[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2952949B2 - Ferritic stainless steel pipe for high purity gas - Google Patents

Ferritic stainless steel pipe for high purity gas

Info

Publication number
JP2952949B2
JP2952949B2 JP8519290A JP8519290A JP2952949B2 JP 2952949 B2 JP2952949 B2 JP 2952949B2 JP 8519290 A JP8519290 A JP 8519290A JP 8519290 A JP8519290 A JP 8519290A JP 2952949 B2 JP2952949 B2 JP 2952949B2
Authority
JP
Japan
Prior art keywords
less
stainless steel
gas
steel pipe
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8519290A
Other languages
Japanese (ja)
Other versions
JPH03285049A (en
Inventor
茂樹 東
英昭 幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8519290A priority Critical patent/JP2952949B2/en
Publication of JPH03285049A publication Critical patent/JPH03285049A/en
Application granted granted Critical
Publication of JP2952949B2 publication Critical patent/JP2952949B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超LSI製造プロセスに使用される高純度ガ
ス配管等に用いられる高純度ガス用フェライトステンレ
ス鋼管に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a high-purity gas ferrite stainless steel pipe used for a high-purity gas pipe used in an VLSI manufacturing process.

〔従来の技術〕[Conventional technology]

半導体製造分野においては、近年、高集積化が進み、
例えば超LSIと称されるディバイスでは、1μm以下の
微細パターンが必要とされている。このような超LSI製
造プロセスでは、微妙な塵や微量不純物ガスが配線パタ
ーンに付着、吸着し回路不良の原因となるため、使用す
る反応ガス及びキャリヤーガスは、高純度であること、
すなわちガス中の微粒子および不純物ガスの少ないこと
が必要とされる。従って、その高純度ガス配管において
は、管内面からの微粒子およびガスの放出が極力少ない
ことが要求される。
In the semiconductor manufacturing field, in recent years, high integration has progressed,
For example, a device called a super LSI requires a fine pattern of 1 μm or less. In such an VLSI manufacturing process, fine dust and trace impurity gas adhere to and adsorb to the wiring pattern and cause circuit failure.The reaction gas and carrier gas used must be of high purity.
That is, it is necessary to reduce the amount of fine particles and impurity gas in the gas. Therefore, in the high-purity gas pipe, it is required that the emission of fine particles and gas from the pipe inner surface is as small as possible.

従来、このような半導体製造用ガス配管には、オース
テナイト系ステンレス鋼(SUS316鋼)からなる鋼管が使
用されており、特開昭63−161145号公報には、Mn、Si、
Al、Oを低減し、酸化物系非金属介在物の生成を抑制し
た高清浄オーステナイト鋼管も開示されている。一方、
半導体製造プロセス等での超純水用として、純水中での
耐食性に優れるフェライトステンレス鋼管が特開平1−
180946号公報に示されている。これらの鋼管の内面は、
塵や水分などの付着および吸着を低減するため、通常機
械研磨や電解研磨あるいはそれらの複合処理によってR
max1μm程度まで平滑化されている。
Conventionally, a steel pipe made of austenitic stainless steel (SUS316 steel) has been used for such a gas pipe for manufacturing semiconductors.
A highly clean austenitic steel pipe in which Al and O are reduced and generation of oxide-based nonmetallic inclusions is suppressed is also disclosed. on the other hand,
Ferritic stainless steel tubes having excellent corrosion resistance in pure water for use in ultrapure water in semiconductor manufacturing processes and the like are disclosed in
180946. The inner surface of these steel pipes
To reduce the adhesion and adsorption of dust and moisture, R
It is smoothed to a maximum of about 1 μm.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

高純度ガス配管における管内面からの微粒子放出は、
表面の非金属介在物や付着した塵に起因し、またガス放
出は、表面吸着した水分、炭酸ガス及び鋼中の水素に起
因すると考えられているが、オーステナイト系ステンレ
ス鋼からなる高純度ガス用鋼管は、鋼中水素の拡散係数
が極めて小さいため、鋼管製造時に鋼中に固溶した水素
が製品に残留し、使用時に放出される問題のあることが
明らかになった。また、超純水用のフェライトステンレ
ス鋼管は、純水中での耐食性すなわち管内表面からの金
属イオンの溶出は低減されているものの、高純度ガス用
として必要な微粒子放出や吸着不純物ガスに対しては考
慮されていない。従って、高純度ガス用鋼管としての性
能は十分とは言えない。
The emission of fine particles from the inner surface of high purity gas piping is
It is thought that the gas emission is due to non-metallic inclusions on the surface and attached dust, and the outgassing is due to moisture adsorbed on the surface, carbon dioxide gas, and hydrogen in the steel. Since the diffusion coefficient of hydrogen in steel in steel pipes is extremely small, it has been clarified that hydrogen dissolved in steel during the production of steel pipes remains in products and is released during use. In addition, ferritic stainless steel tubes for ultrapure water have reduced corrosion resistance in pure water, that is, elution of metal ions from the inner surface of the tube has been reduced. Is not taken into account. Therefore, the performance as a high-purity gas steel pipe is not sufficient.

本発明の目的は、内面からの微粒子放出および不純物
ガス放出が少ない高純度ガス用鋼管を提供することにあ
る。
An object of the present invention is to provide a high-purity gas steel pipe that emits less fine particles and less impurity gas from the inner surface.

〔課題を解決するための手段〕[Means for solving the problem]

最近の清浄化された高純度ガス用鋼管(オーステナイ
トステンレス鋼管)におけるガス汚染は、水素ガス放出
の占める比率が大きくなってきている。また、超純水用
のフェライトステンレス鋼管は、ガス中への微粒子放出
が問題になる。本発明者らは、種々のステンレス鋼管の
水素ガス放出挙動及び表面介在物を調査した結果、次の
知見を得た。
In recent years, gas contamination in a purified high-purity gas steel pipe (austenitic stainless steel pipe) has a large proportion of hydrogen gas emission. Also, in the ferrite stainless steel pipe for ultrapure water, emission of fine particles into gas becomes a problem. The present inventors have investigated the hydrogen gas release behavior and surface inclusions of various stainless steel tubes, and have obtained the following findings.

鋼管からの水素放出量は鋼中に固溶している水素量
と相関があり、鋼中水素量が多いほど水素ガスの放出量
も多い。
The amount of hydrogen released from a steel pipe has a correlation with the amount of hydrogen dissolved in steel, and the greater the amount of hydrogen in steel, the greater the amount of hydrogen gas released.

フェライト系ステンレス鋼とオーステナイト系ステ
ンレス鋼を比較すると、鋼管製品ではオーステナイト系
ステンレス鋼の方が固溶水素が多い。その理由として、
オーステナイト系ステンレス鋼はフェライト系ステンレ
ス鋼に比して水素拡散係数が約1000分の1であることが
考えられる。
Comparing ferritic stainless steel and austenitic stainless steel, austenitic stainless steel has more solute hydrogen in steel pipe products. As a reason,
Austenitic stainless steel is considered to have a hydrogen diffusion coefficient of about 1/1000 compared to ferritic stainless steel.

非金属介在物は製品鋼管の内表面から脱落し微粒子
となると共に、脱落した後の小孔や亀裂は平滑化の障害
となり、微粒子及び水分、不純物ガスの付着および吸着
サイトを提供することになる。
Non-metallic inclusions fall off from the inner surface of the product steel pipe and become fine particles, and the small holes and cracks after falling off become obstacles to smoothing, providing adhesion and adsorption sites for fine particles and moisture, impurity gas. .

のようなことから、微粒子放出抑制には、O量制
限による酸化物低減だけでは不十分であり、S量制限に
よる硫化物系介在物の低減が必要となる。
For this reason, the reduction of oxides by limiting the amount of O is not enough to suppress the emission of fine particles, and the reduction of sulfide-based inclusions by limiting the amount of S is required.

特開平1−180946号公報に開示された超純水用フェ
ライトステンレス鋼管は、O,Sが過剰なために、高純度
ガス用鋼管として適さない。
The ferritic stainless steel pipe for ultrapure water disclosed in JP-A-1-180946 is not suitable as a high-purity gas steel pipe due to excessive amounts of O and S.

本発明は上記知見に基づきなされたもので、重量%
で、 C:0.03%以下、 Si:0.5%以下、 Mn:0.5%以下、 P:0.03%以下、 S:0.001%未満、 Ni:2.0%以下、 Cr:16〜30%、 O:0.005%以下、 N:0.03%以下、 Al:0.01%以下、 Mo:0.1〜3.5% を含有し、さらに必要に応じて Ti:0.1〜0.8%、 Nb:0.1〜1.5% の1種または2種を含有し、残部実質的にFeよりなるフ
ェライト系ステンレス鋼からなり、内面粗さRmaxが0.5
μm以下であることを特徴とする高純度ガス用フェライ
トステンレス鋼管を要旨とする。
The present invention has been made based on the above findings,
C: 0.03% or less, Si: 0.5% or less, Mn: 0.5% or less, P: 0.03% or less, S: less than 0.001%, Ni: 2.0% or less, Cr: 16-30%, O: 0.005% or less , N: 0.03% or less, Al: 0.01% or less, Mo: 0.1 to 3.5%, and if necessary, one or two of Ti: 0.1 to 0.8% and Nb: 0.1 to 1.5%. , The remainder is made of ferritic stainless steel substantially consisting of Fe, and the inner surface roughness Rmax is 0.5
The gist of the present invention is a ferritic stainless steel pipe for high-purity gas, which is characterized by being not more than μm.

〔作用〕[Action]

本発明のフェライトステンレス鋼管における限定理由
を詳述し、その作用を明らかにする。
The reason for limitation in the ferritic stainless steel pipe of the present invention will be described in detail, and its operation will be clarified.

(1)鋼成分 Cはフェライト系ステンレス鋼の靭性を低下させる有
害元素であり、極力少ない方が好ましく、0.03%以下と
する。
(1) Steel component C is a harmful element that lowers the toughness of ferritic stainless steel, and is preferably as small as possible, and is set to 0.03% or less.

Siは脱酸元素であるが、0.5%を超えて添加すると酸
化物系介在物を生成し微粒子放出の原因となるので、0.
5%以下とする。
Si is a deoxidizing element, but if it is added in excess of 0.5%, oxide-based inclusions are formed, causing the emission of fine particles.
5% or less.

Mnは脱酸剤としてある程度は必要である。しかし、そ
の一方ではMn硫化物あるいは酸化物を形成し微粒子発生
の原因となるので、脱酸を阻害しない範囲で可能な限り
少ないことが好ましい。よって、0.5%以下とする。
Mn is required to some extent as a deoxidizing agent. However, on the other hand, Mn sulfides or oxides are formed and cause the generation of fine particles. Therefore, it is preferable that the amount is as small as possible as long as deoxidation is not inhibited. Therefore, it is set to 0.5% or less.

Pは溶接性確保の観点から有害な元素であり、極力少
ない方がよく、また0.03%を超えると耐溶接高温割れ性
が劣化する。そのため0.03%以下とする。
P is a harmful element from the viewpoint of ensuring weldability, and it is better that the content is as small as possible. If it exceeds 0.03%, the hot cracking resistance is deteriorated. Therefore, the content is set to 0.03% or less.

Sは非金属介在物のMnSを形成し、微粒子放出の観点
から有害である。0.001%未満にすることで微粒子放出
が著しく低減されるため0.001%未満に限定する。
S forms MnS as a nonmetallic inclusion and is harmful from the viewpoint of emission of fine particles. When the content is less than 0.001%, the emission of fine particles is significantly reduced, so that the content is limited to less than 0.001%.

Niはオーステナイト生成元素であり、フェライト単相
とするためには少ない方がよい。本発明では工業規模で
の不純物Ni量を考慮して2%以下とする。
Ni is an austenite forming element, and it is preferable that Ni is small in order to form a ferrite single phase. In the present invention, the content is set to 2% or less in consideration of the amount of impurity Ni on an industrial scale.

Crは耐食性を維持する基本元素であり、表面にCr2O3
等からなる不働態膜を形成する。耐食性の維持には16%
以上の添加を必要とするが、30%を超えて添加すると、
熱間加工性が劣化するため、16〜30%の範囲とする。
Cr is a basic element that maintains corrosion resistance, and Cr 2 O 3
A passivation film is formed. 16% for maintaining corrosion resistance
The above addition is required, but if it exceeds 30%,
Since the hot workability deteriorates, the content is set in the range of 16 to 30%.

Oは鋼中で酸化物系介在物を生成するため、微粒子放
出低減の観点から低い方がよく、0.005%を超えると介
在物が多くなることから0.005%以下とする。
O forms oxide-based inclusions in the steel, so it is better to lower O from the viewpoint of reducing the emission of fine particles. If O exceeds 0.005%, the amount of inclusions increases, so O is set to 0.005% or less.

Nはフェライトステンレス鋼にとってはCと同様に靭
性に有害な元素であり、極力少なくする必要がある。0.
03%を超えると極度に靭性が低下するため、0.03%以下
とする。
N is an element harmful to toughness like ferrite stainless steel like C, and it is necessary to reduce N as much as possible. 0.
If it exceeds 03%, the toughness is extremely reduced, so the content is made 0.03% or less.

Alは脱酸元素であるが、0.01%を超えて添加すると酸
化物系介在物を生成して微粒子放出の原因となるので0.
01%以下とする。
Al is a deoxidizing element, but if it is added in excess of 0.01%, oxide-based inclusions are formed, causing the release of fine particles.
01% or less.

MoはCrと同様に耐食性に寄与する有効元素であるが、
0.1未満の添加では効果は明確でなく、一方3.5%を超え
ると熱間加工性が劣化する。そのためMoは0.1〜3.5%と
する。
Mo is an effective element that contributes to corrosion resistance like Cr,
The effect is not clear when the addition is less than 0.1, while the hot workability is deteriorated when it exceeds 3.5%. Therefore, Mo is set to 0.1 to 3.5%.

Ti及びNbはC及びNを安定化させる元素であり、それ
ぞれの安定化作用を発揮させるためには、0.1%以上必
要である。しかし、Tiは0.8%以上添加しても安定化作
用が飽和する。このためTiについては0.1〜0.8%に限定
する。一方NbはTiと異なり、安定化作用以外にNb2O5
膜を形成し、耐食性を向上させる作用があるため1.5%
までの添加が有効である。従って、Nbは0.1〜1.5%に限
定する。
Ti and Nb are elements for stabilizing C and N, and are required to be 0.1% or more to exhibit their stabilizing effects. However, even if Ti is added at 0.8% or more, the stabilizing effect is saturated. Therefore, the content of Ti is limited to 0.1 to 0.8%. On the other hand, unlike Ti, Nb forms an Nb 2 O 5 film in addition to stabilization, and has the effect of improving corrosion resistance.
Up to the addition is effective. Therefore, Nb is limited to 0.1-1.5%.

(2)管内面の状態 上記組成のフェライトステンレス鋼管における管内面
の状態と、微粒子及びガス放出量の関係についても本発
明者らは種々検討した。その結果、管内面が粗さRmax0.
5μm以下であると微粒子、ガス(水素ガス以外のガ
ス)の付着・吸着が少ないことが明らかとなった。表面
粗さをRmax0.5μm以下とすることについては、必要な
表面粗さが確保できれば、その手段は問わない。すなわ
ちアルミナ粉等の研磨剤を用いた機械研磨や電解研磨あ
るいはそれらの複合研磨など如何なる方法でも構わな
い。また平滑化後に湿式あるいは乾式の酸化処理によっ
て内面に酸化物被膜を生成させてもよい。
(2) State of Tube Inner Surface The inventors of the present invention have also studied various relations between the state of the tube inner surface and the amount of fine particles and gas release in the ferrite stainless steel tube having the above composition. As a result, the inner surface of the pipe has a roughness of R max 0.
It was found that when the particle size was 5 μm or less, adhesion and adsorption of fine particles and gas (gas other than hydrogen gas) were small. Regarding setting the surface roughness to R max 0.5 μm or less, any means can be used as long as the required surface roughness can be secured. That is, any method such as mechanical polishing using a polishing agent such as alumina powder, electrolytic polishing, or composite polishing thereof may be used. After the smoothing, an oxide film may be formed on the inner surface by wet or dry oxidation treatment.

〔実施例〕〔Example〕

以下に本発明の実施例を比較例、従来例と対比させて
説明する。
Hereinafter, examples of the present invention will be described in comparison with comparative examples and conventional examples.

第1表に1〜15で示す化学組成の鋼を真空溶解した
後、鍛造、熱間押出製管、冷間圧延、冷間抽伸による外
径10mm、肉厚1.0mmの継目無鋼管とした。管内面は、光
輝焼鈍、機械研磨、電解研磨の組合せによって種々の表
面粗さに調整した。
A steel having a chemical composition indicated by 1 to 15 in Table 1 was melted in a vacuum, and a seamless steel pipe having an outer diameter of 10 mm and a wall thickness of 1.0 mm was formed by forging, hot extrusion, cold rolling, and cold drawing. The inner surface of the tube was adjusted to various surface roughnesses by a combination of bright annealing, mechanical polishing, and electrolytic polishing.

微粒子発生の原因となる管内面の非金属介在物は走査
型電子顕微鏡によって観察し、長さあるいは直径が2μ
m以上の介在物数を測定した。また鋼管からの水素放出
は、4m鋼管内面を純水(18MΩ・cm以上)で清浄し、精
製Arガスで乾燥後10-9torrに減圧し、4時間後の残留ガ
ス量を質量分析器によって測定した。内面粗さ、介在物
数及び残留ガス量を第2表に示す。
Non-metallic inclusions on the inner surface of the tube, which cause the generation of fine particles, are observed with a scanning electron microscope.
m or more inclusions were measured. Hydrogen release from the steel pipe was performed by cleaning the inner surface of a 4m steel pipe with pure water (18MΩcm or more), drying with purified Ar gas, reducing the pressure to 10 -9 torr, and measuring the residual gas amount after 4 hours using a mass spectrometer. It was measured. Table 2 shows the inner surface roughness, the number of inclusions, and the amount of residual gas.

鋼成分が本発明範囲内で管内面粗さRmaxが0.5μm以
下である本発明例(No.1〜6)は、介在物個数、及び残
留水素やその他のガスはいずれも低レベルであり、高純
度ガス配管用として適した特性を有していることがわか
る。
In the invention examples (No. 1 to 6) in which the steel component is within the scope of the invention and the pipe inner surface roughness R max is 0.5 μm or less, the number of inclusions, residual hydrogen and other gases are all low. It can be seen that it has characteristics suitable for high-purity gas piping.

これに対し比較例(No.7,8,9,10,11)は、それぞれS
i,Mn,S,O,Al量が本発明外であるため、内面に非金属介
在物が残存している。従って、高純度ガス用鋼管として
実際に使用した場合には、ガス中への微粒子放出が懸念
される。比較例(No.12)は鋼成分が適正なため、介在
物および水素ガス放出は少ないが、内面粗さRmaxが大き
いために、水素以外のガス放出が多い。
On the other hand, the comparative examples (No. 7, 8, 9, 10, 11)
Since the amounts of i, Mn, S, O, and Al are outside the present invention, nonmetallic inclusions remain on the inner surface. Therefore, when the steel pipe is actually used as a high-purity gas steel pipe, there is a concern about emission of fine particles into the gas. In the comparative example (No. 12), the inclusions and hydrogen gas emission were small because the steel component was appropriate, but the gas other than hydrogen was large because the inner surface roughness Rmax was large.

従来例(No.13および14)はオーステナイトステンレ
ス鋼管であり、介在物を低減したNo.13でも、本発明鋼
管に比べると水素放出量が多い。従来例(No.15)は、
特開平1−180946号公報に開示された超純水用フェライ
トステンレス鋼管である。O,Sが本発明外のために、介
在物量が多く、管内表面からの微粒子放出が多いことが
考えられるため高純度ガス用としては不適である。
The conventional examples (Nos. 13 and 14) are austenitic stainless steel pipes. Even in No. 13 in which inclusions are reduced, the amount of released hydrogen is larger than that of the steel pipe of the present invention. Conventional example (No.15)
This is a ferritic stainless steel pipe for ultrapure water disclosed in Japanese Patent Application Laid-Open No. 1-180946. Since O and S are out of the scope of the present invention, the amount of inclusions is large, and the release of fine particles from the inner surface of the tube is considered to be large.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように、本発明の高純度ガス
用鋼管は、オーステナイトステンレス鋼に比べ安価なフ
ェライトステンレス鋼を使用し、しかも管内面からの微
粒子、不純物ガス放出特性において現用オーステナイト
ステンレス鋼管を凌ぐものである。従って、本発明の鋼
管は半導体分野はもとより、高純度ガスあるいは超高真
空が必要な種々分野で大きなガス汚染防止効果を発揮
し、その産業上の利用価値は大きい。
As is clear from the above description, the high-purity gas steel pipe of the present invention uses a ferritic stainless steel which is inexpensive compared with austenitic stainless steel, and furthermore, the current austenitic stainless steel pipe has a fine particle and impurity gas release characteristics from the inner surface of the pipe. It surpasses. Therefore, the steel pipe of the present invention exerts a large gas pollution preventing effect in various fields that require a high-purity gas or an ultra-high vacuum as well as the semiconductor field, and its industrial utility value is great.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 302 C22C 38/44 F16L 9/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C22C 38/00 302 C22C 38/44 F16L 9/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で C:0.03%以下、 Si:0.5%以下 Mn:0.5%以下、 P:0.03%以下 S:0.001%未満、 Ni:2.0%以下 Cr:16〜30%、 O:0.005%以下 N:0.03%以下、 Al:0.01%以下 Mo:0.1〜3.5% を含有し、残部実質的にFeよりなるフェライト系ステン
レス鋼からなり、内面粗さRmaxが0.5μm以下であるこ
とを特徴とする高純度ガス用フェライトステンレス鋼
管。
[Claim 1] C: 0.03% or less, Si: 0.5% or less, Mn: 0.5% or less, P: 0.03% or less, S: less than 0.001%, Ni: 2.0% or less Cr: 16 to 30%, O: 0.005% or less N: 0.03% or less, Al: 0.01% or less Mo: containing from 0.1 to 3.5%, and the balance substantially ferritic stainless steel consisting of Fe, it inner surface roughness R max is 0.5μm or less A ferrite stainless steel tube for high purity gas characterized by the following.
【請求項2】上記フェライト系ステンレス鋼が、さらに
重量%で Ti:0.1〜0.8%、 Nb:0.1〜1.5% の1種または2種を含有する請求項1に記載の高純度ガ
ス用フェライトステンレス鋼管。
2. The ferritic stainless steel for high-purity gas according to claim 1, wherein the ferritic stainless steel further contains one or two of Ti: 0.1-0.8% and Nb: 0.1-1.5% by weight. Steel pipe.
JP8519290A 1990-03-30 1990-03-30 Ferritic stainless steel pipe for high purity gas Expired - Lifetime JP2952949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8519290A JP2952949B2 (en) 1990-03-30 1990-03-30 Ferritic stainless steel pipe for high purity gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8519290A JP2952949B2 (en) 1990-03-30 1990-03-30 Ferritic stainless steel pipe for high purity gas

Publications (2)

Publication Number Publication Date
JPH03285049A JPH03285049A (en) 1991-12-16
JP2952949B2 true JP2952949B2 (en) 1999-09-27

Family

ID=13851790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8519290A Expired - Lifetime JP2952949B2 (en) 1990-03-30 1990-03-30 Ferritic stainless steel pipe for high purity gas

Country Status (1)

Country Link
JP (1) JP2952949B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103002A (en) * 2000-09-25 2002-04-09 Sumitomo Metal Ind Ltd Method for producing cast billet and seamless steel tube

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011321A1 (en) * 1993-10-20 1995-04-27 Sumitomo Metal Industries, Ltd. Stainless steel for high-purity gas
JP2992977B2 (en) * 1994-03-08 1999-12-20 住友金属工業株式会社 High Cr stainless steel for high purity gas
JP3576598B2 (en) * 1993-12-30 2004-10-13 忠弘 大見 Method for forming oxidation passivation film, ferritic stainless steel, fluid supply system, and fluid contact parts
JPH10265839A (en) * 1997-03-26 1998-10-06 Anelva Corp Treatment method of stainless steel surface, treatment device and vacuum device
CN102564213A (en) * 2005-12-21 2012-07-11 埃克森美孚研究工程公司 Corrosion resistant material for reduced fouling, heat transfer component with improved corrosion and fouling resistance, and method for reducing fouling
CA2782192C (en) * 2009-12-21 2014-04-22 Sumitomo Metal Industries, Ltd. Blank tube for cold drawing and method for producing the same, and method for producing cold drawn tube
JP7156342B2 (en) * 2020-02-05 2022-10-19 Jfeスチール株式会社 Ferritic stainless steel plate for thin-walled pipes and thin-walled pipes using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103002A (en) * 2000-09-25 2002-04-09 Sumitomo Metal Ind Ltd Method for producing cast billet and seamless steel tube

Also Published As

Publication number Publication date
JPH03285049A (en) 1991-12-16

Similar Documents

Publication Publication Date Title
JP2952949B2 (en) Ferritic stainless steel pipe for high purity gas
JP3433452B2 (en) Internal oxidation treatment method for ferritic stainless steel pipe
WO1995011321A1 (en) Stainless steel for high-purity gas
KR100227571B1 (en) Stainless steel for ozone added water and manufacturing method thereof
JP2541011B2 (en) High purity gas stainless steel material and method for producing the same
JP3596234B2 (en) Ozone-containing stainless steel for water and method for producing the same
JP2991050B2 (en) Stainless steel pipe for high purity gas
JP2720716B2 (en) Austenitic stainless steel for high-purity gas with excellent corrosion resistance and method for producing the same
JP2783128B2 (en) Stainless steel member for clean room and method of manufacturing the same
US5569334A (en) Stainless steel member for semiconductor fabrication equipment and surface treatment method therefor
JP3477957B2 (en) Ferritic stainless steel with excellent corrosion resistance under high temperature oxidation environment of 200-400 ° C
JP2992977B2 (en) High Cr stainless steel for high purity gas
JP3227805B2 (en) High corrosion resistance stainless steel for high purity gas
JPS648694B2 (en)
JP3119165B2 (en) Manufacturing method of stainless steel for high purity gas
JP2932966B2 (en) Ferritic stainless steel for high purity gas
JP2737551B2 (en) Manufacturing method of austenitic stainless steel for high purity gas with excellent corrosion resistance
JPH01180946A (en) Tubing material for superpure water and its production
JP4744014B2 (en) Austenitic stainless steel for vacuum equipment and manufacturing method thereof
JPH0673507A (en) Austenitic stainless steel pipe for high purity gas piping
JPH051344A (en) Heat resisting steel for ethylene cracking furnace tube excellent in coking resistance
JP2020050936A (en) Stainless steel
JP2001140044A (en) Low dust generation and high corrosion resistant stainless steel pipe for piping
JPH07145498A (en) Surface treatment of metallic material for semiconductor producing device
JPH07118808A (en) Stainless steel for high purity gas excellent in weldability and corrosion resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070716

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090716

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090716

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 11