが整流化される。このため、蒸気量と水量を各機器
に均一に分配でき、しかも、各機器の設計上の湿り度が
十分確保される。その結果、各機器の性能が保証され、
かつ、水量の各分岐管間における偏りによる湿り度の増
加に伴うエロージョン、コロージョンに起因する配管内
壁の減肉の防止が可能となる等顕著な効果を奏する。As described above, according to the present invention,
Since discharging the gas-liquid two-phase flow to bias the liquid film of the gas-liquid two-phase flow in the song Ri tube containing a large amount of liquid content in branch following this, subsequent wetness is reduced and moreover guide vanes Curved Pipes And Y
Since a straight pipe distance of about 3 to 4D is provided on the branch pipe inlet side, the flow is rectified. For this reason, the steam amount and the water amount can be evenly distributed to each device, and the design wetness of each device is sufficiently ensured. As a result, the performance of each device is guaranteed,
In addition, a remarkable effect is obtained, such as prevention of wall thickness reduction of the inner wall of the pipe due to erosion and corrosion caused by an increase in wetness due to deviation of the amount of water between the branch pipes.
【図1】本発明の一実施例の概略構成図。FIG. 1 is a schematic configuration diagram of an embodiment of the present invention.
【図2】本発明の他の実施例の概略構成図。FIG. 2 is a schematic configuration diagram of another embodiment of the present invention.
【図3】本発明の曲り管と枝管部分の断面図。FIG. 3 is a sectional view of a bent pipe and a branch pipe according to the present invention.
【図4】図4(a)は従来の気液二相流分岐管の蒸気量
と水量の分配比を測定した試験装置の概略図、同図
(b)は同図(a)で測定された分岐後の枝管の蒸気量
分配比(WG3/WG1)と水量分配比(WL3/WL1)の関
係を示すグラフ。FIG. 4 (a) is a schematic diagram of a test apparatus for measuring a distribution ratio of a steam amount and a water amount of a conventional gas-liquid two-phase flow branch pipe, and FIG. 4 (b) is a diagram measured by the same figure (a). The graph which shows the relationship between the steam distribution ratio (W G3 / W G1 ) and the water distribution ratio (W L3 / W L1 ) of the branched pipe after the branch.
【図5】従来の原子力発電プラントの系統構成図。FIG. 5 is a system configuration diagram of a conventional nuclear power plant.
【図6】従来の原子力発電プラントの気液二相流分岐管
の使用例を示す概略図。FIG. 6 is a schematic view showing an example of use of a gas-liquid two-phase flow branch pipe of a conventional nuclear power plant.
1…抽気母管、2…曲り管、3…Y分岐管、4,9…枝
管、5…入口座、6…ガイドベーン、7…上流母管、8
…下流母管、13…高圧タービン、15…湿分分離器、
23a,23b…高圧給水加熱器、24a,24b…抽
気管。1 ... bleed substrate tube, 2 ... song Ri tube, 3 ... Y branch pipe, 4,9 ... branch pipe, 5 ... inlet account, 6 ... guide vanes, 7 ... upstream substrate tube, 8
... downstream mother pipe, 13 ... high pressure turbine, 15 ... moisture separator,
23a, 23b ... high pressure feed water heater, 24a, 24b ... extraction
Trachea .
フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F01K 7/38 102 F01D 25/00 F16L 41/02 F16L 41/08 Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) F01K 7/38 102 F01D 25/00 F16L 41/02 F16L 41/08
Claims (1)
分離器と給水加熱器とに分岐して導入するものであっ
て、前記蒸気タービンと前記湿分分離器蒸気を接続する
抽気母管と、この抽気母管の途中に設けた曲り管と、こ
の曲り管の直ぐ下流側でこの曲り管背側方向より分岐し
前記給水加熱器に接続される分岐管を備え、前記曲り管
にガイドベーンを設けるとともに、前記抽気母管の前記
分岐管分岐部の下流側に前記抽気母管の内径の3〜4倍
の長さの直管部を設けたことを特徴とする抽気管。1. A be those introducing branches into the steam turbine of moisture vapor the moisture separator including a feed water heater
Connecting the steam turbine and the moisture separator steam
And bleed mother tube, and a bent pipe which is provided in the middle of the extraction mother tube, this
Branching from the back of this bend just downstream of the bend.
A bent pipe provided with a branch pipe connected to the feed water heater;
A guide vane is provided on the
Extraction pipe, characterized in that a straight pipe section 3-4 times the length of the inner diameter of the extraction mother tube on the downstream side of the branch pipe bifurcation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11172791A JP2953812B2 (en) | 1991-05-16 | 1991-05-16 | Bleed tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11172791A JP2953812B2 (en) | 1991-05-16 | 1991-05-16 | Bleed tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04339108A JPH04339108A (en) | 1992-11-26 |
JP2953812B2 true JP2953812B2 (en) | 1999-09-27 |
Family
ID=14568638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11172791A Expired - Fee Related JP2953812B2 (en) | 1991-05-16 | 1991-05-16 | Bleed tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2953812B2 (en) |
-
1991
- 1991-05-16 JP JP11172791A patent/JP2953812B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04339108A (en) | 1992-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5134244B2 (en) | Steam air extractor assembly and method with reduced boundary layer separation | |
RU2425280C2 (en) | Water separator for steam turbine plants | |
JPS59122803A (en) | Reheater for steam turbine | |
KR960010275B1 (en) | Gas turbine combined cycle system | |
JP2953812B2 (en) | Bleed tube | |
JPS6119347Y2 (en) | ||
US4624111A (en) | Preseparator for a pipe carrying a two-phase mixture | |
EP0419696B1 (en) | Reheat type exhaust gas boiler | |
US4811566A (en) | Method and apparatus for removing moisture from turbine exhaust lines | |
JPH03265794A (en) | Vapor liquid two-phase flow dividing pipe | |
EP0234224B1 (en) | Moisture pre-separator for a steam turbine exhaust | |
US4434620A (en) | Condensation system for power plant | |
Wigly | Separation plant and pipework design–Ohaaki steam field | |
US2998227A (en) | Single-pass counterflow condenser | |
CN206919944U (en) | A kind of energy-saving throat's pressure long-radius nozzle device | |
JP2826384B2 (en) | Turbine blade protection device | |
US4386583A (en) | Moisture separator reheater apparatus | |
CN203069220U (en) | Long radial nozzle throttling device for measuring throat pressure | |
JPS5756612A (en) | Side stream system | |
JPS582403A (en) | Control method and its equipment of steam separating reheater | |
Fujita et al. | Development of Large Size Moisture Separator Reheater for Up to 1700 MW PWR Class | |
JPH0223210A (en) | Water collector for steam-turbine exhaust section | |
RU2118854C1 (en) | Steam generator of double-circuit nuclear power plant | |
JP2003014381A (en) | Condenser | |
JPH04181094A (en) | Pipe device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20080716 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20090716 |
|
LAPS | Cancellation because of no payment of annual fees |