[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2944371B2 - Air introduction device in exhaust pipe of internal combustion engine - Google Patents

Air introduction device in exhaust pipe of internal combustion engine

Info

Publication number
JP2944371B2
JP2944371B2 JP5210370A JP21037093A JP2944371B2 JP 2944371 B2 JP2944371 B2 JP 2944371B2 JP 5210370 A JP5210370 A JP 5210370A JP 21037093 A JP21037093 A JP 21037093A JP 2944371 B2 JP2944371 B2 JP 2944371B2
Authority
JP
Japan
Prior art keywords
air
internal combustion
combustion engine
amount
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5210370A
Other languages
Japanese (ja)
Other versions
JPH0763049A (en
Inventor
建彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5210370A priority Critical patent/JP2944371B2/en
Priority to US08/269,681 priority patent/US5459999A/en
Publication of JPH0763049A publication Critical patent/JPH0763049A/en
Priority to US08/467,925 priority patent/US5560202A/en
Application granted granted Critical
Publication of JP2944371B2 publication Critical patent/JP2944371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、内燃機関の排気管内
に空気を導入することにより、排気ガスを浄化するため
の触媒を活性化する内燃機関の排気管内空気導入装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for introducing air into an exhaust pipe of an internal combustion engine, which activates a catalyst for purifying exhaust gas by introducing air into the exhaust pipe of the internal combustion engine.

【0002】[0002]

【従来の技術】図6は例えば実開昭47−21018号
公報などに示されたものと同様の従来の排気管内空気導
入装置を示す構成図である。図において、内燃機関1に
は、空気を導入するための吸気管2と、燃焼によって生
じた有害な排気ガスを大気へ排出するための排気管3と
が接続されている。吸気管2の上流部分には、大気中の
塵埃を除去するエアクリーナ4が設けられている。エア
クリーナ4の下流には、吸気管2の通路面積を変化させ
て内燃機関1に吸入される空気量を調整するためのスロ
ットル弁5が設けられている。
2. Description of the Related Art FIG. 6 is a block diagram showing a conventional air introduction device in an exhaust pipe similar to that shown in, for example, Japanese Utility Model Laid-Open No. 47-21018. In FIG. 1, an internal combustion engine 1 is connected to an intake pipe 2 for introducing air and an exhaust pipe 3 for discharging harmful exhaust gas generated by combustion to the atmosphere. An air cleaner 4 for removing dust in the atmosphere is provided at an upstream portion of the intake pipe 2. Downstream of the air cleaner 4, a throttle valve 5 for changing the passage area of the intake pipe 2 to adjust the amount of air taken into the internal combustion engine 1 is provided.

【0003】排気管3の途中には、化学反応によって有
害な排気ガスを浄化する第1の三元触媒(以下、単に第
1の触媒と略称する。)を収納した第1の触媒収納部6
が設けられている。この第1の触媒収納部6の下流に
は、第1の触媒と同様に排気ガスの浄化を行う第2の三
元触媒(以下、単に第2の触媒と略称する。)を収納し
た第2の触媒収納部7が設けられている。また、吸気管
2と排気管3との間には、空気導入管8が接続されてい
る。この空気導入管8は、途中で2本に分岐され、分岐
された一方が第1の触媒収納部6の上流部分に、他方が
第2の触媒収納部7の上流部分に接続されている。
[0003] In the middle of the exhaust pipe 3, a first catalyst accommodating portion 6 accommodating a first three-way catalyst (hereinafter simply referred to as a first catalyst) for purifying harmful exhaust gas by a chemical reaction.
Is provided. A second three-way catalyst (hereinafter simply referred to as a second catalyst) that purifies exhaust gas is stored downstream of the first catalyst storage unit 6 in the same manner as the first catalyst. Is provided. An air introduction pipe 8 is connected between the intake pipe 2 and the exhaust pipe 3. The air introduction pipe 8 is branched into two parts on the way, and one of the branches is connected to the upstream part of the first catalyst storage part 6 and the other is connected to the upstream part of the second catalyst storage part 7.

【0004】空気導入管8の分岐部には、第1及び第2
の触媒収納部6,7の両方の上流に空気を導入するか、
第2の触媒収納部7の上流のみに空気を導入するかを切
り換える切換バルブ9が設けられている。また、空気導
入管8の切換バルブ9の上流には、排気管3内に空気を
強制的に導入するためのエアポンプ10が設けられてい
る。このエアポンプ10は、ベルト(図示せず)を介し
て内燃機関1により駆動される。
[0004] The first and second air inlet pipes 8 are provided at a branch portion.
Air is introduced upstream of both of the catalyst storage sections 6 and 7 of
A switching valve 9 for switching whether to introduce air only upstream of the second catalyst storage unit 7 is provided. An air pump 10 for forcibly introducing air into the exhaust pipe 3 is provided upstream of the switching valve 9 of the air introduction pipe 8. The air pump 10 is driven by the internal combustion engine 1 via a belt (not shown).

【0005】第2の触媒収納部7には、第2の触媒の温
度を検出する温度センサ11が取り付けられている。こ
の温度センサ11及び切換バルブ9には、温度センサ1
1からの情報に応じて切換バルブ9を制御する制御部1
2が接続されている。なお、内燃機関1に燃料を供給す
るインジェクタ及びその制御系等については、ここでは
省略する。
[0005] A temperature sensor 11 for detecting the temperature of the second catalyst is attached to the second catalyst accommodating section 7. The temperature sensor 11 and the switching valve 9 include the temperature sensor 1
1 for controlling the switching valve 9 in accordance with information from the control unit 1
2 are connected. Note that an injector for supplying fuel to the internal combustion engine 1 and a control system thereof are omitted here.

【0006】次に、動作について説明する。内燃機関1
の始動時のチョーク作動中には、空燃比がリッチであ
り、HC,COが多く発生するため、エアクリーナ4を
通過して浄化された空気の一部が、エアポンプ10によ
り空気導入管8に強制的に吸い込まれ、両方の触媒収納
部6,7上流に導入される。これにより、多く発生した
HC,COは、第1及び第2の触媒収納部6,7の両方
で、酸化反応によりH2OやCO2に変えられ、これによ
り排気ガスが浄化される。
Next, the operation will be described. Internal combustion engine 1
During the choke operation at the time of starting, since the air-fuel ratio is rich and a large amount of HC and CO is generated, a part of the purified air passing through the air cleaner 4 is forcibly forced into the air introduction pipe 8 by the air pump 10. And is introduced upstream of both catalyst storage sections 6,7. As a result, HC and CO generated in large amounts are converted into H 2 O and CO 2 by an oxidation reaction in both the first and second catalyst housing sections 6 and 7, thereby purifying exhaust gas.

【0007】また、第2の触媒が高温になり活性化した
状態になると、温度センサ11によりそれが検出され、
制御部12により切換バルブ9が切り換えられて、第2
の触媒収納部7の上流のみに空気が導入される。この状
態では、排気ガス中のNOXが、第1の触媒による還元
反応によりN2に変えられ、またHC,COは、第2の
触媒側のみでH2OやCO2に変えられて、排気ガスの浄
化が行われる。
When the temperature of the second catalyst becomes high and becomes activated, the temperature is detected by the temperature sensor 11, and
The switching valve 9 is switched by the control unit 12, and the second
The air is introduced only upstream of the catalyst storage section 7. In this state, NO X in the exhaust gas, is changed to N 2 by a reduction reaction of the first catalyst and HC, CO can be varied in H 2 O and CO 2 only the second catalyst side, Exhaust gas purification is performed.

【0008】[0008]

【発明が解決しようとする課題】上記のように構成され
た従来の排気管内空気導入装置においては、第1及び第
2の触媒が低温のときから、排気ガスよりも低温である
常温の空気を導入しているため、各触媒収納部6,7を
通過する排気ガスの温度が低下して、触媒の活性化が遅
れてしまい、これにより排気ガスの浄化効率が低下する
という問題点があった。さらに、第2の触媒の温度が設
定値に達して第1の触媒への空気の導入を停止するま
で、第1及び第2の触媒への導入空気量の分配比は一定
であるが、これに対してNOXの排出量は内燃機関1の
温度上昇にともなって徐々に増加していくため、切換バ
ルブ9を切り換えるまでは、NOXを効率良く浄化でき
ないという問題点もあった。
In the conventional exhaust-pipe air introduction device configured as described above, since the first and second catalysts are at a low temperature, normal-temperature air at a lower temperature than the exhaust gas is supplied. Due to the introduction, the temperature of the exhaust gas passing through each of the catalyst storage units 6 and 7 decreases, and the activation of the catalyst is delayed, thereby causing a problem that the purification efficiency of the exhaust gas decreases. . Further, the distribution ratio of the amount of air introduced into the first and second catalysts is constant until the temperature of the second catalyst reaches a set value and the introduction of air into the first catalyst is stopped. since the emission of the nO X is gradually increases with increasing temperature of the internal combustion engine 1 against, until switches the switching valve 9, there is a problem that can not be efficiently purify nO X.

【0009】この発明は、上記のような問題点を解決す
ることを課題としてなされたものであり、触媒の活性化
を促進し、有害な排気ガスの浄化効率を向上させること
ができる内燃機関の排気管内空気導入装置を得ることを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has an object to provide an internal combustion engine capable of promoting catalyst activation and improving harmful exhaust gas purification efficiency. It is intended to obtain an air introduction device in an exhaust pipe.

【0010】[0010]

【課題を解決するための手段】請求項1の発明に係る内
燃機関の排気管内空気導入装置は、空気導入手段により
第1及び第2の三元触媒のそれぞれに空気を導入し、か
つ分配手段により第1及び第2の三元触媒への導入空気
を分配し、さらにヒータにより第1及び第2の三元触媒
への導入空気をそれぞれ別々に加熱し、これら空気導入
手段,分配手段及びヒータを制御部により制御するよう
にしたものである。
According to a first aspect of the present invention, there is provided an air introduction device in an exhaust pipe of an internal combustion engine, wherein air is introduced into each of the first and second three-way catalysts by the air introduction means, and the distribution means is provided. by introducing air into the first and second three-way catalyst and partitioned, the first and second the air introduced into the three-way catalyst was heated separately by further heater, these air introduction means, the dispensing means and the heater Is controlled by the control unit.

【0011】請求項2の発明に係る内燃機関の排気管内
空気導入装置は、制御部が、内燃機関の吸入空気量に基
づいて導入空気量を決め、その導入空気量をインジェク
タの噴射パルス幅に基づいて補正して、空気導入手段を
制御するものである。
According to a second aspect of the present invention, the control unit determines the amount of air to be introduced based on the amount of intake air of the internal combustion engine, and sets the amount of introduced air to the injection pulse width of the injector. Based on the correction, the air introduction means is controlled.

【0012】請求項3の発明に係る内燃機関の排気管内
空気導入装置は、制御部が、導入空気の分配比を第1及
び第2の三元触媒の容量比に基づいて決め、内燃機関の
水温の上昇に伴って、第1の三元触媒への導入空気量を
徐々に減少させるとともに、第2の三元触媒への導入空
気量を徐々に増加させるように分配手段を制御するもの
である。
According to a third aspect of the present invention, the control unit determines the distribution ratio of the introduced air based on the capacity ratio of the first and second three-way catalysts. The distribution means is controlled so that the amount of air introduced into the first three-way catalyst is gradually reduced and the amount of air introduced into the second three-way catalyst is gradually increased with an increase in the water temperature. is there.

【0013】請求項4の発明に係る内燃機関の排気管内
空気導入装置は、制御部が、導入空気の分配比を第1及
び第2の三元触媒の容量比に基づいて決め、内燃機関の
始動からの時間に伴って、第1の三元触媒への導入空気
量を徐々に減少させるとともに、第2の三元触媒への導
入空気量を徐々に増加させるように分配手段を制御する
ものである。
According to a fourth aspect of the present invention, the control unit determines the distribution ratio of the introduced air based on the capacity ratio of the first and second three-way catalysts. Controlling the distribution means so as to gradually reduce the amount of air introduced into the first three-way catalyst and gradually increase the amount of air introduced into the second three-way catalyst with time from the start. It is.

【0014】請求項5の発明に係る内燃機関の排気管内
空気導入装置は、制御部が、第1の三元触媒への導入空
気量が0になる所定時間前に、第1の三元触媒への導入
空気の加熱を停止させるものである。
According to a fifth aspect of the present invention, in the exhaust pipe air introduction device for an internal combustion engine, the control unit may control the first three-way catalyst before a predetermined time before the amount of air introduced into the first three-way catalyst becomes zero. This is to stop the heating of the air introduced into the chamber.

【0015】[0015]

【作用】請求項1の発明においては、排気管内に導入す
る空気をヒータで加熱することにより、第1及び第2の
三元触媒に入る排気ガスの温度低下を防ぎ、第1及び第
2の三元触媒の活性化を促進する。
According to the first aspect of the present invention, the temperature of the exhaust gas entering the first and second three-way catalysts is prevented by lowering the temperature of the exhaust gas entering the first and second three-way catalysts by heating the air introduced into the exhaust pipe with the heater . Promotes activation of the three-way catalyst.

【0016】請求項2の発明においては、導入空気量の
決定を内燃機関の吸入空気量に基づいて行うことによ
り、導入空気量を排気ガス量に見合ったものとし、さら
にその導入空気量をインジェクタパルス幅に基づいて補
正することにより、排気ガス中のHC,CO濃度に見合
った導入空気量に調整する。
According to the second aspect of the present invention, the amount of introduced air is determined based on the amount of intake air of the internal combustion engine, so that the amount of introduced air is matched with the amount of exhaust gas. By performing correction based on the pulse width, the amount of introduced air is adjusted to the amount of HC and CO in the exhaust gas.

【0017】請求項3及び請求項4の発明においては、
第1及び第2の三元触媒への導入空気の分配比を、各触
媒の容量比から決めることにより、それぞれの触媒の浄
化能力に見合った量の空気を導入し、さらに内燃機関の
水温又は始動からの時間経過に伴って、第1の三元触媒
への導入空気量を徐々に減らし、第2の三元触媒への導
入空気量を徐々に増やしていくように分配比を変化させ
ることにより、内燃機関の温度上昇に伴い内燃機関から
の排出量が増加するNOXに対する第1の三元触媒での
浄化率を上げていき、第1の三元触媒でNOXを、第2
の三元触媒でHC,COをそれぞれ効率良く浄化する。
According to the third and fourth aspects of the present invention,
By determining the distribution ratio of the introduced air to the first and second three-way catalysts from the capacity ratio of each catalyst, an amount of air corresponding to the purifying ability of each catalyst is introduced, and further, the water temperature of the internal combustion engine or The distribution ratio is changed so that the amount of air introduced into the first three-way catalyst is gradually reduced and the amount of air introduced into the second three-way catalyst is gradually increased with the passage of time from the start. Accordingly, gradually raise the purification rate of the first three-way catalyst for NO X emissions from an internal combustion engine with an increase in temperature of the internal combustion engine is increased, the NO X in the first three-way catalyst, the second
HC and CO are each efficiently purified by the three-way catalyst.

【0018】請求項5の発明においては、第1の三元触
媒への導入空気量が0になる前に、第1の三元触媒への
導入空気の加熱を停止させることにより、加熱手段の過
度の昇温を防止する。
In the invention of claim 5, the heating of the air introduced into the first three-way catalyst is stopped before the amount of air introduced into the first three-way catalyst becomes zero, so that the heating means Prevent excessive heating.

【0019】[0019]

【実施例】以下、この発明の実施例を図について説明す
る。 実施例1.図1はこの発明の実施例1による内燃機関の
排気管内空気導入装置を示す構成図であり、図6と同一
又は相当部分には同一符号を付し、その説明を省略す
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. Embodiment 1 FIG. FIG. 1 is a configuration diagram showing an air introduction device in an exhaust pipe of an internal combustion engine according to Embodiment 1 of the present invention. The same or corresponding parts as those in FIG. 6 are denoted by the same reference numerals, and description thereof will be omitted.

【0020】図において、内燃機関1の吸気管2側に
は、燃料を吸気弁(図示せず)へ向けて霧状に噴射して
燃料供給を行うためのインジェクタ21が各気筒ごとに
設けられている。吸気管2のスロットル弁5の上流に
は、内燃機関1に吸入される空気量を検出するためのエ
アフローセンサ22が設けられている。排気管3には、
排気ガス中に含まれる酸素濃度から内燃機関1内の空燃
比を検出するための空燃比センサ23が設けられてい
る。
In FIG. 1, an injector 21 for supplying fuel by spraying fuel in a mist toward an intake valve (not shown) is provided for each cylinder on the intake pipe 2 side of the internal combustion engine 1. ing. An airflow sensor 22 for detecting the amount of air taken into the internal combustion engine 1 is provided upstream of the throttle valve 5 in the intake pipe 2. In the exhaust pipe 3,
An air-fuel ratio sensor 23 for detecting the air-fuel ratio in the internal combustion engine 1 from the concentration of oxygen contained in the exhaust gas is provided.

【0021】また、この実施例1の空気導入手段である
エアポンプ24は、例えば電動ポンプなどで構成されて
おり、内燃機関1の回転とは同期せずに回転数を独立し
て調整できるようになっている。さらに、空気導入管8
の分岐部に設けられた分配手段である分配バルブ25
は、第1及び第2の触媒への導入空気量の分配比をリニ
アに変化させられるようになっている。空気導入管8の
分岐部より下流には、それぞれ第1及び第2の触媒に導
入される空気を加熱する加熱手段としてのヒータ26,
27が設けられている。これらヒータ26,27と分配
バルブ25との間には、それぞれ空気の逆流を防ぐ逆止
弁28,29が設けられている。
The air pump 24 serving as the air introducing means of the first embodiment is constituted by, for example, an electric pump or the like, so that the rotation speed can be adjusted independently of the rotation of the internal combustion engine 1 without synchronization. Has become. Further, the air introduction pipe 8
Distribution valve 25 which is a distribution means provided at a branch portion of
Can linearly change the distribution ratio of the amount of air introduced into the first and second catalysts. Downstream from the branch of the air introduction pipe 8, heaters 26 as heating means for heating the air introduced into the first and second catalysts, respectively,
27 are provided. Check valves 28 and 29 for preventing backflow of air are provided between the heaters 26 and 27 and the distribution valve 25, respectively.

【0022】上記の各インジェクタ21,エアフローセ
ンサ22及び空燃比センサ23等には、制御部(コント
ロールユニット)30が接続されている。この制御部3
0は、エアフローセンサ22によって検出された吸入空
気量と機関回転速度とにより基本燃料噴射パルス幅を求
め、これに水温等の温度補正を行い、さらに空燃比が理
論空燃比となるように空燃比センサ23の出力により空
燃比フィードバック補正を行って、噴射パルス幅を決定
して、燃料噴射信号によりインジェクタ21を駆動し燃
料制御を行う。
A control unit (control unit) 30 is connected to each of the injectors 21, the air flow sensor 22, the air-fuel ratio sensor 23, and the like. This control unit 3
0 indicates the basic fuel injection pulse width based on the intake air amount detected by the air flow sensor 22 and the engine speed, corrects the temperature such as water temperature, and further adjusts the air-fuel ratio so that the air-fuel ratio becomes the stoichiometric air-fuel ratio. The air-fuel ratio feedback correction is performed based on the output of the sensor 23, the injection pulse width is determined, and the injector 21 is driven by the fuel injection signal to perform fuel control.

【0023】また、制御部30は、エアポンプ24の回
転数を制御して流量を調節したり、内燃機関1の水温等
に応じて分配バルブ25を制御し、第1及び第2の触媒
への導入空気の分配比を調節したりする。さらに、制御
部30は、ヒータ26,27への通電を制御して、導入
空気の温度を調節する。
The control unit 30 controls the number of revolutions of the air pump 24 to adjust the flow rate, controls the distribution valve 25 according to the water temperature of the internal combustion engine 1 and the like, and controls the first and second catalysts. Adjust the distribution ratio of the introduced air. Further, the control unit 30 controls the power supply to the heaters 26 and 27 to adjust the temperature of the introduced air.

【0024】次に、動作について説明する。内燃機関1
が始動直後で冷機状態にある場合、インジェクタ21に
よる燃料噴射量は、制御部30により理論空燃比よりも
リッチな状態になるようにオープンループ制御される。
従って、この場合、排気ガス中には有害物であるHC,
COが多く混入している。しかし、始動直後には、第1
及び第2の触媒が両方とも不活性な状態にあるため、制
御部30により、内燃機関1の始動と同時に、エアポン
プ24が作動されるとともに分配バルブ25が制御さ
れ、第1及び第2の触媒の両方に空気が導入される。ま
た、ヒータ26,27の両方により導入空気が加熱され
る。
Next, the operation will be described. Internal combustion engine 1
Is in a cold state immediately after the start, the fuel injection amount by the injector 21 is controlled by the control unit 30 in an open loop so as to be richer than the stoichiometric air-fuel ratio.
Therefore, in this case, harmful substances such as HC,
A lot of CO is mixed. However, immediately after starting, the first
Since both the first and second catalysts are in an inactive state, the control unit 30 activates the air pump 24 and controls the distribution valve 25 simultaneously with the start of the internal combustion engine 1 to control the first and second catalysts. Air is introduced to both. Further, the introduced air is heated by both the heaters 26 and 27.

【0025】これにより、排気ガスの温度が導入空気に
より低下するのが防止され、温度低下せずに流入した排
気ガスと酸化反応による発熱とにより、第1及び第2の
触媒の活性化が促進される。この結果、導入空気中の酸
素によりHC,COが効率良く酸化され、CO2,H2
になる。ここで、このような始動直後の冷機状態ではN
Xが殆ど発生しないため、主にNOXの還元用に配置さ
れている第1の触媒にも始動直後には空気を導入し、H
C,COの浄化を行わせることができる。
Thus, the temperature of the exhaust gas is prevented from being lowered by the introduced air, and the activation of the first and second catalysts is promoted by the exhaust gas flowing in without the temperature drop and the heat generated by the oxidation reaction. Is done. As a result, HC and CO are efficiently oxidized by oxygen in the introduced air, and CO 2 and H 2 O
become. Here, in such a cold state immediately after the start, N
Since O X hardly occurs mainly immediately after starting to a first catalyst arranged for reduction of the NO X introducing air, H
Purification of C and CO can be performed.

【0026】次に、図2は図1の制御部30による分配
バルブ25及びヒータ26,27の制御方法の一例を示
す関係図である。制御部30は、例えば内燃機関1の水
温により第1の触媒の温度状況を推測し、第1の触媒が
活性化したと判断したときに分配バルブ25を制御して
第2の触媒のみに空気を導入するようにする。このと
き、第2の触媒は第1の触媒よりも下流に配置されてい
るため、第2の触媒収納部7に入る排気ガス温度は常に
低く、従って第2の触媒の活性化は第1の触媒よりも遅
れる。そこで、第2の触媒に導入する空気は、ヒータ2
により加熱し続ける。
Next, FIG. 2 is a relationship diagram showing an example of a method of controlling the distribution valve 25 and the heaters 26 and 27 by the control unit 30 of FIG. The control unit 30 estimates the temperature condition of the first catalyst based on, for example, the water temperature of the internal combustion engine 1, and controls the distribution valve 25 when it is determined that the first catalyst has been activated, so that air is supplied only to the second catalyst. To introduce. At this time, since the second catalyst is disposed downstream of the first catalyst, the temperature of the exhaust gas entering the second catalyst storage unit 7 is always low, and therefore, the activation of the second catalyst is caused by the first catalyst. It is behind the catalyst. Therefore, the air introduced into the second catalyst is supplied to the heater 2
Continue heating with 7 .

【0027】このように、第1の触媒への空気導入を停
止した後は、第2の触媒収納部7では導入空気により引
き続きHC,COの浄化が行われ、また内燃機関1が暖
機されるに従って排出量が増加するNOXは、第1の触
媒収納部6での還元作用により無害なN2に変換され
る。
After the introduction of air into the first catalyst is stopped, HC and CO are continuously purified by the introduced air in the second catalyst storage section 7, and the internal combustion engine 1 is warmed up. NO X which Runishitagatte emissions increases is converted into harmless N 2 by the reducing action of the first catalyst storage section 6.

【0028】この後、内燃機関1がさらに暖機されて第
2の触媒も活性化されたと判断すると、制御部30はヒ
ータ27への通電を停止し、これにより第2の触媒には
加熱されていない常温の空気が導入される。従って、N
X及び一部のHC,COは第1の触媒で酸化還元反応
により浄化され、第1の触媒で浄化しきれなかったH
C,COは、第2の触媒で酸化反応により浄化される。
Thereafter, when it is determined that the internal combustion engine 1 has been further warmed up and the second catalyst has also been activated, the control unit 30 stops energizing the heater 27, whereby the second catalyst is heated. Not room temperature air is introduced. Therefore, N
O X and some HC, CO are purified by oxidation-reduction reaction at the first catalyst, H which has not been purified in the first catalyst
C and CO are purified by an oxidation reaction with the second catalyst.

【0029】このように、内燃機関1の始動直後に第1
及び第2の触媒に導入する空気をヒータ26,27によ
り加熱することにより、第1及び第2の触媒の活性化が
促進され、HC,COの浄化効率が向上する。また、従
来はエアポンプ10が内燃機関1によりベルト等を介し
て駆動されていたため、排気管3に導入される空気量が
適切ではない場合があったが、この実施例1では、エア
ポンプ24を内燃機関1とは別に独立して制御するよう
にしたので、第1及び第2の触媒に導入される空気量を
適切にすることができ、これによっても浄化効率は向上
する。
As described above, immediately after the start of the internal combustion engine 1, the first
By heating the air introduced into the second catalyst and the heaters 26 and 27, the activation of the first and second catalysts is promoted, and the purification efficiency of HC and CO is improved. Conventionally, since the air pump 10 was driven by the internal combustion engine 1 via a belt or the like, the amount of air introduced into the exhaust pipe 3 was not appropriate in some cases. Since the control is performed independently of the engine 1, the amount of air introduced into the first and second catalysts can be made appropriate, thereby also improving the purification efficiency.

【0030】実施例2.次に、この発明の実施例2につ
いて説明する。この実施例2では、上記実施例1に加え
て、制御部30により、排気管3に導入する空気量を排
気ガス量及びHC,CO濃度に見合った量に制御するこ
とによって、第1及び第2の触媒の活性化をさらに促進
し、排気ガスの浄化効率を一層向上させるものである。
即ち、排気ガス量は吸入空気量に比例しており、制御部
30は、エアフローセンサ22からの情報により吸入空
気量を検出し、この吸入空気量に応じてエアポンプ24
への出力値を決定する。
Embodiment 2 FIG. Next, a second embodiment of the present invention will be described. In the second embodiment, in addition to the first embodiment, the control unit 30 controls the amount of air introduced into the exhaust pipe 3 to an amount corresponding to the amount of exhaust gas and the concentrations of HC and CO, so that the first and second parts are controlled. 2 further promotes the activation of the catalyst and further improves the exhaust gas purification efficiency.
That is, the amount of exhaust gas is proportional to the amount of intake air, and the control unit 30 detects the amount of intake air based on information from the air flow sensor 22, and according to the amount of intake air, the air pump 24
Determine the output value to.

【0031】さらに、インジェクタの噴射パルス幅の値
に基づいて補正をかけることにより、空燃比フィードバ
ック有無でのHC,COの排出濃度の違い、さらには空
燃比センサ23の出力による空燃比フィードバック中の
空燃比のリッチ,リーンの変動によるHC,COの排出
濃度の違いに見合った空気を排気管3に導入することが
できる。
Further, by making a correction based on the value of the injection pulse width of the injector, the difference in the emission concentration of HC and CO between the presence and absence of the air-fuel ratio feedback and the difference in the air-fuel ratio feedback based on the output of the air-fuel ratio sensor 23 are obtained. The air corresponding to the difference in the emission concentration of HC and CO due to the rich / lean fluctuation of the air-fuel ratio can be introduced into the exhaust pipe 3.

【0032】これを図3について説明すると、A点で加
速を開始し、図1のスロットル弁5を開くと、吸入空気
量(a)は増加し、それに伴って排気ガス量(d)も増
加するので、制御部30は、導入空気量(f)を排気ガ
ス量(d)に比例して増加させる。また、吸入空気量
(a)が一定であっても、例えば空燃比フィードバック
を行っている場合、空燃比フィードバックモードからエ
ンリッチモードに切り替わった場合、又はその逆の場合
等、インジェクタパルス幅(b)は常に変化している。
このため、A/F(空燃比)(c)も常に変動し、H
C,CO濃度(e)も変動する。
Referring to FIG. 3, when the acceleration is started at the point A and the throttle valve 5 of FIG. 1 is opened, the intake air amount (a) increases and the exhaust gas amount (d) increases accordingly. Therefore, the control unit 30 increases the introduced air amount (f) in proportion to the exhaust gas amount (d). Also, even if the intake air amount (a) is constant, the injector pulse width (b), for example, when air-fuel ratio feedback is being performed, when switching from the air-fuel ratio feedback mode to the enriched mode, or vice versa. Is constantly changing.
For this reason, A / F (air-fuel ratio) (c) always fluctuates, and H
The C and CO concentrations (e) also fluctuate.

【0033】従って、図3のC〜Fに示すように、A/
Fが14.7(理論空燃比)となるインジェクタパルス
幅を100%として、そこから増減したインジェクタパ
ルス幅(b)に見合った値で、吸入空気量(a)から求
めた導入空気量(b)に補正をかけることで、HC,C
O濃度(e)に見合った空気量を導入することができ
る。
Therefore, as shown in FIGS.
Assuming that the injector pulse width at which F becomes 14.7 (theoretical air-fuel ratio) is 100%, the intake air amount (b) obtained from the intake air amount (a) is a value corresponding to the injector pulse width (b) increased or decreased therefrom. ), HC, C
The amount of air corresponding to the O concentration (e) can be introduced.

【0034】実施例3.次に、この発明の実施例3につ
いて説明する。この実施例3では、制御部30により、
分配バルブ25における導入空気の分配比を、例えば図
4に示すように、内燃機関1の水温に応じて連続的に変
化させるものである。即ち、内燃機関1の始動直後は、
上記の分配比を第1及び第2の触媒の容量比にしてお
き、その後内燃機関1の水温の上昇に伴って、第1の触
媒への導入空気量を徐々に減少させるとともに第2の触
媒への導入空気量を徐々に増加させ、第1の触媒が活性
化したと判断される水温に達したとき、第1の触媒への
導入量がゼロになるように設定する。
Embodiment 3 FIG. Next, a third embodiment of the present invention will be described. In the third embodiment, the control unit 30
The distribution ratio of the introduced air in the distribution valve 25 is continuously changed according to the water temperature of the internal combustion engine 1 as shown in FIG. 4, for example. That is, immediately after the start of the internal combustion engine 1,
The above-mentioned distribution ratio is set to the volume ratio of the first and second catalysts. Thereafter, as the water temperature of the internal combustion engine 1 increases, the amount of air introduced into the first catalyst is gradually reduced, and The amount of air introduced into the first catalyst is gradually increased, and is set such that the amount of air introduced into the first catalyst becomes zero when the water temperature reaches a temperature at which it is determined that the first catalyst has been activated.

【0035】このような分配バルブ25の制御を制御部
30により行うことによって、内燃機関1の暖機が進む
に従って増加するNOXの排出量に対して、この排出量
の増加に伴って第1の触媒でのNOXの浄化率を上げる
ことができ、これによりNOXの排出量を一定値以下に
制限することができる。
[0035] By performing the control unit 30 controls such distribution valve 25, with respect to emissions of the NO X increasing with the warm-up of the internal combustion engine 1 progresses, the first with an increase in the emissions It is possible to increase the NO X purification rate of the catalyst, and thereby limit the NO X emission amount to a certain value or less.

【0036】実施例4.なお、上記実施例3では、第1
及び第2の触媒への導入空気の分配比を内燃機関1の水
温に応じて変化させたが、例えば図5に示すように、内
燃機関1の始動からの時間経過に伴って変化させるよう
にしてもよく、上記実施例3と同様の効果が得られる。
Embodiment 4 FIG. In the third embodiment, the first
And the distribution ratio of the introduced air to the second catalyst is changed in accordance with the water temperature of the internal combustion engine 1. For example, as shown in FIG. 5, the distribution ratio may be changed with the lapse of time from the start of the internal combustion engine 1. Alternatively, the same effect as in the third embodiment can be obtained.

【0037】実施例5.次に、この発明の実施例5につ
いて説明する。この実施例5では、上記実施例3.4に
加えて、図4及び図5のヒータ通電の関係図に示すよう
に、第1の触媒への導入空気分配比が0になる点Bより
も早い時点Aにおいて、内燃機関1の水温(図4)又は
始動からの時間(図5)により、第1の触媒への導入空
気を加熱するヒータ26への通電を停止する。
Embodiment 5 FIG. Next, a fifth embodiment of the present invention will be described. In the fifth embodiment, in addition to the above-described third embodiment, as shown in the heater energization relation diagrams of FIGS. 4 and 5, the point B at which the distribution ratio of the introduced air to the first catalyst becomes zero is higher than the point B. At an early time point A, the power supply to the heater 26 for heating the air introduced into the first catalyst is stopped according to the water temperature of the internal combustion engine 1 (FIG. 4) or the time from the start (FIG. 5).

【0038】これにより、空気流量が減少することによ
りヒータ26が過度に昇温するのを防止して、断線等の
故障が生じるのを防止することができる。また、ヒータ
26停止後の導入空気は、ヒータ26の余熱により加熱
されるので、導入空気により排気ガスが冷却されること
はない。逆に、余熱により加熱できるように、A,B間
の時間を設定すればよい。
Thus, the heater 26 can be prevented from excessively increasing in temperature due to a decrease in the air flow rate, and a failure such as disconnection can be prevented. Further, since the introduced air after the heater 26 is stopped is heated by the residual heat of the heater 26, the exhaust gas is not cooled by the introduced air. Conversely, the time between A and B may be set so that heating can be performed by residual heat.

【0039】[0039]

【発明の効果】以上説明したように、請求項1の発明の
内燃機関の排気管内空気導入装置は、ヒータにより第1
及び第2の三元触媒への導入空気をそれぞれ別々に加熱
するようにしたので、各触媒の活性化を促進し、有害な
排気ガスの浄化効率を向上させることができるという効
果を奏する。
As described above, the air introduction device in the exhaust pipe of an internal combustion engine according to the first aspect of the present invention is provided with the first heater by the heater .
In addition, since the air introduced into the second three-way catalyst is separately heated, it is possible to promote the activation of each catalyst and to improve the purification efficiency of harmful exhaust gas.

【0040】また、請求項2の発明の内燃機関の排気管
内空気導入装置は、制御部が、内燃機関の吸入空気量に
基づいて導入空気量を決め、その導入空気量をインジェ
クタの噴射パルス幅に基づいて補正して、空気導入手段
を制御するので、上記請求項1の発明と同様の効果に加
えて、導入空気量を排気ガス量及び排気ガス中のHC,
CO濃度に見合った量にすることができ、浄化効率を一
層向上させることができるという効果を奏する。
According to the second aspect of the present invention, the control unit determines the amount of air to be introduced based on the amount of intake air of the internal combustion engine, and determines the amount of air to be introduced by the injection pulse width of the injector. To control the air introduction means, in addition to the same effects as the first aspect of the present invention, the amount of introduced air is reduced by the amount of exhaust gas and the amount of HC,
The effect is that the amount can be adjusted to the CO concentration and the purification efficiency can be further improved.

【0041】さらに、請求項3及び請求項4の発明の内
燃機関の排気管内空気導入装置は、制御部が、導入空気
の分配比を第1及び第2の三元触媒の容量比に基づいて
決め、内燃機関の水温の上昇又は始動からの時間に伴っ
て、第1の三元触媒への導入空気量を徐々に減少させる
とともに、第2の三元触媒への導入空気量を徐々に増加
させるように分配手段を制御するので、上記請求項1の
発明と同様の効果に加えて、それぞれの触媒の浄化能力
に見合った量の空気を導入することができるとともに、
内燃機関の温度上昇に伴うNOXの排出量増加を防止す
ることができ、浄化効率を一層向上させることができる
という効果を奏する。
Further, in the exhaust pipe air introduction device for an internal combustion engine according to the third and fourth aspects of the present invention, the control unit determines the distribution ratio of the introduced air based on the capacity ratio of the first and second three-way catalysts. And the amount of air introduced into the first three-way catalyst is gradually reduced and the amount of air introduced into the second three-way catalyst is gradually increased with the rise of the water temperature of the internal combustion engine or the time from the start. Since the distribution means is controlled so as to cause the same effect as in the first aspect of the present invention, it is possible to introduce an amount of air commensurate with the purifying ability of each catalyst.
It is possible to prevent an increase in the amount of emission of NO X due to a rise in the temperature of the internal combustion engine, and it is possible to further improve the purification efficiency.

【0042】さらにまた、請求項5の発明の内燃機関の
排気管内空気導入装置は、制御部により、第1の三元触
媒への導入空気量が0になる所定時間前に、第1の三元
触媒への導入空気の加熱を停止させるので、上記請求項
1の発明と同様の効果に加えて、空気のない状態で加熱
することにより加熱手段が過度に昇温するのを防止する
ことができ、加熱手段の故障を防止することができると
いう効果を奏する。
Further, according to the fifth aspect of the present invention, in the exhaust pipe air introduction device for an internal combustion engine, the control unit may control the first three-way catalyst to perform the first three-way catalyst before the predetermined time before the amount of air introduced into the first three-way catalyst becomes zero. Since the heating of the introduced air to the source catalyst is stopped, in addition to the same effect as the above-mentioned claim 1, by heating in the absence of air, it is possible to prevent the heating means from excessively rising. Thus, there is an effect that the failure of the heating means can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例1による内燃機関の排気管内
空気導入装置を示す構成図である。
FIG. 1 is a configuration diagram illustrating an air introduction device in an exhaust pipe of an internal combustion engine according to a first embodiment of the present invention.

【図2】図1の制御部による分配バルブ及びヒータの制
御方法の一例を示す関係図である。
FIG. 2 is a relationship diagram illustrating an example of a method of controlling a distribution valve and a heater by a control unit in FIG. 1;

【図3】この発明の実施例2による制御部を用いた場合
の吸入空気量,インジェクタパルス幅,空燃比,排気ガ
ス量,HC,CO濃度及び導入空気量の時間変化を示す
関係図である。
FIG. 3 is a relationship diagram showing a time change of an intake air amount, an injector pulse width, an air-fuel ratio, an exhaust gas amount, HC, CO concentration, and an introduced air amount when a control unit according to a second embodiment of the present invention is used. .

【図4】この発明の実施例3及び実施例5による制御部
を用いた場合の内燃機関の水温,導入空気分配比及びヒ
ータ通電状態の時間変化を示す関係図である。
FIG. 4 is a relationship diagram showing a change over time in a water temperature, an introduced air distribution ratio, and a heater energized state of an internal combustion engine when the control units according to Embodiments 3 and 5 of the present invention are used.

【図5】この発明の実施例4及び実施例5による制御部
を用いた場合の導入空気分配比及びヒータ通電状態の時
間変化を示す関係図である。
FIG. 5 is a relationship diagram showing a change over time in an introduced air distribution ratio and a heater energized state when the control units according to Embodiments 4 and 5 of the present invention are used.

【図6】従来の内燃機関の排気管内空気導入装置の一例
を示す構成図である。
FIG. 6 is a configuration diagram showing an example of a conventional air introduction device in an exhaust pipe of an internal combustion engine.

【符号の説明】[Explanation of symbols]

1 内燃機関 3 排気管 6 第1の触媒収納部 7 第2の触媒収納部 21 インジェクタ 24 エアポンプ(空気導入手段) 25 分配バルブ(分配手段) 26 ヒータ(加熱手段) 27 ヒータ(加熱手段) 30 制御部 REFERENCE SIGNS LIST 1 internal combustion engine 3 exhaust pipe 6 first catalyst storage section 7 second catalyst storage section 21 injector 24 air pump (air introduction means) 25 distribution valve (distribution means) 26 heater (heating means) 27 heater (heating means) 30 control Department

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F01N 3/30 F01N 3/22 F01N 3/32 F01N 3/20 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) F01N 3/30 F01N 3/22 F01N 3/32 F01N 3/20

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内燃機関の排気管に互いに直列に配置さ
れた第1及び第2の三元触媒にそれぞれ空気を導入する
空気導入手段と、上記第1及び第2の三元触媒への導入
空気を分配する分配手段と、上記第1及び第2の三元触
媒への導入空気をそれぞれ別々に加熱するヒータと、上
記空気導入手段,上記分配手段及び上記ヒータを制御す
る制御部とを備えていることを特徴とする内燃機関の排
気管内空気導入装置。
1. An air introducing means for introducing air into first and second three-way catalysts arranged in series with each other in an exhaust pipe of an internal combustion engine, and introducing air into the first and second three-way catalysts. Distributing means for distributing air, heaters for separately heating the air introduced into the first and second three-way catalysts, and a control unit for controlling the air introducing means, the distributing means and the heater are provided. An air introduction device in an exhaust pipe of an internal combustion engine.
【請求項2】 制御部は、内燃機関の吸入空気量に基づ
いて導入空気量を決め、その導入空気量をインジェクタ
の噴射パルス幅に基づいて補正して、空気導入手段を制
御するようになっていることを特徴とする請求項1記載
の内燃機関の排気管内空気導入装置。
2. The control unit determines an amount of air to be introduced based on the amount of intake air of the internal combustion engine, corrects the amount of air to be introduced based on the injection pulse width of the injector, and controls the air introduction means. 2. The air introduction device in an exhaust pipe of an internal combustion engine according to claim 1, wherein:
【請求項3】 制御部は、導入空気の分配比を第1及び
第2の三元触媒の容量比に基づいて決め、内燃機関の水
温の上昇に伴って、上記第1の三元触媒への導入空気量
を徐々に減少させるとともに、上記第2の三元触媒への
導入空気量を徐々に増加させるように分配手段を制御す
るようになっていることを特徴とする請求項1又は請求
項2記載の内燃機関の排気管内空気導入装置。
3. The control unit determines a distribution ratio of the introduced air based on a capacity ratio of the first and second three-way catalysts, and controls the first three-way catalyst as the water temperature of the internal combustion engine rises. And controlling the distributing means so as to gradually reduce the amount of air introduced into the second three-way catalyst and gradually increase the amount of air introduced into the second three-way catalyst. Item 3. An air introduction device in an exhaust pipe of an internal combustion engine according to Item 2.
【請求項4】 制御部は、導入空気の分配比を第1及び
第2の三元触媒の容量比に基づいて決め、内燃機関の始
動からの時間に伴って、上記第1の三元触媒への導入空
気量を徐々に減少させるとともに、上記第2の三元触媒
への導入空気量を徐々に増加させるように分配手段を制
御するようになっていることを特徴とする請求項1又は
請求項2記載の内燃機関の排気管内空気導入装置。
4. The control unit determines a distribution ratio of the introduced air based on a capacity ratio of the first and second three-way catalysts, and the first three-way catalyst according to time from the start of the internal combustion engine. The distribution means is controlled so as to gradually reduce the amount of air introduced into the second three-way catalyst and gradually increase the amount of air introduced into the second three-way catalyst. An air introduction device in an exhaust pipe of an internal combustion engine according to claim 2.
【請求項5】 制御部は、第1の三元触媒への導入空気
量が0になる所定時間前に、上記第1の三元触媒への導
入空気の加熱を停止させるようになっていることを特徴
とする請求項3又は請求項4記載の内燃機関の排気管内
導入装置。
5. The control unit stops heating of the air introduced into the first three-way catalyst before a predetermined time when the amount of air introduced into the first three-way catalyst becomes zero. 5. The exhaust pipe introduction device for an internal combustion engine according to claim 3, wherein:
JP5210370A 1993-07-05 1993-08-25 Air introduction device in exhaust pipe of internal combustion engine Expired - Fee Related JP2944371B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5210370A JP2944371B2 (en) 1993-08-25 1993-08-25 Air introduction device in exhaust pipe of internal combustion engine
US08/269,681 US5459999A (en) 1993-07-05 1994-07-01 Exhaust gas cleaner system for an internal combustion engine with catalytic converter supplied with secondary air
US08/467,925 US5560202A (en) 1993-07-05 1995-06-06 Exhaust gas cleaner system for an internal combustion engine with catalytic converter supplied with secondary air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5210370A JP2944371B2 (en) 1993-08-25 1993-08-25 Air introduction device in exhaust pipe of internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0763049A JPH0763049A (en) 1995-03-07
JP2944371B2 true JP2944371B2 (en) 1999-09-06

Family

ID=16588239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5210370A Expired - Fee Related JP2944371B2 (en) 1993-07-05 1993-08-25 Air introduction device in exhaust pipe of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2944371B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207413A (en) * 2005-01-26 2006-08-10 Nissan Motor Co Ltd Secondary air supply device for internal combustion engine
JP4986838B2 (en) * 2007-12-27 2012-07-25 ヤマハ発動機株式会社 Secondary air supply system and vehicle

Also Published As

Publication number Publication date
JPH0763049A (en) 1995-03-07

Similar Documents

Publication Publication Date Title
JP3838339B2 (en) Exhaust gas purification device for internal combustion engine
JPH11148341A (en) Control device for introducing air into exhaust pipe of internal combustion engine
JPH1047048A (en) Emission control device for internal combustion engine
JPH06336916A (en) Exhaust emission control device of internal combustion engine
JP2853385B2 (en) Secondary air supply device for internal combustion engine
JPH0674030A (en) Secondary air control device
JP2003343287A (en) Exhaust emission control device for internal combustion engine
JPH1181992A (en) Exhaust gas purifying device in internal combustion engine
JP2944371B2 (en) Air introduction device in exhaust pipe of internal combustion engine
JPH08296430A (en) Exhaust emission control device for internal combustion engine
JP2845068B2 (en) Exhaust gas purification device for internal combustion engine
JP3006367B2 (en) Exhaust gas purification device for internal combustion engine
KR19980065555A (en) Catalyst activation determination device and engine control device of the engine
JPH0763046A (en) Catalytic warm-up device of internal combustion engine
JP2773555B2 (en) Engine exhaust gas purification device
JP2878057B2 (en) Air introduction control device in exhaust pipe of internal combustion engine
JPH06101458A (en) Exhaust gas purifying device
JP2995201B2 (en) Secondary air supply for engine exhaust
JP3467795B2 (en) Engine exhaust purification device
JP2995202B2 (en) Secondary air supply for engine exhaust
JPH07127444A (en) Secondary air lead-in control device for internal combustion engine
JPH0518235A (en) Secondary air control device for internal combustion engine
JPH0874568A (en) Secondary air feeding method of internal combustion engine and device thereof
JPH0579323A (en) Exhaust purifying device for engine
JPH06229324A (en) Exhaust emission control device of engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees