JP2831042B2 - Partial discharge monitoring device for oil-immersed transformer - Google Patents
Partial discharge monitoring device for oil-immersed transformerInfo
- Publication number
- JP2831042B2 JP2831042B2 JP19110089A JP19110089A JP2831042B2 JP 2831042 B2 JP2831042 B2 JP 2831042B2 JP 19110089 A JP19110089 A JP 19110089A JP 19110089 A JP19110089 A JP 19110089A JP 2831042 B2 JP2831042 B2 JP 2831042B2
- Authority
- JP
- Japan
- Prior art keywords
- oil
- partial discharge
- sound signal
- discharge
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Testing Relating To Insulation (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
- Protection Of Transformers (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は油入変圧器内部で発生した油中部分放電の
有害性を部分放電パルスの大きさおよびその持続性なら
びに超音波信号の有無によって判定して異常報知する部
分放電監視装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to the harmfulness of partial discharge in oil generated inside an oil-immersed transformer by determining the magnitude and duration of a partial discharge pulse and the presence or absence of an ultrasonic signal. The present invention relates to a partial discharge monitoring device that determines and notifies an abnormality.
〔従来の技術〕 油入変圧器内部で絶縁油が局部的に絶縁破壊するいわ
ゆる油中部分放電が発生すると、その発生部位で発生し
た放電パルスが巻線または巻線の対地静電容量を介して
タンクに流入するとともに、放電生成熱によって絶縁油
が気化する際生ずる超音波が絶縁油中を伝播してタンク
壁を振動させる。そこで、タンクの接地線にロゴスキー
コイルなどの放電パルスセンサを設けて放電パルスを検
出し、タンク壁に超音波センサを取り付けて超音波を電
気信号に変換して検出(以下音信号とよぶ)し、放電パ
ルスと音信号が超音波の伝播に要する時間差をもって検
出されたとき、油入変圧器内部で油中部分放電が発生し
たと判定する方法が広く知られている。また、複数の超
音波センサをタンク壁の互いに異なる位置に配してその
検出時間差と超音波の油入伝播送度とから油中部分放電
の発生位置を標定する方法も試みられている。[Prior art] When a so-called partial discharge in oil occurs, in which insulating oil is locally broken down in an oil-immersed transformer, a discharge pulse generated at the point where the discharge occurs occurs via a winding or a ground capacitance of the winding. The ultrasonic wave generated when the insulating oil is vaporized by the heat generated by the discharge propagates through the insulating oil and vibrates the tank wall. Therefore, a discharge pulse sensor such as a Rogowski coil is provided on the ground wire of the tank to detect discharge pulses, and an ultrasonic sensor is attached to the tank wall to convert ultrasonic waves into electric signals and detect them (hereinafter referred to as sound signals). It is widely known that when a discharge pulse and a sound signal are detected with a time difference required for propagation of ultrasonic waves, it is determined that a partial discharge in oil has occurred in the oil-immersed transformer. Further, a method has been attempted in which a plurality of ultrasonic sensors are arranged at different positions on a tank wall to determine the position of occurrence of partial discharge in oil based on the detection time difference and the ultrasonic oil-in-propagation transmission rate.
これらの従来方法は、油中部分放電現象を互いに性質
の異なる2種類の物理量としてとらえることにより、相
補的に検出の信頼度を高めるものであるが、放電パルス
の検出は外来ノイズによる障害を受けやすく、放電パル
スと外来ノイズの弁別には特段の経験およびノイズ除去
技術を必要とするという問題がある。また、発生した超
音波の大部分がタンクの内壁で反射されるためにタンク
壁を透過して超音波センサに入射する音響勢力が小さ
く、したがって絶縁油の循環ポンプ等から発生する超音
波ノイズの影響を受けやすいという問題がある。These conventional methods complementarily improve the reliability of detection by treating the partial discharge phenomenon in oil as two types of physical quantities having different properties. However, the detection of discharge pulses suffers from external noise. Therefore, there is a problem that discrimination between a discharge pulse and external noise requires special experience and noise removal technology. Also, since most of the generated ultrasonic waves are reflected on the inner wall of the tank, the acoustic force transmitted through the tank wall and incident on the ultrasonic sensor is small. There is a problem of susceptibility.
放電パルスの検出に障害を及ぼす外来ノイズとして
は、送電線等がアンテナとして機能して変圧器に侵入す
る放送波や通信波等の外来ノイズ、あるいはサイリスタ
変換器等が発する転流ノイズなどの比較的低レベルの外
来ノイズと、電力系統に設けられた遮断器,開閉器や真
空スイッチなどの開閉によって生ずる開閉サージなどの
高いレベルのスイッチングノイズとが考えられる。前者
の外来ノイズはその周波数成分の谷間となる周波数領域
が存在することに着目し、放電パルスの検出周波数を1.
8MHzから3.8MHz,好ましくは2.8MHzから3.1MHzに限定し
て検出することにより大幅に低減できることが本願出願
人等によって既に提案されている。しかしながら後者の
スイッチングノイズについてはそのノイズレベルが著し
く高く、かつその発生を予知できないため回避する方法
がなく、長期間部分放電を連続して監視しようとする場
合、スイッチングノイズに邪魔されて信頼性の高い監視
ができないという問題がある。As the external noise that interferes with the detection of the discharge pulse, a comparison can be made between external noise such as a broadcast wave or communication wave in which a transmission line or the like functions as an antenna and enters a transformer, or commutation noise generated by a thyristor converter. It is considered that external noise at a very low level and switching noise at a high level such as switching surge generated by switching of a circuit breaker, a switch, a vacuum switch, or the like provided in a power system. Focusing on the fact that the former extrinsic noise has a frequency region that is a valley of its frequency components, the detection frequency of the discharge pulse is set to 1.
It has already been proposed by the present applicant that the detection can be greatly reduced by detecting only from 8 MHz to 3.8 MHz, preferably from 2.8 MHz to 3.1 MHz. However, the latter switching noise has a remarkably high noise level, and its occurrence cannot be predicted. Therefore, there is no way to avoid it. There is a problem that high monitoring cannot be performed.
この発明の目的は、変圧器の内部絶縁に悪影響を及ぼ
す放電パルスのレベルやその持続性を考慮することによ
り、高いレベルのスイッチングサージの影響を回避して
監視精度を向上することにある。An object of the present invention is to improve the monitoring accuracy by avoiding the influence of a high level switching surge by taking into account the level of a discharge pulse that adversely affects the internal insulation of a transformer and its continuity.
上記課題を解決するために、この発明によれば、運転
中の油入変圧器内部の油中部分放電によって生ずる電流
パルスおよび超音波を放電パルスセンサおよび超音波セ
ンサで検出することにより前記油中部分放電をノイズと
弁別して監視するものにおいて、前記油中部分放電が毎
秒数個以上の発生頻度で発生したとき放電パルスを互い
に重なりを有する連続波形に変換して出力するピーク値
ホールド回路および音信号のピーク値ホールド回路と、
それぞれの出力信号をホトカプラ回路を介して受け外来
ノイズレベルによって決まるしきい値を超える信号のみ
を出力する一対の比較回路と、一対の比較回路それぞれ
の出力放電パルス信号および音信号の瞬時値を所定のサ
ンプリング周期ごとにディジタル信号に変換する一対の
A/D変換器と、一対のA/D変換器の出力ディジタル信号か
ら前記連続波形の持続時間,累積電荷値,および音信号
データ数をそれぞれ求める演算手段と、この演算手段の
持続時間値,累積電荷量があらかじめ定まる判定レベル
を超えかつ音信号データが1以上あるか,あるいは音信
号はないが累積電荷値がさらに高い所定レベルを超えた
とき前記油中部分放電が有害な連続期間に達したものと
判断して警報出力を指令する判断手段とを備えてなるも
のとする。In order to solve the above-mentioned problems, according to the present invention, a current pulse and an ultrasonic wave generated by a partial discharge in an oil inside an oil-immersed transformer during operation are detected by a discharge pulse sensor and an ultrasonic sensor, whereby the oil In a monitoring system in which partial discharge is distinguished from noise, when a partial discharge in oil occurs at a frequency of several or more per second, a peak value holding circuit that converts a discharge pulse into a continuous waveform overlapping each other and outputs the converted pulse and a sound. A peak value hold circuit for the signal,
A pair of comparison circuits that receive each output signal via a photocoupler circuit and output only a signal exceeding a threshold determined by an external noise level, and determine the instantaneous values of the output discharge pulse signal and the sound signal of each of the pair of comparison circuits A pair of signals that convert to digital signals every sampling period
An A / D converter; calculating means for determining the duration of the continuous waveform, the accumulated charge value, and the number of sound signal data from the output digital signals of the pair of A / D converters; When the accumulated charge exceeds a predetermined determination level and there is sound signal data of 1 or more, or when there is no sound signal but the accumulated charge value exceeds a predetermined level, the partial discharge in oil reaches a harmful continuous period. Judgment means for judging that a warning has been issued and instructing an alarm output.
上記手段は、交流油中部分放電が、最初10秒から数10
0秒の長い間隔をおいて間欠的に放電が発生する間欠期
間と、毎秒数個から数10個の頻度で放電が発生する連続
期間と、やがて放電が油浸絶縁紙中にまで伸びその分解
ガス中で高い頻度の気中放電パルスを発生しながら油浸
絶縁紙を侵食する侵食期間へと進展するものであり、こ
の間順次放電パルスの大きさQや発生頻度Nが増加する
とともに、発生超音波レベルも高くなることに着目して
構成されたものであり、従来方法が間欠期間の段階で放
電パルスおよび音信号を早期に検出し両者の検出時間差
の把握等を行っていたのに対し、この発明装置では連続
期間においてQ値やN値が増大した放電パルスおよび音
信号を所定時間,例えば1分間以内程度の時間範囲内の
累積値として把握することにより、油中部分放電の有害
性に基づく監視が可能になり、かつ放電パルスに比べて
遥かに低い頻度でしか侵入しない単発的なスイッチング
ノイズとの弁別を容易化することができる。The above means is that the partial discharge in AC oil is initially 10 seconds to several tens
An intermittent period in which discharges occur intermittently at long intervals of 0 seconds, a continuous period in which discharges occur at a frequency of several to several tens per second, and eventually the discharge extends into the oil-immersed insulating paper and decomposes The process advances to an erosion period in which the air-immersed insulating paper is eroded while generating a high frequency air discharge pulse in the gas. During this period, the magnitude Q and the frequency N of the discharge pulse sequentially increase, and While the sound wave level was also designed to be higher, the conventional method detected the discharge pulse and the sound signal early in the intermittent period and grasped the detection time difference between the two, etc. In the device of the present invention, the harmfulness of partial discharge in oil can be reduced by grasping the discharge pulse and the sound signal in which the Q value and the N value have increased in the continuous period as a cumulative value within a predetermined time period, for example, within about 1 minute. Based monitoring possible To become, and the discrimination between sporadic switching noise does not penetrate only at a much lower frequency than the discharge pulse can be facilitated.
以下この発明を実施例に基づいて説明する。 Hereinafter, the present invention will be described based on examples.
第1図はこの発明の実施例装置を示すブロック図、第
2図は実施例装置の要部の信号波形図、第3図は実施例
装置の判断手段を示すフローチャートである。図におい
て、供試油入変圧器1のタンク2にはその接地線3が貫
通する放電パルスセンサ4としての例えばロゴスキーコ
イルと、タンク外壁に密着するように取り付けられた超
音波センサ5とが設けられる。放電パルスセンサ4で検
出された放電パルス4Aは例えば3MHzを中心周波数とする
狭帯域の高周波増幅回路11で特定周波数成分が同調増幅
され、検波整流回路12で一方極性の包絡線パルスとな
り、そのピーク値がピーク値ホールド回路13で保持され
てその波尾が減衰時定数100mSオーダに引き伸ばされ、V
/i変換回路14でE/O変換に好適な電流値に変換され、ホ
トカプラ部15のE/O変換回路15Aおよび光ファイバ15Bに
より光信号として監視場所に伝送され、O/E変換回路15C
で電気信号に変換され、かつしきい値設定器17を有する
比較回路16でしきい値レベル17Sを超える放電パルス16S
のみが出力される。なおしきい値レベル17Sは例えば200
0PCに相応するレベルに設定され、このレベル以下に低
減された外来ノイズとしての高周波ノイズ,転流ノイズ
等が除去されるとともに、しきい値レベル17Sの設定は
変圧器1の巻線に既知の校正電荷を注入することにより
あらかじめ校正される。FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a signal waveform diagram of a main part of the embodiment, and FIG. 3 is a flowchart showing judgment means of the embodiment. In the figure, a tank 2 of a test oil-filled transformer 1 is provided with, for example, a Rogowski coil as a discharge pulse sensor 4 through which a ground wire 3 penetrates, and an ultrasonic sensor 5 attached in close contact with the tank outer wall. Provided. The discharge pulse 4A detected by the discharge pulse sensor 4 has a specific frequency component tuned and amplified by a narrow-band high-frequency amplifier circuit 11 having a center frequency of, for example, 3 MHz, and becomes a unipolar envelope pulse by a detection and rectification circuit 12, and its peak is obtained. The value is held by the peak value hold circuit 13 and its wave tail is stretched to an attenuation time constant of the order of 100 ms, and V
The current value is converted into a current value suitable for E / O conversion by the / i conversion circuit 14, and transmitted to the monitoring place as an optical signal by the E / O conversion circuit 15A and the optical fiber 15B of the photocoupler unit 15, and the O / E conversion circuit 15C
The discharge pulse 16S is converted to an electric signal by the comparator circuit 16 having the threshold setting unit 17 and exceeding the threshold level 17S.
Only output. The threshold level 17S is, for example, 200
0PC is set to a level corresponding to 0PC, high-frequency noise and commutation noise as external noise reduced to below this level are removed, and the setting of the threshold level 17S is known to the winding of the transformer 1. It is calibrated in advance by injecting a calibration charge.
一方超音波センサ5で検出され電気パルスに変換され
た音信号5Aは音信号増幅回路31で増幅された後、放電パ
ルス側と同様に構成されたピーク値ホールド回路33,V/i
変換回路34,ホトカプラ回路35を介して比較回路36に送
られ、しきい値設定器37の設定しきい値レベル37Sを超
える音信号36Sのみが出力され、例えば変圧器の循環ポ
ンプの超音波ノイズ等が除去される。On the other hand, the sound signal 5A detected by the ultrasonic sensor 5 and converted into an electric pulse is amplified by the sound signal amplifying circuit 31, and then the peak value hold circuit 33, V / i configured similarly to the discharge pulse side.
The signal is sent to the comparison circuit 36 via the conversion circuit 34 and the photocoupler circuit 35, and only the sound signal 36S exceeding the set threshold level 37S of the threshold setting device 37 is output, for example, the ultrasonic noise of the circulating pump of the transformer. Etc. are removed.
21,22はマイクロプロセッサ20の入口側に配された一
対のA/D変換器であり、A/D変換器21は比較回路16の出力
放電パルス信号16Sの瞬時値を数10mSオーダのサンプリ
ング周期τごとに1回ディジタル21Sに変換して出力
し、A/D変換器22に比較回路36の出力音信号36Sの瞬時値
を上記同様のサンプリング周期τごとに1回ディジタル
信号22Sに変換して出力する。Reference numerals 21 and 22 denote a pair of A / D converters arranged on the entrance side of the microprocessor 20, and the A / D converter 21 converts the instantaneous value of the output discharge pulse signal 16S of the comparison circuit 16 into a sampling period of the order of several tens of milliseconds. It is converted into a digital signal 21S once every τ and output, and the A / D converter 22 converts the instantaneous value of the output sound signal 36S of the comparison circuit 36 into a digital signal 22S once every sampling period τ as described above. Output.
第2図は実施例装置における放電パルスおよび音信号
のディジタル信号への変換状態を示すタイムチャートで
あり、放電パルスセンサ4が運転中の油入変圧器1内で
発生した連続期間に相応する油中部分放電を検出し放電
パルス信号4Aを出力した状態を示したものである。連続
期間中の油中部分放電は毎秒数個から数10個程度の頻度
で放電を繰り返すので、変圧器1の電圧波形1Aの1サイ
クルから数サイクルに1回程度の間隔でP1からP6で示す
放電パルス信号4Aが検出される。放電パルス信号4Aはピ
ーク値ホールド回路13でその波尾が減衰時定数100mS程
度に引き伸ばされるので、しきい値レベル17Sを有する
比較回路16の出力信号16Sは図のようにパルスP1,P2,P3
…等の波尾が互いに重なりを持ち、時間t0で立ち上が
り、しきい値レベル17Sに低下する時点tnで立ち下がる
連続した一連の波形を有する放電パルス信号16Sとな
る。A/D変換器21は放電パルス信号16Sの瞬時値を時刻t0
を起点にして数10mSオーダのサンプリング周期τごとに
1回ディジタル信号に変換するように構成され、図にお
いて1連の信号16Sの瞬時値(実際には電圧値であるが
前述のQ校正によりQ値とみなすことができる)Q1,Q2,
Q3…Q6がサンプルホールドされそれぞれディジタル信号
21Sに変換される。FIG. 2 is a time chart showing a state in which the discharge pulse and the sound signal are converted into a digital signal in the embodiment apparatus. The oil corresponding to the continuous period generated in the oil-immersed transformer 1 by the operation of the discharge pulse sensor 4 is shown. It shows a state where a middle partial discharge is detected and a discharge pulse signal 4A is output. Since oil partial discharge during the continuous period repeats discharge at a frequency of about several ten per second several, P 6 from P 1 at intervals of about once every several cycles from one cycle of the voltage waveform 1A of the transformer 1 Is detected. Since the discharge pulse signal 4A its wave tail peak value hold circuit 13 is stretched about the decay time constant 100 mS, the pulse P 1 as output signal 16S FIG comparison circuit 16 having a threshold level 17S, P 2 , P 3
... wave tail has overlap with one another, such as, rising at time t 0, the discharge pulse signal 16S has a series of waveforms which falls continuously at t n to decrease the threshold level 17S. A / D converter 21 time t 0 the instantaneous value of the discharge pulse signal 16S is
Is converted into a digital signal once every sampling period τ of the order of several tens of milliseconds from the starting point. In the figure, the instantaneous value of a series of signals 16S (actually a voltage value, but Q Can be regarded as values) Q 1 , Q 2 ,
Q 3 … Q 6 are sampled and held and each is a digital signal
Converted to 21S.
一方、放電パルス信号4Aと同時に発生した超音波は油
中の伝播時間Δt遅れて超音波センサ5によって検出さ
れ、比較回路36の出力音信号36Sの波形は図に示すよう
にサンプリング周期τの数倍程度続いてしきい値レベル
37S以下となる波形を示すので、A/D変換器22によって瞬
時値V1,V2,V3がディジタル信号22Sに変換される。On the other hand, the ultrasonic wave generated simultaneously with the discharge pulse signal 4A is detected by the ultrasonic sensor 5 with a delay of propagation time Δt in oil, and the waveform of the output sound signal 36S of the comparison circuit 36 is the number of sampling periods τ as shown in the figure. About twice the threshold level
Exhibits the following become waveform 37S, the A / D converter 22 is the instantaneous value V 1, V 2, V 3 is converted into a digital signal 22S.
ディジタル信号21Sは第1図に示す放電電荷の累積値
演算手段23で所定時間例えば数10秒間に連続してサンプ
リングされディジタル変換されたQ1,Q2,Q3…Q6等電荷量
Qi値の和ΣQiサンプリング周期τとの積τ(ΣQi)が連
続油中部分放電Qの累積値として求められる。また、累
積時間の演算手段24では例えば1分間内で連続してサン
プリングされたディジタル信号21Sの数Nとサンプリン
グ周期τとの積N・τが連続油中部分放電の累積持続時
間として演算される。さらに、音信号計数手段25では1
分間にサンプリングされディジタル変換された音信号22
Sの数nが計数される。Digital signal 21S is Q 1, Q 2, Q 3 ... Q 6 like the amount of charge accumulated value continuously by the operation unit 23 at a predetermined time, for example several tens of seconds is digitally converted sampled discharge charge shown in Figure 1
The product τ (ΣQ i ) of the sum of the Q i values ΣQ i and the sampling period τ is determined as the cumulative value of the continuous partial discharge Q in the oil. Further, the cumulative time calculating means 24 calculates the product N · τ of the number N of the digital signals 21S continuously sampled within one minute and the sampling period τ as the cumulative duration of the continuous partial discharge in oil. . Further, the sound signal counting means 25
Sound signal sampled and converted digitally for 22 minutes
The number n of S is counted.
判断手段26は連続油中部分放電の有害性を数10秒間を
判定周期として行うものであり、そのフローチャートを
第3図に示すように、まず演算手段23で得られたτ(Σ
Qi)値が所定のレベルAを越え、演算手段24で得られた
N・τ値が所定レベルBを越え、かつ音信号計数手段25
の音信号計数値が1以上であったとき、油入変圧器内部
で油中部分放電が連続的に発生したものと判断して異常
警報の出力を警報機27に指令するとともに、判定データ
を記録装置28に向けて出力する。また、音信号がなくて
もτ(ΣQi)値がさらに高いCレベルに達した場合に
は、気泡放電をともなう侵食期間に進展した可能性があ
るものと判断して異常が報知される。さらに、τ(Σ
Qi)値はAレベルを超えているがN・τ値がBレベル以
下であり、かつ音信号がある場合にもこれを油中部分放
電によるものと判断して異常が報知される。この場合、
単発的なスイッチングノイズもその大きさ(Q値)が著
しく大きくかつ波尾が引き伸ばされるので、τ(ΣQi)
値がAレベルを超えることがあるが、スイッチングノイ
ズは音信号を伴わないので上記判定によりスイッチング
ノイズと有害な放電との判別が可能になる。なお、τ
(ΣQi)値がAレベル以上Cレベル以下の範囲にあり、
N・τ値がBレベルを超えているが音信号が無い場合に
は再判定が指令され、数10秒間の新たなデータに基づい
て上述の判定が繰り返される。The judging means 26 judges the harmfulness of the partial discharge in the continuous oil with a judging cycle of several tens of seconds. As shown in the flowchart of FIG.
Q i ) The value exceeds a predetermined level A, the N · τ value obtained by the arithmetic means 24 exceeds the predetermined level B, and the sound signal counting means 25
When the sound signal count value is 1 or more, it is determined that partial discharge in oil has occurred continuously in the oil-immersed transformer, and the output of an abnormality alarm is commanded to the alarm 27, and the determination data is output. Output to the recording device 28. Further, when the τ (ΣQ i ) value reaches a higher C level even without a sound signal, it is determined that there is a possibility that the erosion period has progressed with bubble discharge, and an abnormality is notified. Furthermore, τ (Σ
Q i ) value exceeds the A level but the N · τ value is less than the B level, and if there is a sound signal, it is determined that this is due to partial discharge in oil and an abnormality is notified. in this case,
Since the magnitude (Q value) of the spontaneous switching noise is significantly large and the wave tail is elongated, τ (ΣQ i )
Although the value may exceed the A level, the switching noise does not accompany the sound signal, and thus the switching noise and the harmful discharge can be determined by the above determination. Note that τ
(ΣQ i ) The value is in the range from A level to C level,
If the N · τ value exceeds the B level but there is no sound signal, re-determination is instructed, and the above determination is repeated based on new data for several tens of seconds.
判定レベルA,B,C等は供試変圧器に侵入する外来ノイ
ズやスイッチングノイズの大きさによっても異なるが、
Aレベルはしきい値信号17Sの2倍程度以上、Bレベル
はサンプリング周期τの10倍程度以上,Cレベルはしきい
値レベル17Sの5倍から10倍程度が一つの目安となる。
すなわち、しきい値信号17Sのレベルを既知電荷の注入
校正によってみかけの放電電荷2000PC相当に設定した場
合、変圧器内部での真の放電電荷量は一般にその5倍程
度の10000PCオーダになると考えられている。したがっ
て、Aレベルの判定では1万から2万PCオーダの油中部
分放電が毎秒数個から10個程度発生する連続期間の初期
段階の状態をとらえて判定することができる。また、C
レベルの判定では数万PCオーダの油中部分放電が毎秒数
10個程度発生する連続期間のさらに進んだ状態をとらえ
て判定が行われることになり、この状態では持続時間N
・τ値も長くなるので音信号の助けを借りないでもスイ
ッチングノイズとの弁別を高い精度で行うことができ
る。前述の累積時間N・τがBレベルに到達せずに音信
号が検出される段階では、まだ有害性の判定に余裕があ
ると考えられる場合には再判定を指令し、その後の放電
の進展状況により異常の判定を行うよう構成してもよ
い。Judgment levels A, B, C, etc. vary depending on the magnitude of external noise or switching noise that enters the test transformer,
The A level is about twice or more the threshold signal 17S, the B level is about 10 times or more the sampling period τ, and the C level is about 5 to 10 times the threshold level 17S.
That is, if the level of the threshold signal 17S is set to the equivalent of the apparent discharge charge of 2000PC by injection charge calibration of the known charge, the true discharge charge inside the transformer is generally considered to be about 5 times the order of 10,000 PC. ing. Therefore, in the determination of the A level, the determination can be made by capturing the state of the initial stage of the continuous period in which about several to ten partial discharges in oil of the order of 10,000 to 20,000 PCs occur every second. Also, C
In the level judgment, partial discharges in oil of the order of tens of thousands of PCs per second
The determination is made by capturing a state further advanced in a continuous period in which about 10 occurrences occur, and in this state, the duration N
-Since the τ value becomes longer, it is possible to discriminate the switching noise with high accuracy without the aid of the sound signal. At the stage where the sound signal is detected without the accumulated time N · τ having reached the B level, if it is considered that there is still room for the harmfulness judgment, a re-judgment is instructed, and the progress of the subsequent discharge It may be configured to determine the abnormality depending on the situation.
実施例装置では比較回路16および36の出力信号をA/D
変換してマイクロプロセッサ20で信号処理するよう構成
した例を示したが、これは供試変圧器1が例えば無人変
電所に設置され、その監視を遠方の変電所,電力所で行
うことを想定し、データの伝送を容易化するよう構成し
たものであり、その必要がない場合、アナログ信号処理
するよう構成してよいことはいうまでもないことであ
る。In the embodiment, the output signals of the comparison circuits 16 and 36 are A / D
Although an example in which the signal is converted and processed by the microprocessor 20 is shown, it is assumed that the test transformer 1 is installed in an unmanned substation, for example, and that the monitoring is performed in a distant substation or power station. However, it is configured to facilitate data transmission, and needless to say, it may be configured to perform analog signal processing when unnecessary.
この発明は前述のように、放電パルス信号および音信
号をピーク値ホールド回路でピーク値を保持させるとと
もに波尾長を引き延ばし、比較回路にしきい値を設けて
外来ノイズを除去するようアナログ信号回路部分を構成
した。その結果、毎秒数個から数10個程度の放電が発生
する交油油中部分放電の連続期間では放電パルス信号の
波尾が相互に重なった一連の波形となり、単発的に侵入
するスイッチングノイズに比べてその持続時間が遥かに
長くなるのでノイズレベルが高い故に従来回避できなか
ったスイッチングノイズと放電パルスとの弁別が可能に
なる。そこで、放電パルス信号および音信号の瞬時値を
数10mSのサンプリング周期τでディジタル信号に変換
し、累積電荷の時間積τ(ΣQi)累積時間N・τ,およ
び音信号の計数値を数10秒を判定周期として求めて連続
油中部分放電の有害性を判定するよう構成したことによ
り、従来回避できなかった高いレベルのスイッチングノ
イズを累積時間N・τと音信号の有無によって弁別でき
るとともに、累積電荷の時間積とその累積時間とによっ
て油中部分放電の有害性に基づく異常監視ができる油入
変圧器の部分放電監視装置を提供することができる。ま
た、間欠期間の油中部分放電を検出して音信号との検出
時間差等を求める従来方法に比べ、放電電荷量およびそ
の発生頻度の高い連続期間で検出を行うので放電パルス
や音信号の検出感度はもとより、外来ノイズとの弁別も
容易化される利点が得られる。As described above, according to the present invention, the analog signal circuit portion is configured so that the peak value of the discharge pulse signal and the sound signal is held by the peak value hold circuit, the wave tail length is extended, and a threshold value is provided in the comparison circuit to remove external noise. Configured. As a result, during the continuous period of partial discharge in oil refueling, in which several to several tens of discharges occur per second, a series of waveforms in which the tails of the discharge pulse signals overlap each other, preventing switching noise that intrudes sporadically Since the duration is much longer than that, it is possible to discriminate the switching pulse from the switching noise which cannot be avoided conventionally because of the high noise level. Therefore, the instantaneous values of the discharge pulse signal and the sound signal are converted into digital signals at a sampling period τ of several tens of milliseconds, and the time product τ (Q i ) of the accumulated charge N 累積 τ and the count value of the sound signal are calculated as By determining the harmfulness of partial discharge in continuous oil by determining seconds as a determination cycle, high-level switching noise that could not be avoided conventionally can be discriminated by the accumulated time N · τ and the presence or absence of a sound signal, It is possible to provide a partial discharge monitoring device for an oil-immersed transformer that can perform abnormality monitoring based on the harmfulness of partial discharge in oil based on the time product of the accumulated charges and the accumulated time. Compared to the conventional method of detecting partial discharges in oil during intermittent periods and calculating the detection time difference from the sound signal, etc., detection is performed in a continuous period in which the amount of discharge charge and the frequency of occurrence are high, so detection of discharge pulses and sound signals In addition to the sensitivity, there is an advantage that discrimination from external noise is facilitated.
第1図はこの発明の実施例装置の構成を示すブロック
図、第2図は実施例装置の動作を示す要部のタイムチャ
ート、第3図は実施例装置の判別手順を示すフローチャ
ートである。 1:油入変圧器、4:放電パルスセンサ、5:超音波センサ、
11,31:増幅回路、13,33:ピーク値ホールド回路、15,35:
ホトカプラブロック図、16,36:比較回路、20:マイクロ
プロセッサ、21,22:A/D変換器、23,24,25:演算手段、2
6:判断手段、4A:放電パルス、16S,36S:比較回路の出力
信号、17S,37S:しきい値レベル、21S,22S:ディジタル信
号、τ:サンプリング周期。FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a time chart of the main part showing the operation of the embodiment, and FIG. 3 is a flowchart showing the procedure for determining the embodiment. 1: oil-filled transformer, 4: discharge pulse sensor, 5: ultrasonic sensor,
11,31: amplifier circuit, 13,33: peak value hold circuit, 15,35:
Photocoupler block diagram, 16, 36: comparison circuit, 20: microprocessor, 21, 22: A / D converter, 23, 24, 25: arithmetic means, 2
6: judgment means, 4A: discharge pulse, 16S, 36S: output signal of comparison circuit, 17S, 37S: threshold level, 21S, 22S: digital signal, τ: sampling period.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 川尻 幸一 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 審査官 下中 義之 (56)参考文献 特開 平2−227657(JP,A) 特開 平2−22569(JP,A) 特開 昭62−194475(JP,A) 特開 昭60−69570(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01R 31/12 G01R 31/00────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Kawajiri 1-1-1, Tanabe-shinda, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. Examiner Yoshiyuki Shimonaka (56) References JP-A-2-227657 (JP) JP-A-2-22569 (JP, A) JP-A-62-194475 (JP, A) JP-A-60-69570 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB Name) G01R 31/12 G01R 31/00
Claims (1)
よって生ずる電流パルスおよび超音波を放電パルスセン
サおよび超音波センサで検出することにより前記油中部
分放電をノイズと弁別して監視するものにおいて、前記
油中部分放電が毎秒数個以上の発生頻度で発生したとき
放電パルスを互いに重なりを有する連続波形に変換して
出力するピーク値ホールド回路および音信号のピーク値
ホールド回路と、それぞれの出力信号をホトカプラ回路
を介して受け外来ノイズレベルによって決まるしきい値
を超える信号のみを出力する一対の比較回路と、一対の
比較回路それぞれの出力放電パルス信号および音信号の
瞬時値を所定のサンプリング周期ごとにディジタル信号
に変換する一対のA/D変換器と、一対のA/D変換器の出力
ディジタル信号から前記連続波形の持続時間,累積電荷
値,および音信号データ数をそれぞれ求める演算手段
と、この演算手段の持続時間値,累積電荷量があらかじ
め定まる判定レベルを超えかつ音信号データが1以上あ
るか,あるいは音信号はないが累積電荷値がさらに高い
所定レベルを超えたとき前記油中部分放電が有害な連続
期間に達したものと判断して警報出力を指令する判断手
段とを備えてなることを特徴とする油入変圧器の部分放
電監視装置。1. A discharge pulse sensor and an ultrasonic sensor detect a current pulse and an ultrasonic wave generated by a partial discharge in oil inside an oil-immersed transformer during operation to monitor the partial discharge in oil from noise. In the thing, when the partial discharge in oil occurs at a frequency of several or more occurrences per second, a peak value hold circuit and a peak value hold circuit of a sound signal that convert and output a discharge pulse into a continuous waveform having an overlap with each other, and And a pair of comparison circuits that receive only the signal exceeding a threshold determined by the external noise level via a photocoupler circuit, and output instantaneous values of the output discharge pulse signal and the sound signal of each of the pair of comparison circuits to a predetermined value. A pair of A / D converters that convert to digital signals at each sampling period, and a pair of A / D converter output digital signals Calculating means for calculating the duration of the continuous waveform, the accumulated charge value, and the number of sound signal data, respectively, and determining whether the duration value and the accumulated charge amount of the calculating means exceed a predetermined determination level and there is one or more sound signal data. Or a judgment means for judging that the partial discharge in oil has reached a harmful continuous period when there is no sound signal but the accumulated charge value exceeds a higher predetermined level, and instructing an alarm output. A partial discharge monitoring device for an oil-filled transformer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19110089A JP2831042B2 (en) | 1989-07-24 | 1989-07-24 | Partial discharge monitoring device for oil-immersed transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19110089A JP2831042B2 (en) | 1989-07-24 | 1989-07-24 | Partial discharge monitoring device for oil-immersed transformer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0356028A JPH0356028A (en) | 1991-03-11 |
JP2831042B2 true JP2831042B2 (en) | 1998-12-02 |
Family
ID=16268857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19110089A Expired - Lifetime JP2831042B2 (en) | 1989-07-24 | 1989-07-24 | Partial discharge monitoring device for oil-immersed transformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2831042B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103645396A (en) * | 2013-11-25 | 2014-03-19 | 泉州市嘉凯机电科技有限公司 | Method and device for low-voltage arc fault detection |
KR20220089422A (en) * | 2020-12-21 | 2022-06-28 | (주)에이피엠테크놀러지스 | Partial discharge monitoring system and patial discharge monitoring method |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100482305B1 (en) * | 2001-06-28 | 2005-04-13 | 한국전력공사 | Ultrasonic On-line Detector for Partial Discharge in Transformer |
JP5204558B2 (en) * | 2008-06-06 | 2013-06-05 | 三菱電機株式会社 | Discharge measuring device for impulse test and discharge discrimination method |
TWM478157U (en) * | 2013-09-24 | 2014-05-11 | Tatung Co | Intelligent oil-filled transformer online discharge diagnosis and monitoring device |
CN106526372A (en) * | 2016-10-27 | 2017-03-22 | 成都亚联科科技有限公司 | Automatic transformer function characteristic detection device |
CN108037410B (en) * | 2017-11-24 | 2021-05-14 | 华北电力大学 | Partial discharge ultrasonic positioning method and device based on controllable response power |
CN114167236B (en) * | 2021-11-30 | 2024-11-01 | 大唐东北电力试验研究院有限公司 | Multi-shape adaptive external partial discharge detection device and detection method |
CN117872068B (en) * | 2024-03-11 | 2024-05-31 | 国电南瑞科技股份有限公司 | Method and system for identifying serious discharge defects in oil immersed equipment |
-
1989
- 1989-07-24 JP JP19110089A patent/JP2831042B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103645396A (en) * | 2013-11-25 | 2014-03-19 | 泉州市嘉凯机电科技有限公司 | Method and device for low-voltage arc fault detection |
CN103645396B (en) * | 2013-11-25 | 2018-03-09 | 泉州市嘉凯机电科技有限公司 | Low-voltage arc fault detection method and device |
KR20220089422A (en) * | 2020-12-21 | 2022-06-28 | (주)에이피엠테크놀러지스 | Partial discharge monitoring system and patial discharge monitoring method |
KR102413919B1 (en) | 2020-12-21 | 2022-06-29 | (주)에이피엠테크놀러지스 | Partial discharge monitoring system and patial discharge monitoring method |
Also Published As
Publication number | Publication date |
---|---|
JPH0356028A (en) | 1991-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0679261B1 (en) | Method and apparatus for measuring partial discharges in cables | |
US7165014B2 (en) | Partial discharge monitoring apparatus and partial discharge remote monitoring system for rotating electric machines | |
JP2831042B2 (en) | Partial discharge monitoring device for oil-immersed transformer | |
JP2009229347A (en) | Partial discharge detector by electromagnetic wave detection, and its detection method | |
US6420879B2 (en) | System and method for measurement of partial discharge signals in high voltage apparatus | |
KR0163350B1 (en) | Method and apparatus for radio frequency signal detection | |
JP6959859B2 (en) | Insulation deterioration diagnosis device and insulation deterioration location identification device | |
JP2001249156A (en) | Insulation diagnostic device | |
JP3176000B2 (en) | Partial discharge detection device for switchgear | |
JPH04194762A (en) | Device for monitoring partial discharge of electric apparatus | |
JP3124359B2 (en) | Method and apparatus for measuring partial discharge of power cable | |
JP3682930B2 (en) | Insulation deterioration diagnosis device | |
JP2000346901A (en) | Device for detecting partial discharge of electric apparatus and detector therefor | |
Takahashi | Diagnostic methods for gas-insulated substations | |
CN114397540A (en) | Multi-dimensional partial discharge detection method and device for switch cabinet | |
CN116973702B (en) | Signal identification method and system applied to GIS partial discharge test | |
JPS5510884A (en) | Method of detecting looseness of winding for electric apparatus | |
JP4094469B2 (en) | Partial discharge measuring device and signal processing circuit used in the device | |
JP3354491B2 (en) | External noise removal method | |
JPH02285269A (en) | Partial discharge monitor apparatus of gas insulated machinery | |
JPH11281703A (en) | Method for judging partial discharge | |
JPH06300812A (en) | Method for detecting partial discharge of high voltage device | |
JPH0533608U (en) | KYUVLET's insulation abnormality detector | |
JPH04194675A (en) | Apparatus for monitoring partial discharge of electric machinery | |
JPS585677A (en) | Detecting method for partial discharge of power cable |