JP2836020B2 - Process for producing a processed yarn in which a composite rayon and silk fiber having anti-bacterial, deodorizing, mold-proof and insect-proof properties and far-infrared radiation properties are mixed or twisted and spun. - Google Patents
Process for producing a processed yarn in which a composite rayon and silk fiber having anti-bacterial, deodorizing, mold-proof and insect-proof properties and far-infrared radiation properties are mixed or twisted and spun.Info
- Publication number
- JP2836020B2 JP2836020B2 JP29778696A JP29778696A JP2836020B2 JP 2836020 B2 JP2836020 B2 JP 2836020B2 JP 29778696 A JP29778696 A JP 29778696A JP 29778696 A JP29778696 A JP 29778696A JP 2836020 B2 JP2836020 B2 JP 2836020B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- mixed
- properties
- composite
- rayon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Artificial Filaments (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、抗菌性、脱臭性、
防カビ性および防虫性を有すると共に、遠赤外線放射特
性を有する複合レーヨンと絹繊維とを混紡または交撚し
て紡糸する加工糸の製造方法に関するものである。TECHNICAL FIELD The present invention relates to an antibacterial property, a deodorizing property,
The present invention relates to a method for producing a processed yarn in which a composite rayon having both antifungal and insect repellent properties and far-infrared radiation characteristics and silk fiber is mixed or twisted and spun.
【0002】[0002]
【従来の技術】従来、絹から得られた絹繊維は広く用い
られているが、抗菌性、脱臭性、防カビ性および防虫性
を有すると共に、遠赤外線放射特性を有するレーヨンは
存在していなかった。2. Description of the Related Art Conventionally, silk fibers obtained from silk have been widely used. However, rayon having antibacterial properties, deodorizing properties, fungicidal properties and insect repellent properties, and far-infrared radiation properties does not exist. Was.
【0003】[0003]
【発明が解決しようとする課題】本発明は、抗菌性、脱
臭性、防カビ性および防虫性を有すると共に、遠赤外線
放射特性を有する複合レーヨンを製造すると共に、該レ
ーヨンと従来公知の絹繊維とを混紡または交撚して紡糸
することより、前記複合レーヨンと絹繊維の両者の特性
の相乗効果を期待できる加工糸を得ることを課題とす
る。SUMMARY OF THE INVENTION The present invention is to produce a composite rayon having antibacterial, deodorizing, antifungal and insect repellent properties as well as far-infrared radiating properties. It is an object of the present invention to obtain a processed yarn that can be expected to have a synergistic effect of the characteristics of both the composite rayon and the silk fiber by spinning the mixed rayon and the twisted yarn.
【0004】[0004]
【課題を解決するための手段】本発明は、粒径5μm以
下の蛇紋石微粉末を基材とすると共に、該基材が20〜
80重量%に対して、粒径5μm以下の硅石の微粉末を
混合材として、該混合材を10〜40重量%の割合で前
記基材に添加混合すると共に、更に粒径5μm以下の酸
化亜鉛の微粉末を助材として、該助材を10〜40重量
%の割合で前記基材に添加混合して、混合機および粉砕
機に順次複数回に亘って投入して、前記基材と混合材お
よび助材とを混合攪拌および粉砕して均一に混合し、然
る後200〜500℃の仮焼温度で焼成機により焼成し
て得られた複合セラミックスを、レーヨン製造工程中の
混合工程において、ビスコースを投入した混合機に5〜
10重量%投入するか、または脱泡工程において、ビス
コースを投入した紡糸タンクに5〜10重量%投入し
て、前記ビスコースに前記複合セラミックスを添加混入
して得られた複合レーヨン65〜85重量%に対して、
絹繊維15〜35重量%を混紡または交撚して紡糸する
という手段、粒径5μm以下の蛇紋石微粉末を基材とす
ると共に、該基材が20〜80重量%に対して、粒径5
μm以下の硅石の微粉末を混合材として、該混合材を1
0〜40重量%の割合で前記基材に添加混合すると共
に、更に粒径5μm以下の電気石の微粉末を助材とし
て、該助材を10〜40重量%の割合で前記基材に添加
混合して、混合機および粉砕機に順次複数回に亘って投
入して、前記基材と混合材および助材とを混合攪拌およ
び粉砕して均一に混合し、然る後200〜500℃の仮
焼温度で焼成機により焼成して得られた複合セラミック
スを、レーヨン製造工程中の混合工程において、ビスコ
ースを投入した混合機に5〜10重量%投入するか、ま
たは脱泡工程において、ビスコースを投入した紡糸タン
クに5〜10重量%投入して、前記ビスコースに前記複
合セラミックスを添加混入して得られた複合レーヨン5
0〜70重量%に対して、絹繊維30〜50重量%を混
紡または交撚して紡糸するという手段、粒径5μm以下
の蛇紋石微粉末を基材とすると共に、該基材が10〜4
0重量%に対して、粒径5μm以下の酸化亜鉛の微粉末
を混合材として、該混合材を10〜40重量%の割合で
前記基材に添加混合すると共に、更に粒径5μm以下の
ゼオライトの微粉末を助材として、該助材を20〜80
重量%の割合で前記基材に添加混合して、混合機および
粉砕機に順次複数回に亘って投入して、前記基材と混合
材および助材とを混合攪拌および粉砕して均一に混合
し、然る後200〜500℃の仮焼温度で焼成機により
焼成して得られた複合セラミックスを、レーヨン製造工
程中の混合工程において、ビスコースを投入した混合機
に5〜10重量%投入するか、または脱泡工程におい
て、ビスコースを投入した紡糸タンクに5〜10重量%
投入して、前記ビスコースに前記複合セラミックスを添
加混入して得られた複合レーヨン30〜50重量%に対
して、絹繊維50〜70重量%を混紡または交撚して紡
糸するという手段、粒径5μm以下の蛇紋石微粉末を基
材とすると共に、該基材が10〜40重量%に対して、
粒径5μm以下の酸化亜鉛の微粉末を混合材として、該
混合材を10〜40重量%の割合で前記基材に添加混合
すると共に、更に粒径5μm以下の酸化カルシウムの微
粉末を助材として、該助材を20〜80重量%の割合で
前記基材に添加混合して、混合機および粉砕機に順次複
数回に亘って投入して、前記基材と混合材および助材と
を混合攪拌および粉砕して均一に混合し、然る後200
〜500℃の仮焼温度で焼成機により焼成して得られた
複合セラミックスを、レーヨン製造工程中の混合工程に
おいて、ビスコースを投入した混合機に5〜10重量%
投入するか、または脱泡工程において、ビスコースを投
入した紡糸タンクに5〜10重量%投入して、前記ビス
コースに前記複合セラミックスを添加混入して得られた
複合レーヨン15〜35重量%に対して、絹繊維65〜
85重量%を混紡または交撚して紡糸するという手段、
のいずれかを採用することにより、上記課題を解決し
た。According to the present invention, a serpentine fine powder having a particle size of 5 μm or less is used as a base material, and the base material is composed of 20 to 50 μm.
80% by weight of fine silica powder having a particle size of 5 μm or less is used as a mixed material, and the mixed material is added to and mixed with the base material at a ratio of 10 to 40% by weight, and zinc oxide having a particle size of 5 μm or less is further added. The fine powder is used as an auxiliary material, and the auxiliary material is added to and mixed with the base material at a ratio of 10 to 40% by weight, and the mixture is put into a mixer and a crusher several times sequentially to mix with the base material. The mixed ceramic obtained by sintering and mixing the material and the auxiliary material with a sintering machine at a calcining temperature of 200 to 500 ° C. is then mixed in a rayon manufacturing process. , 5 to the viscose mixer
10% by weight, or in a defoaming step, 5-10% by weight into a spinning tank into which viscose has been charged, and the composite ceramics 65-85 obtained by adding and mixing the composite ceramics into the viscose. % By weight
A means of spinning by blending or twisting 15 to 35% by weight of silk fiber, and using a serpentine fine powder having a particle size of 5 μm or less as a base material, wherein the base material has a particle size of 20 to 80% by weight. 5
A fine powder of silica stone having a particle size of 1 μm or less is used as a mixed material.
0-40% by weight is added to and mixed with the base material, and further, fine powder of tourmaline having a particle size of 5 μm or less is used as an auxiliary material, and the auxiliary material is added to the base material at a ratio of 10-40% by weight. After mixing, the mixture is put into a mixer and a pulverizer a plurality of times in succession, and the base material and the mixture material and the auxiliary material are mixed and stirred and pulverized so as to be uniformly mixed. In the mixing step in the rayon production process, the composite ceramics obtained by firing at the firing temperature at the calcining temperature is charged into a mixer into which viscose has been charged in an amount of 5 to 10% by weight, or in the defoaming step, The composite rayon 5 obtained by adding 5 to 10% by weight to the spinning tank charged with the course and adding and mixing the composite ceramics into the viscose.
A method of spinning by blending or twisting 30 to 50% by weight of silk fiber with respect to 0 to 70% by weight, using a serpentine fine powder having a particle size of 5 μm or less as a base material, 4
With respect to 0% by weight, a fine powder of zinc oxide having a particle size of 5 μm or less is used as a mixed material, and the mixed material is added to and mixed with the base material at a ratio of 10 to 40% by weight. Of fine powder of 20 to 80
The mixture is added to and mixed with the base material in a ratio of weight%, and is sequentially charged into a mixer and a pulverizer a plurality of times. The base material and the mixed material and the auxiliary material are mixed, stirred, pulverized, and uniformly mixed. Then, in the mixing step in the rayon production process, 5 to 10% by weight of the composite ceramics obtained by firing by the firing machine at the calcining temperature of 200 to 500 ° C. is charged into the viscose-loaded mixer. Or in the defoaming step, 5 to 10% by weight of the spinning tank charged with viscose.
Means for mixing and spinning by mixing or twisting 50 to 70% by weight of silk fiber with respect to 30 to 50% by weight of composite rayon obtained by adding and mixing the composite ceramics into the viscose. The base material is a serpentine fine powder having a diameter of 5 μm or less.
A zinc oxide fine powder having a particle size of 5 μm or less is used as a mixed material, and the mixed material is added to and mixed with the base material at a ratio of 10 to 40% by weight. The auxiliary material is added to and mixed with the base material at a ratio of 20 to 80% by weight, and the mixed material and the auxiliary material are added to the mixer and the pulverizer sequentially several times. Mix and stir and grind to mix uniformly, then 200
In a mixing step in a rayon production process, 5-10% by weight of a composite ceramic obtained by firing at a calcining temperature of about 500 ° C.
In the feeding or defoaming step, 5 to 10% by weight is put into a spinning tank into which viscose has been put, and 15 to 35% by weight of a composite rayon obtained by adding and mixing the composite ceramics into the viscose. On the other hand, silk fiber 65-
Means of spinning by blending or twisting 85% by weight,
The above problem was solved by adopting any one of the above.
【0005】[0005]
【発明の実施の形態】先ず本発明者は、単一成分のセラ
ミックスにつき、夫々抗菌率と脱臭率および遠赤外線放
射率につき個々に測定し、抗菌率または脱臭率並びに遠
赤外線放射率において優れたものを抽出すると共に、前
記各セラミックスを基材、混合材および助材のいずれか
として採用してこれを一定比率で混合攪拌し、然る後仮
焼して抗菌性および脱臭性を有すると共に、遠赤外線放
射特性を有し、更に防カビ性および防虫性をも有する複
合セラミックスを製造し、そして該複合セラミックスを
レーヨン製造工程中においてビスコースに添加混入する
ことにより、本発明の素材となる抗菌性、脱臭性、防カ
ビ性および防虫性を有すると共に、遠赤外線放射特性を
有する複合レーヨンを完成した。BEST MODE FOR CARRYING OUT THE INVENTION First, the present inventor individually measured the antibacterial rate, deodorizing rate and far-infrared emissivity of a single-component ceramic, respectively, and found that it was excellent in antibacterial rate or deodorizing rate and far-infrared emissivity. While extracting the thing, each of the ceramics is adopted as one of the base material, the mixture material and the auxiliary material and mixed and stirred at a constant ratio, and then calcined to have antibacterial properties and deodorizing properties, By producing a composite ceramic having far-infrared radiation characteristics, and also having fungicidal and insect repellent properties, and adding the mixed ceramic to viscose during the rayon production process, the antibacterial material of the present invention is obtained. A composite rayon having properties, deodorization, fungicide and insect repellency, and far-infrared radiation characteristics was completed.
【0006】本発明の素材となる抗菌性と脱臭性を有す
ると共に、遠赤外線放射特性を有する複合セラミックス
を構成する単一成分のセラミックスの抗菌率と脱臭率お
よび遠赤外線の平均放射率を測定したところ、表1、表
2に示す測定値を得た。The antibacterial and deodorizing rates and the average far-infrared emissivity of a single component ceramic constituting the composite ceramics having far-infrared radiation properties as well as antibacterial properties and deodorizing properties as the material of the present invention were measured. However, the measured values shown in Tables 1 and 2 were obtained.
【0007】[0007]
【表1】 [Table 1]
【0008】[0008]
【表2】 [Table 2]
【0009】表1の結果から、蛇紋石が大腸菌に対して
86%、ブドウ状球菌に対して96%の抗菌率を有する
と共に、臭気の発生源であるアンモニアに対して95
%、硫化水素に対して90%の脱臭率を有し、硅石は硫
化水素に対して100%、アンモニアに対しては93%
の脱臭率を有するが、抗菌性はほとんどなく、酸化亜鉛
は硫化水素に対して100%の脱臭率を有するが、アン
モニアに対してはほとんど脱臭性がなく、抗菌性もほと
んどなく、また、電気石は大腸菌に対して87%、ブド
ウ状球菌に対して83%の抗菌率を有するが、アンモニ
アや硫化水素に対しては中程度の脱臭性しかなく、ゼオ
ライトはアンモニアに対しては90%、硫化水素に対し
て80%の脱臭率を有するが、抗菌性はほとんどなく、
酸化カルシウムはアンモニアや硫化水素に対して80%
の脱臭率を有し、大腸菌に対して85%、ブドウ状球菌
に対して95%の高い抗菌性を有していることが判っ
た。更に、表2の結果より前記各セラミックスとも放射
率が比較的高いことが判った。From the results in Table 1, it can be seen that serpentine has an antibacterial rate of 86% against Escherichia coli and 96% against staphylococci, and 95% against ammonia which is an odor source.
%, Deodorization rate of 90% for hydrogen sulfide, silica stone is 100% for hydrogen sulfide, 93% for ammonia
Has a deodorizing rate of almost 100%, but has almost no antibacterial property. Zinc oxide has a deodorizing rate of 100% for hydrogen sulfide, but has little deodorizing property for ammonia, little antibacterial property, and electric power. Stone has an antibacterial rate of 87% against Escherichia coli and 83% against staphylococci, but has only moderate deodorizing properties against ammonia and hydrogen sulfide, and zeolite has 90% against ammonia, It has a deodorization rate of 80% against hydrogen sulfide, but has almost no antibacterial properties.
Calcium oxide is 80% of ammonia and hydrogen sulfide
It was found to have a high antibacterial activity of 85% against Escherichia coli and 95% against staphylococci. Further, from the results in Table 2, it was found that each of the ceramics had a relatively high emissivity.
【0010】上記の結果より、本発明者は大腸菌とブド
ウ状球菌のいずれに対しても高い抗菌率を有すると共
に、アンモニアや硫化水素に対しても高い脱臭率を有
し、且つ放射率が比較的高い蛇紋石を本発明に使用する
複合セラミックスの基材として採用し、この基材となる
蛇紋石に、混合材として硅石または酸化亜鉛を添加混合
し、更に助材として、酸化亜鉛(混合材として酸化亜鉛
を用いた場合は除外する)、電気石、ゼオライト、酸化
カルシウムのいずれかを前記基材に添加混合することに
よって、抗菌性、脱臭性、防カビ性および防虫性を有す
ると共に、遠赤外線を放射する複合セラミックスが得ら
れると考え、前記各セラミックスをその各配合比率を種
々変えて、遠赤外線放射率、JISZ2911の測定法
による防カビ抵抗、ノミやダニ等の衛生害虫に対する防
虫性を示す忌避率、抗菌率および脱臭率についてそれぞ
れ測定した。From the above results, the present inventor has a high antibacterial activity against both Escherichia coli and staphylococci, a high deodorizing activity against ammonia and hydrogen sulfide, and a comparative emissivity. High serpentine is used as the base material of the composite ceramics used in the present invention, and the serpentine base material is mixed with silica or zinc oxide as a mixture, and zinc oxide (mixed material) Excluding zinc oxide), tourmaline, zeolite, and calcium oxide are added to and mixed with the substrate to provide antibacterial, deodorant, antifungal, and insect repellent properties. Considering that composite ceramics that emit infrared rays can be obtained, the above ceramics are variously changed in their respective compounding ratios, and the far-infrared emissivity, mold resistance according to the measurement method of JISZ2911, Repellency showing an insecticidal against hygiene pests and mites such, were measured for antimicrobial rate and deodorizing rate.
【0011】そして、前記測定の結果、基材が蛇紋石、
混合材が硅石、助材が酸化亜鉛の場合、それぞれ蛇紋石
20〜80重量%、硅石10〜40重量%、酸化亜鉛1
0〜40重量%とするのが好ましく、特に好ましくは蛇
紋石50重量%、硅石25重量%、酸化亜鉛25重量%
とすることが推奨され、また、基材が蛇紋石、混合材が
硅石、助材が電気石の場合、それぞれ蛇紋石20〜80
重量%、硅石10〜40重量%、電気石10〜40重量
%とするのが好ましく、特に好ましくは蛇紋石50重量
%、硅石25重量%、電気石25重量%とすることが推
奨され、更に、基材が蛇紋石、混合材が酸化亜鉛、助材
がゼオライトの場合、それぞれ蛇紋石10〜40重量
%、酸化亜鉛10〜40重量%、ゼオライト20〜80
重量%とするのが好ましく、特に好ましくは蛇紋石25
重量%、酸化亜鉛25重量%、ゼオライト50重量%と
することが推奨され、また更に、基材が蛇紋石、混合材
が酸化亜鉛、助材が酸化カルシウムの場合、それぞれ蛇
紋石10〜40重量%、酸化亜鉛10〜40重量%、酸
化カルシウム20〜80重量%とするのが好ましく、特
に好ましくは蛇紋石25重量%、酸化亜鉛25重量%、
酸化カルシウム50重量%とすることが推奨されること
が判った。As a result of the measurement, the base material is serpentine,
When the mixed material is silica stone and the auxiliary material is zinc oxide, serpentine 20 to 80% by weight, silica stone 10 to 40% by weight, zinc oxide 1
The content is preferably 0 to 40% by weight, particularly preferably 50% by weight of serpentine, 25% by weight of silica, and 25% by weight of zinc oxide.
When the base material is serpentine, the mixed material is silica stone, and the auxiliary material is tourmaline, the serpentine stones are 20 to 80, respectively.
% By weight, 10 to 40% by weight of silica stone, and 10 to 40% by weight of tourmaline, particularly preferably 50% by weight of serpentine, 25% by weight of silica stone, and 25% by weight of tourmaline. When the base material is serpentine, the mixed material is zinc oxide, and the auxiliary material is zeolite, the serpentine is 10 to 40% by weight, the zinc oxide is 10 to 40% by weight, and the zeolite is 20 to 80, respectively.
% By weight, particularly preferably serpentine 25
% By weight, 25% by weight of zinc oxide and 50% by weight of zeolite. Further, when the base material is serpentine, the mixture is zinc oxide, and the auxiliary material is calcium oxide, the serpentine is 10 to 40% by weight, respectively. %, Zinc oxide 10 to 40% by weight, calcium oxide 20 to 80% by weight, particularly preferably serpentine 25% by weight, zinc oxide 25% by weight,
It has been found that it is recommended to use 50% by weight of calcium oxide.
【0012】そして、本発明で採用する複合セラミック
スを構成する単一成分のセラミックスである蛇紋石、硅
石、酸化亜鉛、電気石、ゼオライト、酸化カルシウムを
夫々表3に示す好ましい混合率により混合して製造され
た複合セラミックスの遠赤外線放射率、防カビ抵抗、ノ
ミやダニ等の衛生害虫に対する防虫性を示す忌避率、抗
菌率および脱臭率を測定した結果を表4に示す。なお、
表4における記号1〜4は表3の記号1〜4と対応して
いる。The single-component ceramics constituting the composite ceramics used in the present invention, such as serpentine, silica, zinc oxide, tourmaline, zeolite, and calcium oxide, are mixed at the preferable mixing ratios shown in Table 3, respectively. Table 4 shows the results of measuring the far-infrared emissivity, mold resistance, repellency, antibacterial rate, and deodorization rate of the manufactured composite ceramics, which show insect repellency against sanitary pests such as fleas and ticks. In addition,
Symbols 1 to 4 in Table 4 correspond to symbols 1 to 4 in Table 3.
【0013】[0013]
【表3】 [Table 3]
【0014】[0014]
【表4】 [Table 4]
【0015】前記表4の結果から、いずれの複合セラミ
ックスも、その複合セラミックスを構成する各単一成分
の各セラミックスの相乗効果により抗菌率および脱臭率
において高い数値が出て、抗菌性および脱臭性において
優れていると共に、遠赤外線放射率、防カビ抵抗および
衛生害虫に対する防虫性を示す忌避率においても優れて
いることが判った。From the results shown in Table 4 above, all the composite ceramics showed high values in the antibacterial and deodorizing rates due to the synergistic effect of the ceramics of each single component constituting the composite ceramics. It was also found to be excellent in far-infrared emissivity, mold resistance and repellency showing insect repellency to sanitary pests.
【0016】以下本発明に採用する抗菌性、脱臭性、防
カビ性および防虫性を有すると共に、遠赤外線放射特性
を有する複合セラミックスの製造方法について更に詳細
に説明する。前記複合セラミックスを構成する各単一成
分の各セラミックスの粒径は、5μm以下の微粉末を使
用する必要があり、そしてこれら各セラミックスを混合
すると、各セラミックスの比重、水分、湿度等の物理的
特性が夫々異なると共に、これら原材料である前記各セ
ラミックスは粒径が5μm以下の微粉末であるため、凝
集化が安易に作用して、前記各セラミックスを均一に混
合することは極めて容易ではない。Hereinafter, a method for producing a composite ceramic having antibacterial properties, deodorizing properties, fungicidal properties and insect repellency and far-infrared radiation characteristics employed in the present invention will be described in more detail. The particle diameter of each ceramic of each single component constituting the composite ceramics must be fine powder of 5 μm or less, and when these ceramics are mixed, the specific gravity, moisture, humidity, etc. The characteristics of the ceramics are different from each other, and each of the ceramics, which are the raw materials, is a fine powder having a particle size of 5 μm or less. Therefore, it is very difficult to uniformly mix the ceramics because the agglomeration acts easily.
【0017】そこで本発明者は、表3に示すような混合
率により前記基材と混合材および助材とを夫々所定比率
で混合機に投入して混合攪拌した後、その混合物を粉砕
機に投入して粉砕し、そして更に、前記粉砕したものを
再び混合機に投入して混合攪拌し、その後また粉砕機に
投入して粉砕するという工程を順次約30分間繰返すと
いう手段を採用することにより、基材と混合材および助
材とが均一に混合された複合セラミックスを製造するこ
とができた。The inventor of the present invention introduced the base material, the mixed material and the auxiliary material into the mixer at predetermined ratios according to the mixing ratios shown in Table 3 and mixed and stirred the mixture. By throwing in and pulverizing, and further, repeating the process of throwing the ground into the mixer again, mixing and stirring, and then throwing into the mill again and grinding for about 30 minutes. Thus, it was possible to produce a composite ceramic in which the base material, the mixed material, and the auxiliary material were uniformly mixed.
【0018】そして、前記均一に混合された複合セラミ
ックスの化学特性の安定化を図るため、複合セラミック
スを200〜500℃の仮焼温度で焼成機により焼成し
て、抗菌性、脱臭性、防カビ性および防虫性を有すると
共に、遠赤外線放射特性を有する複合セラミックスとす
るのである。In order to stabilize the chemical properties of the uniformly mixed composite ceramics, the composite ceramics are fired by a firing machine at a calcining temperature of 200 to 500 ° C. to obtain antibacterial properties, deodorization properties, and antifungal properties. It is a composite ceramic having properties and insect repellency and having far-infrared radiation characteristics.
【0019】なお、前記複合セラミックスの材料である
各セラミックスの水素イオン濃度は、表5に示すように
アルカリ性状を呈している。また、前記各セラミックス
より成る複合セラミックスも表6に示すようにアルカリ
性状を呈している。なお、表6における記号1〜4は表
3の記号1〜4と対応している。The hydrogen ion concentration of each of the ceramics as the material of the composite ceramics has an alkaline property as shown in Table 5. Also, the composite ceramics composed of each of the above ceramics has an alkaline property as shown in Table 6. Symbols 1 to 4 in Table 6 correspond to symbols 1 to 4 in Table 3.
【0020】[0020]
【表5】 [Table 5]
【0021】[0021]
【表6】 [Table 6]
【0022】表5記載の水素イオン濃度を有する各セラ
ミックスを複合した本発明に採用される複合セラミック
スの水素イオン濃度は、前記のように200℃〜500
℃で焼成されているので、表6に示すように非常に安定
してアルカリ性状を呈している。更に、これら複合セラ
ミックスは仮焼によって結晶化されて、電界エネルギー
(陽イオン)を発生する機能を有する複合セラミックス
になる。前記複合セラミックスがアルカリ性状を呈する
のは、その焼成加工中に不純物がガス化されるので、単
一成分のセラミックスよりもアルカリ性に移行するから
である。The hydrogen ion concentration of the composite ceramics employed in the present invention in which each ceramic having the hydrogen ion concentration shown in Table 5 is composited is 200 ° C. to 500 ° C. as described above.
Since it was baked at ℃, it has very stable and alkaline properties as shown in Table 6. Further, these composite ceramics are crystallized by calcination to become composite ceramics having a function of generating electric field energy (cation). The reason why the composite ceramic exhibits an alkaline property is that impurities are gasified during the sintering process, so that the composite ceramic becomes more alkaline than a single component ceramic.
【0023】前記表4〜表6から前記製造方法によって
得られた複合セラミックスは、遠赤外線放射によって陽
イオンを発生する複合セラミックスであり、アルカリ域
の水素イオンになることが立証された。更に、脱臭機構
は分解作用であるという特性を有し、その結果前記製造
方法によって得られた複合セラミックスは、遠赤外線放
射特性を有する外に、抗菌性と脱臭性の両作用を兼ね備
えていることが判る。From Tables 4 to 6, it has been proved that the composite ceramics obtained by the production method is a composite ceramics which generates cations by far-infrared radiation and becomes hydrogen ions in an alkaline region. Further, the deodorizing mechanism has a property of decomposing action, and as a result, the composite ceramics obtained by the manufacturing method has both antibacterial properties and deodorizing actions in addition to having far-infrared radiation properties. I understand.
【0024】すなわち、前記複合セラミックスの抗菌メ
カニズムは、大腸菌、ブドウ状球菌等の一般生菌の表層
(壁)が陰イオンであって、そのため中性領域(pH
7.0〜7.5)でしか生息が不可能であるが、前記製
造方法によって得られた複合化された複合セラミックス
の最大の特性として陽イオンを発生するので、陰イオン
である菌体の表層(壁)が、前記複合セラミックスの陽
イオンによって破壊されると同時に、菌体蛋白質が変成
して、呼吸困難となり死滅するのである。That is, the antibacterial mechanism of the composite ceramics is that the surface layer (wall) of general living bacteria such as Escherichia coli and staphylococci is an anion, and thus the neutral region (pH)
7.0 to 7.5), but the cations are generated as the largest characteristic of the composite ceramics obtained by the above-mentioned production method. At the same time, the surface layer (wall) is destroyed by the cations of the composite ceramics, and at the same time, the bacterial protein is denatured and becomes difficult to breathe and is killed.
【0025】また、硫化水素およびアンモニア等に対す
る前記複合セラミックスの脱臭メカニズムは、物理的吸
着または化学的吸着等の一般的作用ではなく、分解作用
のため飽和状態にならないので、抗菌力と同様に、脱臭
力を半恒久的に有している。そして、前記複合セラミッ
クスは毒性をも有していないのである。The deodorizing mechanism of the composite ceramics against hydrogen sulfide, ammonia and the like is not a general action such as physical adsorption or chemical adsorption, but is not saturated due to a decomposition action. Has semi-permanent deodorizing power. The composite ceramics has no toxicity.
【0026】更に、前記複合セラミックスの遠赤外線放
射によって発生する陽イオンによって、カビの発生また
は増殖を阻止し、防カビの機能を果たし、更に前記陽イ
オンによってノミやダニ等の衛生害虫に対する防虫性を
示す忌避効果を有する。Further, cations generated by far-infrared radiation of the composite ceramics inhibit the generation or proliferation of mold, thereby fulfilling a fungicidal function, and the cations provide insect repellency against sanitary pests such as fleas and mites. It has a repellent effect showing
【0027】本発明の素材となる複合セラミックスの粒
子の粒径は、レーヨンの生産に支障のない程度に充分小
さいことが好ましい。比較的太いレーヨンの場合は粒径
5〜15μm程度のものの利用も可能であるが、通常は
0.1〜5μm程度のもの、特に0.2〜1.5μm程
度のものが好適である。逆に粒径が0.1μm以下の場
合は粒子の凝集が起り易く、不都合なことが多い。It is preferable that the particle size of the particles of the composite ceramic used as the material of the present invention is sufficiently small so as not to hinder the production of rayon. In the case of relatively thick rayon, those having a particle size of about 5 to 15 μm can be used, but usually those having a particle size of about 0.1 to 5 μm, particularly about 0.2 to 1.5 μm are suitable. Conversely, when the particle size is 0.1 μm or less, aggregation of the particles is likely to occur, which is often inconvenient.
【0028】前記製造方法により製造された複合セラミ
ックスを、公知のレーヨンの製造工程中の、ビスコース
の品質を一定、均一にするため混合機に入れて混合する
混合工程において、前記混合機に好ましくは5〜10重
量%、特に好ましくは8重量%の比率で投入して、該複
合セラミックスをビスコースに添加混入する。In the mixing step of mixing and mixing the composite ceramics manufactured by the above-described manufacturing method in a known rayon manufacturing process to make the quality of viscose constant and uniform, the mixing is preferably performed by the mixing machine. Is added at a ratio of 5 to 10% by weight, particularly preferably 8% by weight, and the composite ceramic is added to and mixed with viscose.
【0029】または、前記複合セラミックスの混合工程
における添加混入に代えて、混合工程、濾過工程の後、
ビスコースを紡糸タンクに入れて脱泡する脱泡工程にお
いて、前記紡糸タンクに好ましくは5〜10重量%、特
に好ましくは8重量%の比率で複合セラミックスを投入
して、該複合セラミックスをビスコースに添加混入して
もよい。Alternatively, instead of adding and mixing in the mixing step of the composite ceramics, after the mixing step and the filtration step,
In the defoaming step of putting the viscose into the spinning tank and defoaming, the composite ceramic is charged into the spinning tank at a ratio of preferably 5 to 10% by weight, particularly preferably 8% by weight. May be added.
【0030】そして、前記工程においてビスコースに複
合セラミックスを添加混入した後は、公知のレーヨン製
造工程により本発明の素材となる複合レーヨンを製造す
る。Then, after adding and mixing the composite ceramics into the viscose in the above process, a composite rayon as a material of the present invention is manufactured by a known rayon manufacturing process.
【0031】前記特に好ましい混合率によって得られた
表3の記号1〜4に示す複合セラミックスをセルロース
に添加混入して得られた本発明の素材となる複合レーヨ
ンにつき、抗菌率、脱臭率、防カビ抵抗、忌避率および
遠赤外線放射率について測定したところ、表7に示す結
果が得られた。表7の記号1〜4は表3の記号1〜4と
対応しており、表3の混合率により製造された複合セラ
ミックスを用いた複合レーヨンを示している。With respect to the composite rayon which is the material of the present invention obtained by adding and mixing the composite ceramics shown in the symbols 1 to 4 in Table 3 obtained with the above-mentioned particularly preferable mixing ratio to cellulose, the antibacterial rate, the deodorizing rate, and the prevention When the mold resistance, the repellency, and the far-infrared emissivity were measured, the results shown in Table 7 were obtained. Symbols 1 to 4 in Table 7 correspond to symbols 1 to 4 in Table 3 and indicate a composite rayon using the composite ceramics manufactured according to the mixing ratios in Table 3.
【0032】[0032]
【表7】 [Table 7]
【0033】本発明に用いられる複合セラミックスは遠
赤外線放射特性を有するが、混合するセラミックスの種
類を異にして製造された複合セラミックスを用いて製造
した本発明の素材となる複合レーヨンと汎用レーヨンの
遠赤外線放射率を測定したところ、図1に示すように、
本発明の素材となる複合レーヨンの遠赤外線放射率が、
波長5μm前後より20μmにかけて80%以上と汎用
レーヨンに比して極めて高いことが判った。図中の記号
1〜4は表3の記号1〜4と対応しており、好ましい混
合率により製造された各複合セラミックスを夫々添加混
入した複合レーヨンを示している。また、本発明の素材
となる前記各複合レーヨンの水素イオン濃度を測定した
ところ、いずれもpH7.0〜7.8で中性であった。Although the composite ceramics used in the present invention has far-infrared radiation characteristics, the composite rayon and the general-purpose rayon which are the materials of the present invention manufactured using the composite ceramics manufactured by using different types of ceramics to be mixed are used. When the far-infrared emissivity was measured, as shown in FIG.
The far-infrared emissivity of the composite rayon that is the material of the present invention is
It was found to be 80% or more from a wavelength around 5 μm to 20 μm, which is extremely higher than that of general-purpose rayon. Symbols 1 to 4 in the figure correspond to symbols 1 to 4 in Table 3, and indicate composite rayon to which each of the composite ceramics manufactured at a preferable mixing ratio is added and mixed. When the hydrogen ion concentration of each of the composite rayon used as the material of the present invention was measured, all were neutral at pH 7.0 to 7.8.
【0034】前記表7および図1で示すように、本発明
の素材となる複合レーヨンは、93〜95%の遠赤外線
放射率を有すると共に、89〜93.5%の抗菌率、8
7〜95.4%の脱臭率を有し、更に防カビ抵抗は3、
衛生害虫に対する忌避率も92〜94%と極めて高く、
汎用レーヨンにはない抗菌性、脱臭性、防カビ性、防虫
性および遠赤外線放射特性が付与されていることが判っ
た。As shown in Table 7 and FIG. 1, the composite rayon used as the material of the present invention has a far-infrared ray emissivity of 93 to 95%, an antibacterial rate of 89 to 93.5%, and 8
It has a deodorization rate of 7 to 95.4%, and has a fungicide resistance of 3,
The repellent rate against sanitary pests is extremely high at 92 to 94%.
It was found that antibacterial properties, deodorizing properties, antifungal properties, insect repellent properties, and far-infrared radiation properties were imparted to general rayon.
【0035】次に、前記製造方法によって得られた抗菌
性、脱臭性、防カビ性および防虫性を有すると共に、遠
赤外線放射特性を有する複合レーヨンと混紡または交撚
して紡糸する絹繊維は既に一般に広く使用されている。
この絹繊維は、絹を素材として用いているので、特に吸
温・放湿性に優れ、保温性もよいという効果を有するこ
とが知られている。Next, the silk fiber obtained by blending or twisting with a composite rayon having antibacterial properties, deodorizing properties, fungicidal properties and insect repellent properties, and far-infrared radiation properties, obtained by the above-mentioned production method, is already used. Generally used widely.
Since the silk fiber uses silk as a material, it is known that it has an effect of particularly excellent heat absorption / desorption properties and good heat retention properties.
【0036】本発明は、前記特性を有する複合レーヨン
と絹繊維とを所定比率で、従来一般に用いられている混
紡方法または交撚方法により紡糸して加工糸を得るので
あるが、表3に示す好ましい配合比率により製造された
複合レーヨン1〜4と絹繊維とは夫々次のような混合比
率にして混紡または交撚して紡糸することが推奨され
る。すなわち、表3の記号1で示す複合セラミックスを
使用した複合レーヨン65〜85重量%、好ましくは7
5重量%に対して、絹繊維15〜35重量%、好ましく
は25重量%の混合比率で混紡または交撚して紡糸し加
工糸Aを製造するか、または表3の記号2で示す複合セ
ラミックスを使用した複合レーヨン50〜70重量%、
好ましくは60重量%に対して、絹繊維30〜50重量
%、好ましくは40重量%の混合比率で混紡または交撚
して紡糸し加工糸Bを製造するか、あるいは表3の記号
3で示す複合セラミックスを使用した複合レーヨン30
〜50重量%、好ましくは40重量%に対して、絹繊維
50〜70重量%、好ましくは60重量%の混合比率で
混紡または交撚して紡糸し加工糸Cを製造するか、更に
表3の記号4で示す複合セラミックスを使用した複合レ
ーヨン15〜35重量%、好ましくは25重量%に対し
て、絹繊維65〜85重量%、好ましくは75重量%の
混合比率で混紡または交撚して紡糸し加工糸Dを製造す
る。According to the present invention, processed rayon is obtained by spinning a composite rayon having the above-mentioned properties and silk fiber at a predetermined ratio by a conventionally used blending method or twisting method. It is recommended that the composite rayons 1 to 4 and the silk fibers produced according to the preferred compounding ratios are mixed or twisted and spun at the following mixing ratios. That is, 65 to 85% by weight, preferably 7% by weight of composite rayon using the composite ceramics indicated by symbol 1 in Table 3.
5% by weight to 15% by weight, preferably 25% by weight, of a silk fiber is blended or twisted and spun to produce a processed yarn A, or a composite ceramic indicated by symbol 2 in Table 3 50-70% by weight of composite rayon using
Preferably, the mixed yarn is mixed or twisted at a mixing ratio of 30 to 50% by weight, preferably 40% by weight with respect to 60% by weight to produce a processed yarn B, or is indicated by symbol 3 in Table 3. Composite rayon 30 using composite ceramics
A mixed fiber of 50 to 70% by weight, preferably 60% by weight is blended or twisted with respect to 50 to 50% by weight, preferably 40% by weight to produce a processed yarn C. A composite rayon using a composite ceramics indicated by the symbol 4 is blended or twisted in a mixing ratio of 65 to 85% by weight, preferably 75% by weight with respect to 15 to 35% by weight, preferably 25% by weight of silk fiber. Spin to produce processed yarn D.
【0037】そして、表8に示す複合レーヨンと絹繊維
の好ましい混合比率で混紡または交撚して紡糸された加
工糸A〜Dの特性を表9で示す。Table 9 shows the characteristics of the processed yarns A to D spun by mixing or twisting the composite rayon and the silk fiber at a preferable mixing ratio shown in Table 8.
【0038】[0038]
【表8】 [Table 8]
【0039】[0039]
【表9】 [Table 9]
【0040】また、図2は絹繊維と複合レーヨンの吸温
・放湿曲線図および表8,9の加工糸A〜Dの平均吸温
・放湿曲線図であり、また図3は前記表8,9の加工糸
A〜Dと絹繊維との接触温冷感を示す比較表である。FIG. 2 is a graph of the temperature absorption / desorption curves of the silk fiber and the composite rayon, and the average temperature absorption / desorption curves of the processed yarns A to D in Tables 8 and 9, and FIG. It is a comparative table which shows the contact thermal sensation of the processed yarns A to D of Nos. 8 and 9 and silk fibers.
【0041】前記表9で示すように、本発明製造方法に
よって得られた加工糸は93〜94%の高い遠赤外線放
射率を有し、且つ防カビ抵抗がいずれも3で防カビ抵抗
性が高く、またノミやダニ等の衛生害虫に対する忌避率
も92〜93%で防虫性を有すると共に、91〜94%
の抗菌率および90〜92%の脱臭率を有する。更に、
図2で示すように吸温・放湿性においては、本発明製造
方法によって得られた加工糸は、絹繊維よりやや劣るが
複合レーヨンよりは優れている。また図3に示すよう
に、接触温冷感については本発明製造方法によって得ら
れた加工糸は、絹繊維よりやや劣るが比較的高いという
優れた効果を有することが判った。これは抗菌性および
脱臭性を有すると共に、遠赤外線放射特性を有する複合
レーヨンの特性と、絹繊維の有する特性との相乗効果で
ある。すなわち、吸温・放湿性および接触温冷感につい
ては前記複合レーヨンが有している遠赤外線作用によっ
てその効果を上げている。更に、絹繊維には存在しない
抗菌性、脱臭性、防カビ性および防虫性が付与される。As shown in Table 9, the processed yarn obtained by the production method of the present invention has a high far-infrared emissivity of 93 to 94%, and has a fungicide resistance of 3 and a fungicide resistance of 3 each. It has a high repellent rate against sanitary pests such as fleas and ticks, 92-93%, and has insect repellency.
Antibacterial rate and 90-92% deodorizing rate. Furthermore,
As shown in FIG. 2, the processed yarn obtained by the production method of the present invention is slightly inferior to silk fiber but superior to composite rayon in terms of heat absorption and moisture release. Further, as shown in FIG. 3, it was found that the processed yarn obtained by the production method of the present invention had an excellent effect of a relatively high contact thermal sensation, which was slightly inferior to silk fiber but relatively high. This is a synergistic effect of the properties of the composite rayon having antibacterial properties and deodorizing properties and far infrared radiation properties, and the properties of silk fibers. That is, the effects of the heat absorption / desorption properties and the contact temperature / cooling sensation are enhanced by the far-infrared ray action of the composite rayon. In addition, antibacterial properties, deodorizing properties, fungicidal properties and insect repellency which are not present in silk fibers are imparted.
【0042】表10は、絹繊維と複合レーヨンおよび本
発明製造方法によって得られた加工糸の特性を総合的に
比較した比較表である。表10により、遠赤外線放射、
防カビ性、防虫性、抗菌力、脱臭力、保温力、張力およ
び風合のいずれにおいても、本発明製造方法によって得
られた加工糸が優れている。Table 10 is a comparison table comprehensively comparing the characteristics of the silk fiber, the composite rayon, and the processed yarn obtained by the production method of the present invention. According to Table 10, far infrared radiation,
The processed yarn obtained by the production method of the present invention is excellent in all of mold resistance, insect repellency, antibacterial power, deodorizing power, heat retaining power, tension and feeling.
【0043】[0043]
【表10】 [Table 10]
【0044】前記本発明製造方法により得られた加工糸
を木綿、その他の繊維と混紡した下着、肌着を着用する
と、体温で遠赤外線の放射効率が高まり、それにより皮
膚表面温度を昇温させる効果があり、そして遠赤外線の
放射により生体水が活性化されて血流も促進されるの
で、疲労回復等の効果があり、更に吸温・放湿性および
保温性にも優れている。また、本発明製造方法の素材と
なる複合レーヨンはpH7.0〜7.8の中性であるた
め、人体に被着する下着、肌着の素材として最適であ
る。When underwear and underwear in which the processed yarn obtained by the production method of the present invention is blended with cotton and other fibers is worn, the radiation efficiency of far-infrared rays at body temperature is increased, thereby increasing the skin surface temperature. In addition, the body water is activated by the radiation of far-infrared rays, and blood flow is promoted. Therefore, it has an effect such as recovery from fatigue and the like, and further, has excellent heat absorption / desorption properties and heat retention properties. Further, the composite rayon used as a material of the production method of the present invention has a neutral pH of 7.0 to 7.8, and thus is optimal as a material for underwear and underwear to be adhered to a human body.
【0045】[0045]
【発明の効果】本発明製造方法の一方の素材となる複合
レーヨンを構成する抗菌性および脱臭性を有する複合セ
ラミックスが、アルカリ性状を呈し、遠赤外線放射によ
り陽イオンを発生して一般生菌を死滅させて抗菌性を有
すると共に、硫化水素およびアンモニアを分解して脱臭
性をも有し、更に他方の素材となる絹繊維は吸温・放湿
性において優れ、且つ接触温冷感が高く保温性に優れて
いるため、本発明製造方法によって得られた加工糸は前
記複合セラミックスにより抗菌性と脱臭性を合わせ保有
し、木綿または合成繊維と混紡することにより、特にふ
とんカバーや靴下等に使用される等、その用途は極めて
広い。また、本発明製造方法によって得られた加工糸は
遠赤外線放射特性を有すると共に、吸温・放湿性に優
れ、保温性も有しているので、該加工糸を木綿等と混紡
した下着や肌着として利用することにより、皮膚表面温
度を昇温させて保温性を高めると共に、血流を促進させ
るという効果がある。更に、本発明製造方法によって得
られた加工糸は防カビ抵抗性が高く、カビの発生または
増殖を阻止すると共に、衛生害虫に対する忌避率が高
く、ダニ、ノミ等の衛生害虫が寄りつかず防虫性を有す
るという優れた効果を有する。The composite ceramics having antibacterial and deodorizing properties constituting the composite rayon, which is one of the materials of the production method of the present invention, has an alkaline property and generates cations by far-infrared radiation to generate general viable bacteria. In addition to having antibacterial properties by killing, it also has a deodorizing property by decomposing hydrogen sulfide and ammonia, and the silk fiber used as the other material is excellent in heat absorption and desorption properties, and has a high contact temperature cooling feeling and high heat retention Since the processed yarn obtained by the production method of the present invention has both antibacterial property and deodorizing property by the composite ceramic, and is blended with cotton or synthetic fiber, it is used particularly for a futon cover or a sock. Its use is extremely wide. In addition, the processed yarn obtained by the production method of the present invention has far-infrared radiation characteristics, is also excellent in heat absorption / desorption properties, and has heat retention properties. Therefore, the processed yarn is mixed with cotton or the like to form underwear or underwear. Utilizing as an effect has the effect of increasing the temperature of the skin surface to increase the heat retention and promoting blood flow. Furthermore, the processed yarn obtained by the production method of the present invention has high mold resistance, inhibits the occurrence or growth of mold, and has a high repellent rate against sanitary pests. Having an excellent effect.
【図1】本発明製造方法の素材となる複合レーヨンと汎
用のレーヨンの放射率を示す図である。FIG. 1 is a diagram showing the emissivity of a composite rayon and a general-purpose rayon which are used as materials in the production method of the present invention.
【図2】本発明製造方法によって得られた加工糸と絹繊
維および複合レーヨンの吸温・放湿曲線図である。FIG. 2 is a diagram showing a temperature absorption / desorption curve of a processed yarn, a silk fiber, and a composite rayon obtained by the production method of the present invention.
【図3】本発明製造方法によって得られた加工糸と絹繊
維の接触温冷感の比較表である。FIG. 3 is a comparison table of contact thermal sensation between processed yarn and silk fiber obtained by the production method of the present invention.
Claims (4)
ると共に、該基材が20〜80重量%に対して、粒径5
μm以下の硅石の微粉末を混合材として、該混合材を1
0〜40重量%の割合で前記基材に添加混合すると共
に、更に粒径5μm以下の酸化亜鉛の微粉末を助材とし
て、該助材を10〜40重量%の割合で前記基材に添加
混合して、混合機および粉砕機に順次複数回に亘って投
入して、前記基材と混合材および助材とを混合攪拌およ
び粉砕して均一に混合し、然る後200〜500℃の仮
焼温度で焼成機により焼成して得られた複合セラミック
スを、レーヨン製造工程中の混合工程において、ビスコ
ースを投入した混合機に5〜10重量%投入するか、ま
たは脱泡工程において、ビスコースを投入した紡糸タン
クに5〜10重量%投入して、前記ビスコースに前記複
合セラミックスを添加混入して得られた複合レーヨン6
5〜85重量%に対して、絹繊維15〜35重量%を混
紡または交撚して紡糸することを特徴とする抗菌性、脱
臭性、防カビ性および防虫性を有すると共に、遠赤外線
放射特性を有する複合レーヨンと絹繊維とを混紡または
交撚して紡糸する加工糸の製造方法。1. A serpentine fine powder having a particle size of 5 μm or less is used as a base material.
A fine powder of silica stone having a particle size of 1 μm or less is used as a mixed material.
The mixture is added to the base at a ratio of 0 to 40% by weight, and further, a fine powder of zinc oxide having a particle size of 5 μm or less is used as an auxiliary, and the auxiliary is added to the substrate at a ratio of 10 to 40% by weight. After mixing, the mixture is put into a mixer and a pulverizer a plurality of times in succession, and the base material and the mixture material and the auxiliary material are mixed and stirred and pulverized so as to be uniformly mixed. In the mixing step in the rayon production process, the composite ceramics obtained by firing at the firing temperature at the calcining temperature is charged into a mixer into which viscose has been charged in an amount of 5 to 10% by weight, or in the defoaming step, The composite rayon 6 obtained by adding 5 to 10% by weight to the spinning tank into which the course has been added and adding and mixing the composite ceramics into the viscose.
It has antibacterial properties, deodorant properties, fungicidal properties and insect repellency, and is characterized by far-infrared radiation properties, characterized in that 15 to 35% by weight of silk fiber is blended or twisted with respect to 5 to 85% by weight and spun. A method for producing a processed yarn in which a composite rayon having the above and a silk fiber are blended or twisted and spun.
ると共に、該基材が20〜80重量%に対して、粒径5
μm以下の硅石の微粉末を混合材として、該混合材を1
0〜40重量%の割合で前記基材に添加混合すると共
に、更に粒径5μm以下の電気石の微粉末を助材とし
て、該助材を10〜40重量%の割合で前記基材に添加
混合して、混合機および粉砕機に順次複数回に亘って投
入して、前記基材と混合材および助材とを混合攪拌およ
び粉砕して均一に混合し、然る後200〜500℃の仮
焼温度で焼成機により焼成して得られた複合セラミック
スを、レーヨン製造工程中の混合工程において、ビスコ
ースを投入した混合機に5〜10重量%投入するか、ま
たは脱泡工程において、ビスコースを投入した紡糸タン
クに5〜10重量%投入して、前記ビスコースに前記複
合セラミックスを添加混入して得られた複合レーヨン5
0〜70重量%に対して、絹繊維30〜50重量%を混
紡または交撚して紡糸することを特徴とする抗菌性、脱
臭性、防カビ性および防虫性を有すると共に、遠赤外線
放射特性を有する複合レーヨンと絹繊維とを混紡または
交撚して紡糸する加工糸の製造方法。2. Serpentine fine powder having a particle size of 5 μm or less is used as a base material.
A fine powder of silica stone having a particle size of 1 μm or less is used as a mixed material.
0-40% by weight is added to and mixed with the base material, and further, fine powder of tourmaline having a particle size of 5 μm or less is used as an auxiliary material, and the auxiliary material is added to the base material at a ratio of 10-40% by weight. After mixing, the mixture is put into a mixer and a pulverizer a plurality of times in succession, and the base material and the mixture material and the auxiliary material are mixed and stirred and pulverized so as to be uniformly mixed. In the mixing step in the rayon production process, the composite ceramics obtained by firing at the firing temperature at the calcining temperature is charged into a mixer into which viscose has been charged in an amount of 5 to 10% by weight, or in the defoaming step, The composite rayon 5 obtained by adding 5 to 10% by weight to the spinning tank charged with the course and adding and mixing the composite ceramics into the viscose.
It has antibacterial properties, deodorizing properties, fungicidal properties and insect repellent properties, and is characterized by far-infrared radiation properties, characterized in that 30 to 50% by weight of silk fibers are spun by blending or twisting with respect to 0 to 70% by weight. A method for producing a processed yarn in which a composite rayon having the above and a silk fiber are blended or twisted and spun.
ると共に、該基材が10〜40重量%に対して、粒径5
μm以下の酸化亜鉛の微粉末を混合材として、該混合材
を10〜40重量%の割合で前記基材に添加混合すると
共に、更に粒径5μm以下のゼオライトの微粉末を助材
として、該助材を20〜80重量%の割合で前記基材に
添加混合して、混合機および粉砕機に順次複数回に亘っ
て投入して、前記基材と混合材および助材とを混合攪拌
および粉砕して均一に混合し、然る後200〜500℃
の仮焼温度で焼成機により焼成して得られた複合セラミ
ックスを、レーヨン製造工程中の混合工程において、ビ
スコースを投入した混合機に5〜10重量%投入する
か、または脱泡工程において、ビスコースを投入した紡
糸タンクに5〜10重量%投入して、前記ビスコースに
前記複合セラミックスを添加混入して得られた複合レー
ヨン30〜50重量%に対して、絹繊維50〜70重量
%を混紡または交撚して紡糸することを特徴とする抗菌
性、脱臭性、防カビ性および防虫性を有すると共に、遠
赤外線放射特性を有する複合レーヨンと絹繊維とを混紡
または交撚して紡糸する加工糸の製造方法。3. A base material comprising a fine serpentine powder having a particle size of 5 μm or less, and a base material having a particle size of 5 to 40% by weight.
A fine powder of zinc oxide having a particle size of 5 μm or less is used as an auxiliary material, and a fine powder of zeolite having a particle size of 5 μm or less is further mixed with the base material at a ratio of 10 to 40% by weight. The auxiliary material is added to and mixed with the base material at a ratio of 20 to 80% by weight, and the mixture is put into a mixer and a pulverizer several times in order. Crush and mix uniformly, then 200-500 ° C
In the mixing step in the rayon production process, the composite ceramics obtained by firing at a calcining temperature of 5 to 10% by weight is charged into a viscose-loaded mixer, or in the defoaming step, 5 to 10% by weight is added to the spinning tank in which viscose is charged, and 50 to 70% by weight of silk fiber is added to 30 to 50% by weight of composite rayon obtained by adding and mixing the composite ceramics into the viscose. Blended or twisted with a composite rayon and silk fiber, which have antibacterial properties, deodorization properties, antifungal property and insect repellency, characterized by spinning by blending or twisting. Manufacturing method of processed yarn.
ると共に、該基材が10〜40重量%に対して、粒径5
μm以下の酸化亜鉛の微粉末を混合材として、該混合材
を10〜40重量%の割合で前記基材に添加混合すると
共に、更に粒径5μm以下の酸化カルシウムの微粉末を
助材として、該助材を20〜80重量%の割合で前記基
材に添加混合して、混合機および粉砕機に順次複数回に
亘って投入して、前記基材と混合材および助材とを混合
攪拌および粉砕して均一に混合し、然る後200〜50
0℃の仮焼温度で焼成機により焼成して得られた複合セ
ラミックスを、レーヨン製造工程中の混合工程におい
て、ビスコースを投入した混合機に5〜10重量%投入
するか、または脱泡工程において、ビスコースを投入し
た紡糸タンクに5〜10重量%投入して、前記ビスコー
スに前記複合セラミックスを添加混入して得られた複合
レーヨン15〜35重量%に対して、絹繊維65〜85
重量%を混紡または交撚して紡糸することを特徴とする
抗菌性、脱臭性、防カビ性および防虫性を有すると共
に、遠赤外線放射特性を有する複合レーヨンと絹繊維と
を混紡または交撚して紡糸する加工糸の製造方法。4. A base material comprising a fine serpentine powder having a particle size of 5 μm or less, and a base material having a particle size of 5 to 40% by weight.
A fine powder of zinc oxide having a particle size of 5 μm or less is used as a mixture, and the mixed material is added to and mixed with the base material at a ratio of 10 to 40% by weight. The auxiliary material is added to and mixed with the base material at a ratio of 20 to 80% by weight, and the mixed material and the auxiliary material are mixed and stirred with the mixer and the crusher several times sequentially. And pulverize and mix uniformly, then 200-50
In a mixing step in the rayon production process, the composite ceramics obtained by firing at a calcining temperature of 0 ° C. by a firing machine is charged at 5 to 10% by weight into a viscose-loaded mixer, or a defoaming step. In the above, 5 to 10% by weight is charged into a spinning tank into which viscose is charged, and 15 to 35% by weight of composite rayon obtained by adding and mixing the composite ceramics into the viscose, and silk fibers 65 to 85% are added.
Blending or twisting a composite rayon and silk fiber having antibacterial properties, deodorizing property, antifungal property and insect repellency, characterized in that spinning is performed by blending or twisting by weight. Manufacturing method of processed yarn to be spun.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29778696A JP2836020B2 (en) | 1996-03-18 | 1996-10-21 | Process for producing a processed yarn in which a composite rayon and silk fiber having anti-bacterial, deodorizing, mold-proof and insect-proof properties and far-infrared radiation properties are mixed or twisted and spun. |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8-88836 | 1996-03-18 | ||
JP8883696 | 1996-03-18 | ||
JP29778696A JP2836020B2 (en) | 1996-03-18 | 1996-10-21 | Process for producing a processed yarn in which a composite rayon and silk fiber having anti-bacterial, deodorizing, mold-proof and insect-proof properties and far-infrared radiation properties are mixed or twisted and spun. |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09310235A JPH09310235A (en) | 1997-12-02 |
JP2836020B2 true JP2836020B2 (en) | 1998-12-14 |
Family
ID=26430179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29778696A Expired - Fee Related JP2836020B2 (en) | 1996-03-18 | 1996-10-21 | Process for producing a processed yarn in which a composite rayon and silk fiber having anti-bacterial, deodorizing, mold-proof and insect-proof properties and far-infrared radiation properties are mixed or twisted and spun. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2836020B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1266319C (en) * | 2004-08-04 | 2006-07-26 | 雷新琦 | Multi-component multifunction health-care yarn with kender, negative and medical stone and its health-care textile |
JP2007154392A (en) * | 2005-12-08 | 2007-06-21 | Ooyabu:Kk | Twisted yarn and method for producing the same, woven fabric and knitted fabric |
CN100507100C (en) * | 2006-06-29 | 2009-07-01 | 福建众和股份有限公司 | Calamine viscose fiber and preparation method and application thereof |
KR101895370B1 (en) * | 2017-01-24 | 2018-09-05 | (주)비피텍스 | Manufacturing method of antibiotic textile |
CN108560072A (en) * | 2018-03-30 | 2018-09-21 | 湖州益科纺织科技有限公司 | Antiseptic health care fiber silk and preparation method thereof |
US20210032782A1 (en) * | 2018-04-03 | 2021-02-04 | Hasetora Spinning Co., Ltd. | Blended Yarn, Knitted/Woven Body of Same, and Method for Manufacturing Said Knitted/Woven Body |
-
1996
- 1996-10-21 JP JP29778696A patent/JP2836020B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09310235A (en) | 1997-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60117534T2 (en) | COMPOSITION FOR REMOTE INFRARED RADIATION WITH EXCELLENT ANTISTATIC PROPERTIES AND FIBER AND TEXTILE PRODUCT BOTH THEREOF | |
JP2004519564A (en) | Active artificial cotton production method | |
JP2909028B2 (en) | A method for producing a processed yarn in which a composite rayon having antibacterial properties, deodorizing properties and insect repellent properties, and far-infrared radiation properties, and mixed or twisted with a milk protein fiber are spun. | |
JP2836020B2 (en) | Process for producing a processed yarn in which a composite rayon and silk fiber having anti-bacterial, deodorizing, mold-proof and insect-proof properties and far-infrared radiation properties are mixed or twisted and spun. | |
JP2022009122A (en) | Agricultural material and method for growing plant | |
KR100361928B1 (en) | Fiber manufacturing method | |
JP2579600B2 (en) | Method for producing rayon having antibacterial properties and deodorizing properties and having far-infrared radiation characteristics | |
JPH09176914A (en) | Synthetic fiber keeping deodorizing property and antibacterial property | |
JP3550106B2 (en) | Composite fiber structure | |
JP2879024B2 (en) | A method for producing rayon having far-infrared radiation properties, antibacterial properties, deodorizing properties, fungicidal properties and insect repellency, and having an antistatic effect | |
JP2876309B2 (en) | Method for producing rayon having antibacterial properties, deodorizing properties and insect repellent properties and having far-infrared radiation characteristics | |
KR101451335B1 (en) | An anti-bacteria functional healthful pillow and a manufacturing method theirof | |
KR930008252B1 (en) | Preparation of polypropylene filament non-woven fabric having superior antibacterial deodorant and infrared ray radial property | |
JPH0598564A (en) | Production of fiber structure having deodorizing and antibacterial property | |
KR20120089384A (en) | a cushion for pets comprising functional materials and manufacturing method thereof functional materials | |
JPH10167803A (en) | Composite ceramics having antibacterial, deodorizing, antimold and mothproof properties as well as far infrared ray radiating characteristic and its production | |
KR101713548B1 (en) | Manufacturing method of functional fiber and the fiber | |
KR20160106385A (en) | Manufacturing method of functional fiber and the fiber | |
KR101076672B1 (en) | The manufacturing method of functional textile | |
JPH1136189A (en) | Japanese paper having far infrared radiation characteristic, antimicrobial, deodorizing, mildewproof and insect repellent property and further antistatic property and its production | |
JP2794627B2 (en) | Bed pat | |
JPH03295848A (en) | Composite ceramics having deodorizing and antibacterial ability and its manufacture | |
JP2873212B2 (en) | Bed pat | |
WO2004016840A1 (en) | Functional product and functional fine powder for use in production thereof, and method for producing functional product | |
JP2822321B2 (en) | Composite ceramics having anti-bacterial, deodorizing, mold-proofing and insect-proofing properties while having far-infrared radiation characteristics, and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |