JP2827514B2 - Photoelectric conversion device - Google Patents
Photoelectric conversion deviceInfo
- Publication number
- JP2827514B2 JP2827514B2 JP2403722A JP40372290A JP2827514B2 JP 2827514 B2 JP2827514 B2 JP 2827514B2 JP 2403722 A JP2403722 A JP 2403722A JP 40372290 A JP40372290 A JP 40372290A JP 2827514 B2 JP2827514 B2 JP 2827514B2
- Authority
- JP
- Japan
- Prior art keywords
- superlattice structure
- photoelectric conversion
- conversion device
- island
- transmitting substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Light Receiving Elements (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は光電変換装置に係り、特
に超格子構造部を有する光電変換装置に関する。更に詳
細に述べると、化合物半導体のガリウム砒素(GaAs)を
量子井戸層、アルミニウム・ガリウム・砒素(AlGaAs )
を障壁層とするGaAs/AlGaAs 等のエネルギーバンドギャ
ップの広い半導体材料を用いて、量子井戸内のintersub
band遷移と共鳴した赤外線によって、基底状態から励起
された電子が障壁層の強電界によって薄く成っている上
部をトンネル電流として流れ、超格子構造部の電気伝導
度が変わることを利用した赤外線検知用の光電変換装置
に於いて、感度特性に優れ、赤外電荷転送デバイス(IRC
CD) のような多画素を有する光電変換素子を実現するた
めの光電変換装置の構造に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion device, and more particularly to a photoelectric conversion device having a superlattice structure. More specifically, the compound semiconductor gallium arsenide (GaAs) is made of a quantum well layer, and aluminum gallium arsenide (AlGaAs).
Using a semiconductor material with a wide energy band gap such as GaAs / AlGaAs with a
For infrared detection utilizing the fact that electrons excited from the ground state flow as a tunnel current in the upper part, which is thinned by the strong electric field of the barrier layer, and change the electrical conductivity of the superlattice structure due to infrared rays that resonate with the band transition. In the photoelectric conversion device, excellent in the sensitivity characteristics, infrared charge transfer device (IRC
The present invention relates to a structure of a photoelectric conversion device for realizing a photoelectric conversion element having multiple pixels such as CD).
【0002】[0002]
【従来の技術】従来のintersubband遷移を用いた光電変
換素子は、入射した赤外線のうち、超格子面に平行な赤
外線の成分のみが、intersubband遷移と共鳴して検知さ
れるため、通常の光電変換装置のように検知素子に垂直
に赤外線を入射すると、赤外線が検知できないため、図
10に示すように正四面体の赤外線を透過する光透過基体
5の底面に、化合物半導体のガリウム砒素(GaAs)層を
量子井戸層、アルミニウム・ガリウム・砒素(AlGaAs)
層を障壁層として交互に積層した超格子構造部1の超格
子面1Aに対して斜めから矢印Aに示すように赤外線を入
射するようにしている。2. Description of the Related Art In a conventional photoelectric conversion element using an intersubband transition, only an infrared component parallel to a superlattice surface among incident infrared rays is detected in resonance with the intersubband transition. If infrared light is vertically incident on the sensing element like a device, infrared light cannot be detected.
As shown in FIG. 10, a gallium arsenide (GaAs) layer of a compound semiconductor is a quantum well layer on the bottom surface of a light transmitting substrate 5 that transmits infrared rays of a tetrahedron, and aluminum gallium arsenide (AlGaAs) is provided.
As shown by an arrow A, infrared rays are incident on the superlattice surface 1A of the superlattice structure 1 in which the layers are alternately stacked as barrier layers.
【0003】そして各々の超格子構造部1からの信号
は、超格子構造部1上にインジウム( In) より成るバン
プ(柱) 3を設置して、同じく信号入力部にInのバンプ
を設置したSiより成る信号処理チップ4とフェースボン
ディングし、電気的接続を採って信号処理チップでマル
チプレキシングして読み出すようにしている。このよう
な従来構造の光電変換装置を用いて、赤外線を検知する
には、電極間に高電圧を印加することが必要であり、そ
のため、多くの暗電流が流れ易く、この暗電流を抑制す
るために、動作温度を液体窒素温度以下に低下したり、
障壁層の高さや幅を増大させた構造を採っている。Signals from the respective superlattice structures 1 are provided by placing bumps (pillars) 3 made of indium (In) on the superlattice structure 1 and similarly mounting In bumps on the signal input portions. Face bonding is performed with the signal processing chip 4 made of Si, electrical connection is taken, and the signal processing chip multiplexes and reads. In order to detect infrared rays using a photoelectric conversion device having such a conventional structure, it is necessary to apply a high voltage between the electrodes, so that a large amount of dark current easily flows, and this dark current is suppressed. To lower the operating temperature below the liquid nitrogen temperature,
The structure is such that the height and width of the barrier layer are increased.
【0004】[0004]
【発明が解決しようとする課題】図10に示すような従来
の構造の光電変換装置に於いては、赤外映像を得ようと
すると、赤外線の光軸に対して焦点面(検知素子面) 、
つまり超格子面1Aが垂直に成らないため、複雑な光学系
が必要となる欠点がある。またこのような構造の装置
は、障壁層となるAlGaAs層の組成は変動させて積層して
いないために、共鳴する赤外線の波長が限定されるため
に、図11に示すような分光感度スペクトル曲線6と成
り、検知できる波長域が狭い難点がある。In a photoelectric conversion device having a conventional structure as shown in FIG. 10, when an infrared image is to be obtained, a focal plane (detection element surface) is required with respect to the optical axis of the infrared light. ,
That is, since the superlattice plane 1A is not perpendicular, there is a disadvantage that a complicated optical system is required. In the device having such a structure, since the composition of the AlGaAs layer serving as the barrier layer is not varied and laminated, the wavelength of the resonating infrared rays is limited. 6, which has the disadvantage that the wavelength range that can be detected is narrow.
【0005】また赤外線を超格子面1Aに対して平行に入
射させることが出来ないので、入射した赤外線の一部し
か利用できず、光電変換効率が低下する問題もある。ま
たこの利用されなかった赤外線は、InのバンプやSiの信
号処理チップの表面で反射して迷光となり、赤外映像に
ゴーストを生じる等の問題を発生する。また超格子構造
部にバイアス電圧を掛けると暗電流が増加し、信号・雑
音比が低下するという問題を解決するため、動作温度を
液体窒素温度以下に下げようとすると、装置の大型化や
コストアップを招く問題があり、また障壁層の高さや幅
を増加させる方法は応答波長が短波長側にシフトする問
題がある。In addition, since infrared rays cannot be made incident on the superlattice surface 1A in parallel, only a part of the incident infrared rays can be used, and there is a problem that the photoelectric conversion efficiency is reduced. The unused infrared rays are reflected on the surface of the In bump or the Si signal processing chip and become stray light, which causes a problem such as generation of a ghost in the infrared image. Applying a bias voltage to the superlattice structure increases the dark current and lowers the signal-to-noise ratio. In addition, there is a problem that the response wavelength shifts to a shorter wavelength side in the method of increasing the height and width of the barrier layer.
【0006】また電荷蓄積型の光電変換装置の常とし
て、多くの信号電荷を蓄積するために広い面積の信号電
荷蓄積部が必要であるが、実際には信号処理チップ上に
確保できる面積は限られているため、結果的に感度が制
限される問題がある。また検知できる波長域が狭いとい
う点も、入射した赤外線の一部しか利用できず、光電変
換効率が低下することになり、好ましくない。[0006] In addition, a charge storage type photoelectric conversion device usually requires a signal charge storage section having a large area to store a large amount of signal charges. However, in practice, the area that can be secured on a signal processing chip is limited. Therefore, there is a problem that the sensitivity is consequently limited. Also, the fact that the wavelength range that can be detected is narrow is not preferable because only a part of the incident infrared light can be used and the photoelectric conversion efficiency decreases.
【0007】本発明は赤外線を超格子面に対してできる
だけ、平行に入射するようにしながら、光軸に対して焦
点面( 検知素子面) が垂直に構成できる超格子型光電変
換装置を目的としており、超格子構造部で吸収されなか
った赤外線が迷光と成らない超格子型光電変換装置を目
的とする。更に本発明は、暗電流を減らすために、大き
い超格子構造部を有する光電変換装置と同等の機能を有
しながら、超格子構造部の面積を微小化した超格子型光
電変換装置の提供を目的としており、併せて超格子構造
部の量子井戸層の厚さや、障壁層の障壁高さや、厚さ等
を超格子の形成途中で変えることにより所望の分光感度
やスペクトルを有する超格子型光電変換装置を提供する
ことを目的とする。An object of the present invention is to provide a superlattice-type photoelectric conversion device in which a focal plane (detection element surface) can be configured to be perpendicular to an optical axis while making infrared rays incident on a superlattice plane as parallel as possible. It is another object of the present invention to provide a superlattice-type photoelectric conversion device in which infrared rays not absorbed by the superlattice structure do not become stray light. Furthermore, the present invention provides a superlattice-type photoelectric conversion device in which the area of the superlattice structure is miniaturized while having the same function as a photoelectric conversion device having a large superlattice structure in order to reduce dark current. In addition, by changing the thickness of the quantum well layer of the superlattice structure portion, the barrier height of the barrier layer, the thickness, etc. during the formation of the superlattice, a superlattice type photoelectric device having a desired spectral sensitivity and spectrum can be obtained. It is an object to provide a conversion device.
【0008】[0008]
【課題を解決するための手段】上記目的を達成する本発
明の光電変換装置は、異なる半導体の薄層を交互に複数
回堆積させた超格子構造部を有し、該超格子構造で赤外
線を検知する光電変換装置に於いて、検知しようとする
波長の赤外線が透過する光透過基板上に超格子構造部が
島状に形成され、該島状の超格子構造部の周辺端面の少
なくとも一つの端面が超格子構造の超格子面に対して30
度より60度迄の角度を有する傾斜面で有り、該傾斜面が
光透過基板側から入射した赤外線を反射する反射面と成
っていることを特徴とするものである。According to the present invention, there is provided a photoelectric conversion device having a superlattice structure in which thin layers of different semiconductors are alternately deposited a plurality of times. In the photoelectric conversion device to be detected, a superlattice structure is formed in an island shape on a light transmitting substrate through which infrared light having a wavelength to be detected is transmitted, and at least one of peripheral end surfaces of the island-shaped superlattice structure is formed. 30 with respect to the superlattice surface of the superlattice structure
An inclined surface having an angle from 60 degrees to 60 degrees, and the inclined surface is a reflecting surface that reflects infrared light incident from the light transmitting substrate side.
【0009】また上記島状の超格子構造部の周辺端面の
うち、該反射面に対向する端面に、超格子構造部側から
伝播した赤外線が透過しない不透明膜、或いは超格子構
造部側から伝播した赤外線が透過せず、かつ反射もし難
い無反射膜を設けたことを特徴とする。また上記島状の
超格子構造部の光透過基板に対向する面と、該光透過基
板が露出している島状の超格子構造部の間隙部の、少な
くとも片方に赤外線が透過せず、かつ反射もし難い無反
射膜を設けたことを特徴とする。Also, of the peripheral end surfaces of the island-shaped superlattice structure, the end surface facing the reflection surface is provided with an opaque film through which infrared light propagated from the superlattice structure is not transmitted or from the superlattice structure. A non-reflective film that does not transmit the reflected infrared light and hardly reflects the light. In addition, infrared light does not pass through at least one of the surface of the island-shaped superlattice structure facing the light-transmitting substrate and the gap of the island-shaped superlattice structure where the light-transmitting substrate is exposed, and It is characterized in that a non-reflective film that is hardly reflected is provided.
【0010】また前記無反射膜が光透過基板側より見
て、導電性半透明薄膜層、誘電体による透明層、金属に
よる反射層の3層によって形成されており、該導電性半
透明薄膜層を、超格子構造部で赤外線を検知するために
必要な個別電極、或いは接地電極とし、或いは両者の電
極の一部として用いることを特徴とする。また島状の超
格子構造部を形成した面の反対側に、前記光透過基板に
平行となるように、表面に複数の凸部を有する光透過板
を配置したことを特徴とする。また前記島状の超格子構
造部を形成した面とは反対側の光透過基板の表面に複数
の凸部を形成したことを特徴とする。The anti-reflection film is formed by three layers of a conductive semi-transparent thin film layer, a transparent layer made of a dielectric, and a reflective layer made of a metal when viewed from the light transmitting substrate side. Is used as an individual electrode or a ground electrode necessary for detecting infrared rays in the superlattice structure portion, or as a part of both electrodes. Further, a light transmitting plate having a plurality of convex portions on the surface is arranged on the opposite side to the surface on which the island-shaped superlattice structure is formed, so as to be parallel to the light transmitting substrate. Further, a plurality of projections are formed on the surface of the light transmitting substrate opposite to the surface on which the island-shaped superlattice structure is formed.
【0011】また前記凸部が蒲鉾状に波型に成っている
ことを特徴とする。また前記島状の超格子構造部を形成
した側の、光透過基板の表面の島状の超格子構造部の間
隙部に、超格子構造部で検知した赤外線によって発生し
た信号電荷を蓄積するための信号電荷蓄積部と、該信号
電荷蓄積部の信号電荷を順次読み出すためのライン切り
換え用スィッチング回路を設けたことを特徴とする。[0011] Further, the present invention is characterized in that the convex portion is formed in a wavy shape in a semicylindrical shape. Further, in order to accumulate signal charges generated by infrared rays detected by the superlattice structure portion, in a gap portion between the island-like superlattice structure portion on the surface of the light transmitting substrate on the side where the island-like superlattice structure portion is formed. And a line switching switching circuit for sequentially reading out the signal charges in the signal charge storage unit.
【0012】また前記超格子構造部の量子井戸層の厚
さ、障壁層の障壁高さや厚さを超格子構造部の形成途中
で連続的に変化させることで、検知できる赤外線の波長
帯域を拡大したことを特徴とするものである。In addition, by continuously changing the thickness of the quantum well layer of the superlattice structure portion and the barrier height and thickness of the barrier layer during the formation of the superlattice structure portion, the wavelength band of infrared light that can be detected is expanded. It is characterized by having done.
【0013】[0013]
【作用】本発明の装置は図1に示すように、検知しよう
とする波長の赤外線が透過する光透過基板11上に超格子
構造部12が島状に形成されており、その島状の超格子構
造部12の周辺端面13の一面を、超格子構造部12の超格子
面14に対してθ=45度の角度を持つ傾斜面13にしてこの
傾斜面13を、光透過基板11側から矢印Aに示すように入
射した赤外線を反射する反射面13として用いるものとす
る。In the apparatus of the present invention, as shown in FIG. 1, a superlattice structure 12 is formed in an island shape on a light transmitting substrate 11 through which infrared light having a wavelength to be detected is transmitted. One surface of the peripheral end surface 13 of the lattice structure portion 12 is formed as an inclined surface 13 having an angle of θ = 45 degrees with respect to the superlattice surface 14 of the superlattice structure portion 12, and the inclined surface 13 is formed from the light transmitting substrate 11 side. As shown by an arrow A, it is used as a reflection surface 13 that reflects the incident infrared light.
【0014】従って、図1よりこの反射面13に光透過基
板11側から入射した赤外線は、超格子面14に対して略平
行に超格子構造部12に入射するようになる。また検知素
子面は入射赤外光の光軸に対して垂直な面に構成できる
ようになる。また図2に示すように、反射面13に対向し
た端面に不透明膜16、或いは無反射膜35を形成し、超格
子構造部12の光透過基板11に対向する面と、島状の超格
子構造部12の間隙で光透過基板11面が露出している箇所
についても無反射膜35を形成している。そのため、超格
子構造部12で吸収されなかった赤外線が隣接する超格子
構造部に入射したり、超格子構造部以外に入射した赤外
線がSiの信号処理チップ等で反射して迷光となるのを防
いでいる。Accordingly, as shown in FIG. 1, the infrared light incident on the reflecting surface 13 from the light transmitting substrate 11 side is incident on the superlattice structure 12 substantially parallel to the superlattice surface 14. Further, the sensing element surface can be configured as a surface perpendicular to the optical axis of the incident infrared light. As shown in FIG. 2, an opaque film 16 or a non-reflective film 35 is formed on the end surface facing the reflection surface 13 so that the surface of the superlattice structure portion 12 facing the light transmitting substrate 11 and the island-like super lattice The anti-reflection film 35 is also formed at a position where the surface of the light transmitting substrate 11 is exposed in the gap between the structural parts 12. Therefore, infrared rays that are not absorbed by the superlattice structure part 12 are incident on the adjacent superlattice structure part, or infrared rays incident on parts other than the superlattice structure part are reflected by the Si signal processing chip or the like and become stray light. I'm preventing.
【0015】更に図3に示すように、無反射膜35を光透
過基板11側から見て、金属薄膜等による導電性半透明薄
膜層17、誘電体等による透明層18、金属等による反射層
19の3層構造で形成することにより、導電性半透明薄膜
層17で反射した赤外線と反射層19で反射した赤外線を干
渉効果で打ち消し合うようにすることができるので、赤
外線の反射を防止することができる。Further, as shown in FIG. 3, the anti-reflection film 35 is viewed from the light transmitting substrate 11 side, and a conductive semi-transparent thin film layer 17 of a metal thin film, a transparent layer 18 of a dielectric or the like, a reflection layer of metal or the like.
By forming the three-layer structure of 19, the infrared light reflected by the conductive translucent thin film layer 17 and the infrared light reflected by the reflective layer 19 can be canceled by the interference effect, so that the reflection of infrared light is prevented. be able to.
【0016】また透明層18の厚さで両反射光の位相差を
180 度に調節し、導電性半透明薄膜層17の厚さで、この
膜中の赤外線強度の減衰を調節することで、両反射光の
強度を一致させることにより、両反射光が干渉で打ち消
し合うようにすることができる。また上記の導電性半透
明薄膜層17は個別電極としても使用可能である。また図
4(a) に示すように、島状の超格子構造部12を形成した
面の反対側に光透過基板11に平行になるようにして、表
面に複数の凸部21を有する光透過板22を配置するか、或
いは図4(b) に示すように、超格子構造部12を形成した
面とは反対側の光透過基板11の表面に複数の凸部21を形
成している。The phase difference between the two reflected lights is determined by the thickness of the transparent layer 18.
By adjusting the angle to 180 degrees and adjusting the attenuation of the infrared intensity in this film with the thickness of the conductive semi-transparent thin film layer 17, the intensity of both reflected light is matched, so that both reflected light are canceled by interference. Can fit. Further, the conductive semi-transparent thin film layer 17 can also be used as an individual electrode. As shown in FIG. 4 (a), the light transmitting substrate 11 has a plurality of projections 21 on the surface opposite to the surface on which the island-shaped superlattice structure 12 is formed so as to be parallel to the light transmitting substrate 11. A plate 22 is provided, or a plurality of convex portions 21 are formed on the surface of the light transmitting substrate 11 opposite to the surface on which the superlattice structure 12 is formed, as shown in FIG.
【0017】このような構造にすると、入射した赤外線
を超格子構造部12の微小な反射面13に集光するようにな
るので、入射した赤外線を効率良く超格子構造部12に導
入することができ、焦点内にまばらに配置されている受
光部を、あたかも焦点面の大部分を占めているように機
能させることができる。つまり検知素子間の不感領域を
殆どなくすることができる。With such a structure, the incident infrared light is focused on the minute reflecting surface 13 of the superlattice structure portion 12, so that the incident infrared light can be efficiently introduced into the superlattice structure portion 12. Thus, the light receiving sections sparsely arranged in the focal point can function as if they occupy most of the focal plane. That is, the dead area between the sensing elements can be almost eliminated.
【0018】また図5に示すように、凸部21を底部が矩
形となるようにして蒲鉾状に形成すると、反射面13は赤
外線の入射側から見て正方形に近い矩形に見えるように
出来ることから、不感領域を最小限にすることが可能と
なる。また上記の構造の導入により、超格子構造部12は
小さくとも良くなるので、一定バイアス電圧を掛けた場
合の暗電流は、超格子構造部12の面積に略反比例して低
減することが可能となる。As shown in FIG. 5, when the convex portion 21 is formed in a semi-cylindrical shape with a rectangular bottom portion, the reflecting surface 13 can be made to look like a rectangle close to a square when viewed from the infrared ray incident side. Therefore, the dead area can be minimized. In addition, by introducing the above structure, the superlattice structure 12 can be made smaller or smaller, so that the dark current when a constant bias voltage is applied can be reduced substantially in inverse proportion to the area of the superlattice structure 12. Become.
【0019】このようにすると、超格子構造部12は小さ
くても良く成るので、図6に示すように、拡がった超格
子構造部12の間隙部に、蓄積ゲート電極23、絶縁膜24、
ポテンシャル井戸25で構成されたキャパシタ等の複数の
信号電荷蓄積部26を形成し、超格子構造部12で検知した
赤外線によって発生した信号電荷を蓄積することが可能
となる。By doing so, the superlattice structure 12 can be made smaller, and as shown in FIG. 6, the storage gate electrode 23, the insulating film 24,
A plurality of signal charge accumulating portions 26 such as capacitors constituted by the potential wells 25 are formed, and signal charges generated by infrared rays detected by the superlattice structure portion 12 can be accumulated.
【0020】また図示しないが、MOSスィッチングア
レイ等のライン選択用回路に接続されて、信号の読み出
しラインを切り換えるために、スィッチング回路を備え
ることも可能となり、信号処理チップ側の構造を簡単に
することもできる。特に図7に示すように、バンプを使
用せずに、前記超格子構造部12に対向して信号処理チッ
プを配置することが、不要となり、赤外線を検知する超
格子構造部12の周辺に、ライン選択用回路とマルチプレ
クサ回路等を配置するだけで、信号の読み出しが可能と
なるため、検知装置の構造を大幅に簡略化することが可
能となる。Although not shown, it is possible to provide a switching circuit connected to a line selection circuit such as a MOS switching array for switching a signal read line, thereby simplifying the structure on the signal processing chip side. You can also. In particular, as shown in FIG. 7, it is not necessary to dispose a signal processing chip in opposition to the superlattice structure 12 without using bumps, and around the superlattice structure 12 that detects infrared rays, Since the signal can be read only by arranging the line selection circuit, the multiplexer circuit, and the like, the structure of the detection device can be greatly simplified.
【0021】また図8に示すように超格子構造部の超格
子の形成過程で、GaAsより成る量子井戸層31の厚さや、
Ga1-x Alx As層よりなる障壁層32の高さや、厚さ等を形
成途中で連続的に変化させた本発明の装置では、最大応
答波長(λp ) が量子井戸層の厚さや、障壁層の障壁高
さや厚さによって制御可能なために、図9に示すような
分光感度特性曲線41になり、入射した赤外線を効率良く
光電変換することのできる光電変換装置が得られる。。As shown in FIG. 8, in the process of forming the superlattice of the superlattice structure, the thickness of the quantum well layer 31 made of GaAs,
In the device of the present invention in which the height, the thickness, and the like of the barrier layer 32 composed of the Ga 1-x Al x As layer are continuously changed during the formation, the maximum response wavelength (λ p ) varies with the thickness or the thickness of the quantum well layer. Since it can be controlled by the barrier height and thickness of the barrier layer, a spectral sensitivity characteristic curve 41 as shown in FIG. 9 is obtained, and a photoelectric conversion device capable of efficiently performing photoelectric conversion of incident infrared light is obtained. .
【0022】[0022]
【実施例】図1は本発明の装置の第1実施例図である。
図示するように、検知しようとする波長の赤外線が透過
するGaAs等の光透過基板11上に分子線エピタキシャル法
等を用いて接地電極用の高濃度にドープされたGaAs層等
が堆積され、その上に分子線エピタキシャル法でGaAs層
とGa1-x Alx As層のように異なる半導体の薄層が交互に
複数回堆積されて超格子構造部12が形成されている。FIG. 1 is a diagram showing a first embodiment of the apparatus of the present invention.
As shown in the figure, a heavily doped GaAs layer or the like for a ground electrode is deposited on a light transmitting substrate 11 made of GaAs or the like through which infrared light having a wavelength to be detected is transmitted, using a molecular beam epitaxial method or the like. A superlattice structure 12 is formed by alternately depositing thin layers of different semiconductors such as a GaAs layer and a Ga 1-x Al x As layer a plurality of times by molecular beam epitaxy.
【0023】次いでホトリソグラフィ法を用いたエッチ
ング等により、島状に残した超格子構造部12の周辺端面
の一面を、GaAs(100) 面のエッチングに対して(111)A面
が表れる燐酸(H3PO4) : 過酸化水素(H2O2)=1:10の異方
性エッチング液等を用い、超格子構造部12の超格子面14
に対して約45度の角度を持つ傾斜面に加工する。次いで
この傾斜面に硫化亜鉛(ZnS)等の透明絶縁膜と、アルミ
ニウム(Al)膜等よりなる反射膜を二層構造に積層して形
成して、光透過基板11から入射した赤外線を反射する反
射面13に加工形成している。Next, one surface of the peripheral end surface of the superlattice structure portion 12 left in the form of an island is etched by photolithography or the like so that phosphoric acid () in which the (111) A surface appears with respect to the etching of the GaAs (100) surface. H 3 PO 4 ): Superlattice surface 14 of superlattice structure 12 using an anisotropic etching solution of hydrogen peroxide (H 2 O 2 ) = 1: 10.
To an inclined surface with an angle of about 45 degrees. Next, a transparent insulating film such as zinc sulfide (ZnS) and a reflective film made of an aluminum (Al) film or the like are formed on the inclined surface by laminating them in a two-layer structure, and reflect infrared light incident from the light transmitting substrate 11. The reflection surface 13 is formed by processing.
【0024】超格子構造部12の頂部上には、Al蒸着等で
信号読み出し用の個別電極33をも形成し、最後にフェー
スボンディング用のInのバンプ34を形成する。図2は本
発明の装置の第2実施例図で、島状の超格子構造部12の
反射面13に対向する面に、超格子構造部12の側より伝播
してきた赤外線が透過しないZnS 等の透明絶縁膜とAl膜
等から構成された不透明膜16、或いは超格子構造部12の
側から伝播してきた赤外線が透過せず、かつ反射もし難
い後述のような無反射膜35を形成している。An individual electrode 33 for signal reading is also formed on the top of the superlattice structure portion 12 by Al evaporation or the like, and finally an In bump 34 for face bonding is formed. FIG. 2 is a view showing a second embodiment of the device of the present invention. The surface of the island-like superlattice structure 12 facing the reflection surface 13 is made of ZnS or the like which does not transmit infrared light propagated from the superlattice structure 12 side. An opaque film 16 composed of a transparent insulating film and an Al film, or an anti-reflection film 35 as described below, which does not transmit infrared light transmitted from the side of the superlattice structure portion 12 and is hardly reflected, I have.
【0025】また島状の超格子構造部12の光透過基板11
に対向する面と、該基板が露出している島状の超格子構
造部12の間隙部に、赤外線が透過せず、また反射もし難
い無反射膜35を形成している。図3は本発明の無反射膜
35の構造の説明図であり、光透過基板11より見ると、ク
ロム(Cr)やニッケル(Ni)等の金属薄膜による導電性半透
明薄膜層17、ZnS 等の誘電体等による透明層18、Al等の
金属膜による反射層19の3層で形成している。そして導
電性半透明薄膜層17に電気的接続を採って、超格子構造
部で赤外線を検知するための必要な電極として使用する
こともできる。The light transmitting substrate 11 of the island-like superlattice structure 12
A non-reflective film 35, which does not transmit infrared light and hardly reflects light, is formed on the surface facing the surface and the gap between the island-shaped superlattice structure 12 where the substrate is exposed. FIG. 3 shows the antireflection film of the present invention.
35 is an explanatory view of the structure of FIG. 35, when viewed from the light transmitting substrate 11, a conductive semi-transparent thin film layer 17 of a metal thin film such as chromium (Cr) or nickel (Ni), a transparent layer 18 of a dielectric material such as ZnS, The reflective layer 19 is formed of three layers of a metal film such as Al. Then, an electrical connection can be made to the conductive translucent thin film layer 17 so that it can be used as a necessary electrode for detecting infrared rays in the superlattice structure.
【0026】図4は本発明の装置の光入射部の説明図
で、図4(a) では超格子構造部12が島状に形成された面
とは反対側に、光透過基板11に平行に表面に複数の凸部
21を有する光透過板22を配置している。この光透過板22
はゲルマニウム(Ge)等の高屈折物質を材料に用い、凸部
はエッチングの際のエッチング垂れや、機械的研磨加工
により作成することができる。FIG. 4 is an explanatory view of the light incident portion of the device of the present invention. In FIG. 4 (a), the superlattice structure portion 12 is parallel to the light transmitting substrate 11 on the side opposite to the island-shaped surface. Multiple convex parts on the surface
A light transmission plate 22 having 21 is arranged. This light transmission plate 22
Is made of a material having a high refractive index such as germanium (Ge), and the convex portion can be formed by sagging during etching or by mechanical polishing.
【0027】図4(b) では超格子構造部12を形成した面
とは反対側の光透過基板11の表面に複数の凸部21を形成
している。いずれの場合も超格子構造部12の受光面( 反
射面) に相対する位置に凸部を形成するようにして形成
されている。また上記凸部21の形状は図5の実施例に示
すように底面が矩形に形成された蒲鉾(畝)状に形成し
ても良い。In FIG. 4B, a plurality of projections 21 are formed on the surface of the light transmitting substrate 11 opposite to the surface on which the superlattice structure 12 is formed. In any case, the projection is formed at a position opposite to the light receiving surface (reflection surface) of the superlattice structure 12. Further, the shape of the convex portion 21 may be formed in a semi-cylindrical shape (ridge) having a rectangular bottom surface as shown in the embodiment of FIG.
【0028】図6は本発明の光電変換装置の斜視図で、
図示するように超格子構造部12を形成した側の光透過基
板11の表面の島状の超格子構造部12の間隙部に、該超格
子構造部で検知した赤外線によって発生した信号電荷を
蓄積するための蓄積ゲート電極23、絶縁膜24、光透過基
板のポテンシャル井戸25で構成されたキャパシタ等の複
数の信号電荷蓄積部26と、この信号電荷蓄積部26で蓄積
された信号電荷を転送するトランスファーゲート電極27
が形成され、図示しないがこの信号電荷を読み出すため
のMOSスィッチングアレイ等のライン選択用回路に接
続され、ラインを切り換えるためのスィッチング回路が
上記信号電荷蓄積部に隣接して設けられている。FIG. 6 is a perspective view of the photoelectric conversion device of the present invention.
As shown in the figure, signal charges generated by infrared rays detected by the superlattice structure are accumulated in the gaps between the island-like superlattice structures 12 on the surface of the light transmitting substrate 11 on which the superlattice structure 12 is formed. A plurality of signal charge storage sections 26 such as capacitors formed by a storage gate electrode 23, an insulating film 24, and a potential well 25 of a light transmitting substrate for transferring the signal charges stored in the signal charge storage sections 26. Transfer gate electrode 27
Are connected to a line selection circuit such as a MOS switching array (not shown) for reading out the signal charges, and a switching circuit for switching the lines is provided adjacent to the signal charge storage section.
【0029】更にバイアス電圧は超格子構造部12の頂部
上に形成された高抵抗層28を介してバイアス電極29と、
超格子構造部12の底部に形成された接地電極36間に掛か
る構造としている。赤外線が超格子構造部12に入射し、
該超格子構造部12の抵抗が低下すると、個別電極33の電
位に近づくように変化する。そして個別電極33に接続さ
れた入力ゲート電極38の電位も変化し、ソースダイオー
ド(n+ ) 42から蓄積ゲート電極23下のポテンシャル井戸
25の内部に多くの自由電子が流れ込むようになる。Further, a bias voltage is applied to a bias electrode 29 through a high-resistance layer 28 formed on the top of the superlattice structure 12.
The structure extends over the ground electrode 36 formed at the bottom of the superlattice structure 12. Infrared rays enter the superlattice structure 12,
When the resistance of the superlattice structure 12 decreases, the resistance changes so as to approach the potential of the individual electrode 33. The potential of the input gate electrode 38 connected to the individual electrode 33 also changes, and the potential well under the storage gate electrode 23 from the source diode (n + ) 42
Many free electrons flow into 25.
【0030】即ち、信号電荷が信号電荷蓄積部26に蓄積
される。蓄積された信号電荷はトランスファゲート電極
27に電圧を掛けた時に、ドレインダイオード(n+ ) 43か
らInのバンプ34を通過して読み出される。信号の蓄積と
ラインアドレスが超格子構造部を有する光透過基板側で
行えるので、フェースボンディングする相手の信号処理
用のチップは、極端な場合、配線だけでも良くなり、光
透過基板11と熱膨張の合った材料が使用できる等の利点
が生じる。That is, the signal charges are stored in the signal charge storage section 26. The stored signal charges are transferred to the transfer gate electrode.
When a voltage is applied to 27, the data is read from the drain diode (n + ) 43 through the In bump 34. Since signal accumulation and line addressing can be performed on the light transmitting substrate side having the superlattice structure, the signal processing chip to be face-bonded can be, in extreme cases, only wiring, and can be thermally expanded with the light transmitting substrate 11. Advantages such as the use of a suitable material are obtained.
【0031】また他の実施例として図7に示すように、
バイアス電極29や、トランスファーゲート電極27に垂直
な方向に複数のドレインダイオードに接続した信号読み
だし電極44を形成し、超格子構造部を形成した光透過基
板11を所定寸法に切り出した検知素子チップ周辺に図示
しないが、ライン選択用回路とマルチプレクサ回路等を
配置すれば、良好なモノリシック型のラインアドレス方
式の光電変換装置を形成することも出来る。As another embodiment, as shown in FIG.
A sensing element chip in which a signal reading electrode 44 connected to a plurality of drain diodes in a direction perpendicular to the bias electrode 29 and the transfer gate electrode 27 is formed, and the light transmission substrate 11 on which the superlattice structure is formed is cut to a predetermined size. Although not shown, a good monolithic line address type photoelectric conversion device can be formed by disposing a line selection circuit, a multiplexer circuit, and the like.
【0032】また、例えば8.3 μm から10μm の赤外線
に対して感度を有する光電変換装置を作製するには、図
8(a) に示すように、超格子構造部12の底面と頂面に高
濃度ドープのGaAs層51を設け、超格子構造部の量子井戸
層31を形成するGaAsの厚さを40Åとし、また超格子構造
部の障壁層32を形成するGa1-x Alx As層の厚さ300 Åと
し、障壁層32の高さを変えるには、積層するGa1-x Alx
As層を頂面より底面に到るにつれて図8(b) に示すよう
に、x 値を順次小さくするようにして、Ga1-x Alx As層
を形成すると良い。In order to produce a photoelectric conversion device having sensitivity to infrared rays of, for example, 8.3 μm to 10 μm, as shown in FIG. A doped GaAs layer 51 is provided, the thickness of GaAs forming the quantum well layer 31 of the superlattice structure is set to 40 °, and the thickness of the Ga 1-x Al x As layer forming the barrier layer 32 of the superlattice structure is formed. In order to change the height of the barrier layer 32 to 300 mm, the thickness of the Ga 1-x Al x
As shown in FIG. 8 (b), the Ga 1-x Al x As layer is preferably formed so that the x value is gradually reduced as the As layer extends from the top surface to the bottom surface.
【0033】このようにすると図8(c) に示すように超
格子構造部の頂面より底面に到る程障壁層の高さが順次
低くなり、長波長の赤外線が検出できるようになる。ま
たこのようにすると図9に示すように広範囲の波長に渡
って分光感度の低下を見ない高感度の分光感度特性曲線
41を有する光電変換装置が得られる。以上述べたように
本発明の光電変換装置によれば、光透過基板上に島状に
形成された超格子構造部の周辺端面の一辺を、超格子構
造部の超格子面に対して45度の角度を持つ傾斜面を反射
面にすることにより、光透過基板側より入射した赤外線
は、超格子面に対して略平行に超格子構造部に入射する
ようになり、入射赤外線が効率良く光電変換され、感度
の向上した光電変換装置が得られる。In this way, as shown in FIG. 8 (c), the height of the barrier layer is gradually reduced from the top surface to the bottom surface of the superlattice structure, and long-wavelength infrared rays can be detected. Further, in this case, as shown in FIG. 9, a high-sensitivity spectral sensitivity characteristic curve in which spectral sensitivity does not decrease over a wide range of wavelengths.
A photoelectric conversion device having 41 is obtained. As described above, according to the photoelectric conversion device of the present invention, one side of the peripheral end surface of the superlattice structure formed in the shape of an island on the light transmitting substrate is 45 degrees with respect to the superlattice plane of the superlattice structure. By making the inclined surface having the angle of 反射 as the reflective surface, the infrared light incident from the light transmitting substrate side enters the superlattice structure almost parallel to the superlattice surface, and the incident infrared light is efficiently The converted photoelectric conversion device with improved sensitivity is obtained.
【0034】また複数の超格子構造部が配列された検知
素子面は、入射赤外線の光軸に対して垂直な面に構成で
きるので、通常の光学系が使用できる利点がある。また
本発明によれば、反射面に対向した端面に不透明膜、或
いは無反射膜を形成し、超格子構造部の光透過基板に対
向する面と、光透過基板が露出している島状の超格子構
造部の間隙部にも無反射膜を形成しているので、超格子
構造部て吸収されなかった赤外光が隣接する超格子構造
部に入射したり、超格子構造部以外に入射した赤外線が
Siの信号処理用チップ等で反射して迷光となるのを防止
するため、赤外画像の画質や、画質の解像度が向上す
る。The sensing element surface on which a plurality of superlattice structures are arranged can be formed as a surface perpendicular to the optical axis of the incident infrared light, so that there is an advantage that a normal optical system can be used. Further, according to the present invention, an opaque film or a non-reflective film is formed on the end surface facing the reflection surface, and the surface of the superlattice structure portion facing the light transmission substrate and the island-like surface where the light transmission substrate is exposed are formed. An anti-reflection film is also formed in the gap of the superlattice structure, so that infrared light not absorbed by the superlattice structure enters the adjacent superlattice structure or enters other than the superlattice structure. Infrared rays
In order to prevent stray light from being reflected by the Si signal processing chip or the like, the image quality of the infrared image and the resolution of the image quality are improved.
【0035】また本発明によれば、島状の超格子構造部
を形成した面の反対側に、光透過基板に平行して、表面
に複数の凸部を有する光透過板を配置するか、超格子構
造部を形成した面とは反対側の該光透過基板の表面に複
数の凸部を形成して入射した赤外線を微小な部分に集光
しているので、入射した赤外線を効率良く超格子構造部
に導入させることが出来る効果があり、焦点面内にまば
らに配置されている受光部が、あたかも焦点面の大部分
を占めているように機能させることができ、検知素子間
の不感領域が殆ど無いのと等価の状態にできる。According to the present invention, a light transmitting plate having a plurality of convex portions on its surface is arranged in parallel with the light transmitting substrate on the side opposite to the surface on which the island-shaped superlattice structure is formed. A plurality of convex portions are formed on the surface of the light transmitting substrate opposite to the surface on which the superlattice structure is formed, and the incident infrared light is focused on a minute portion, so that the incident infrared light can be efficiently superposed. This has the effect that it can be introduced into the grating structure, and the light receiving sections sparsely arranged in the focal plane can function as if they occupy most of the focal plane. A state equivalent to almost no area can be obtained.
【0036】また超格子構造部は小さくても良くなるの
で、一定バイアス電圧を掛けた場合の暗電流は、超格子
構造部の面積に略反比例して低減することができ、光電
変換装置の性能向上が図れる。また、本発明によれば、
超格子構造部は小さくとも良いので、拡がった超格子構
造部の間隙部に面積の大きい複数の信号電荷蓄積部を形
成して超格子構造部で検知した赤外線によって発生した
信号電荷を多量に蓄積することが可能になり、光電変換
装置の感度向上に寄与することが大きくなる。Further, since the superlattice structure can be made smaller, the dark current when a constant bias voltage is applied can be reduced substantially in inverse proportion to the area of the superlattice structure, and the performance of the photoelectric conversion device can be reduced. Improvement can be achieved. According to the present invention,
Since the superlattice structure may be small, multiple large-area signal charge accumulators are formed in the gaps between the expanded superlattice structures to store a large amount of signal charges generated by infrared rays detected by the superlattice structure It is possible to increase the sensitivity of the photoelectric conversion device.
【0037】またライン切り換え用スィッチング回路を
備えることも可能となり、信号処理チップ側の構造や光
電変換装置全体の構造を大幅に簡略化でき、光電変換装
置の信頼性向上、低価格化が図れる。また、本発明によ
れば、量子井戸層の厚さや、障壁層の障壁高さや、厚さ
等を連続的に変化さすことで、検知波長域が拡大し、入
射した赤外線を有効に光電変換できるようになる。Further, a switching circuit for line switching can be provided, so that the structure on the signal processing chip side and the entire structure of the photoelectric conversion device can be greatly simplified, and the reliability and cost of the photoelectric conversion device can be improved. Further, according to the present invention, by continuously changing the thickness of the quantum well layer, the barrier height and the thickness of the barrier layer, the detection wavelength range is expanded, and the incident infrared light can be effectively photoelectrically converted. Become like
【0038】[0038]
【発明の効果】以上述べたように本発明によれば、高感
度、低価格で解像度の良い超格子構造部を有する光電変
換装置が得られる効果がある。As described above, according to the present invention, there is an effect that a photoelectric conversion device having a superlattice structure having high sensitivity, low cost and high resolution can be obtained.
【図1】 本発明の装置の第1実施例図である。FIG. 1 is a diagram showing a first embodiment of the apparatus of the present invention.
【図2】 本発明の装置の第2実施例図である。FIG. 2 is a second embodiment of the apparatus of the present invention.
【図3】 本発明の無反射膜の構造の説明図である。FIG. 3 is an explanatory diagram of a structure of an antireflection film of the present invention.
【図4】 本発明の装置の光入射部の説明図で(a) は透
明板を有する構造で(b) は透明板を有しない構造図であ
る。4A and 4B are explanatory views of a light incident portion of the device of the present invention, wherein FIG. 4A is a structure having a transparent plate and FIG. 4B is a structural diagram without a transparent plate.
【図5】 本発明の装置の他の光入射部の説明図であ
る。FIG. 5 is an explanatory view of another light incident portion of the device of the present invention.
【図6】 本発明の光電変換装置の斜視図である。FIG. 6 is a perspective view of the photoelectric conversion device of the present invention.
【図7】 本発明の光電変換装置の他の斜視図である。FIG. 7 is another perspective view of the photoelectric conversion device of the present invention.
【図8】 本発明の超格子構造部の説明図で、(a) は超
格子構造部の平面図、(b) はx 値とGa1-x Alx As層の位
置との関係図、(c) はGa1-x Alx As結晶層の障壁層の高
さの分布図である。8A and 8B are explanatory views of a superlattice structure of the present invention, wherein FIG. 8A is a plan view of the superlattice structure, FIG. 8B is a diagram showing the relationship between the x value and the position of the Ga 1-x Al x As layer, (c) is a distribution diagram of the height of the barrier layer of the Ga 1-x Al x As crystal layer.
【図9】 本発明の装置の分光感度特性図である。FIG. 9 is a spectral sensitivity characteristic diagram of the apparatus of the present invention.
【図10】 従来の装置の説明図である。FIG. 10 is an explanatory diagram of a conventional device.
【図11】 従来の装置の分光感度特性図である。FIG. 11 is a spectral sensitivity characteristic diagram of a conventional device.
11 光透過基板 12 超格子構造部 13 反射面 14 超格子面 16 不透明膜 17 導電性半透明薄膜層 18 透明層 19 反射層 21 凸部 22 光透過板 23 蓄積ゲート電極 24 絶縁膜 25 ポテンシャル井戸 26 信号電荷蓄積部 27 トランスファーゲート電極 28 高抵抗層 29 バイアス電極 31 量子井戸層 32 障壁層 33 個別電極 34 バンプ 35 無反射膜 36 接地電極 38 入力ゲート電極 41 分光感度特性曲線 42 ソースダイオード 43 ドレインダイオード 44 信号読みだし電極 51 高濃度ドープのGaAs層 11 Light transmitting substrate 12 Super lattice structure 13 Reflecting surface 14 Super lattice surface 16 Opaque film 17 Conductive translucent thin film layer 18 Transparent layer 19 Reflecting layer 21 Convex part 22 Light transmitting plate 23 Storage gate electrode 24 Insulating film 25 Potential well 26 Signal charge storage section 27 Transfer gate electrode 28 High resistance layer 29 Bias electrode 31 Quantum well layer 32 Barrier layer 33 Individual electrode 34 Bump 35 Non-reflective film 36 Ground electrode 38 Input gate electrode 41 Spectral sensitivity characteristic curve 42 Source diode 43 Drain diode 44 Signal readout electrode 51 Highly doped GaAs layer
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 27/14 - 27/148 H01L 31/09 - 31/101──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) H01L 27/14-27/148 H01L 31/09-31/101
Claims (9)
させた超格子構造部(12)有し、該超格子構造部(12)で赤
外線を検知する装置に於いて、検知しようとする波長の
赤外線が透過する光透過基板(11)上に、超格子構造部(1
2)が島状に形成され、該島状の超格子構造部(12)の周辺
端面の少なくとも一つの端面が超格子構造部(12)の超格
子面(14)に対して30度より60度迄の角度を有する傾斜面
で有り、該傾斜面が光透過基板(11)側から入射した赤外
線を、反射する反射面(13)と成っていることを特徴とす
る光電変換装置。A superlattice structure (12) in which thin layers of different semiconductors are alternately deposited a plurality of times, wherein the superlattice structure (12) detects infrared rays. A superlattice structure (1) is placed on a light transmitting substrate (11) through which infrared
2) is formed in the shape of an island, and at least one end face of the peripheral end face of the superlattice structure portion (12) having an island shape is more than 30 degrees with respect to the superlattice surface (14) of the superlattice structure portion (12). A photoelectric conversion device characterized by an inclined surface having an angle of up to a degree, the inclined surface being a reflecting surface (13) for reflecting infrared light incident from the light transmitting substrate (11) side.
のうち、前記反射面(13)に対向する端面に、超格子構造
部(12)側から伝播した赤外線が透過しない不透明膜(1
6)、あるいは該超格子構造部(12)側から伝播した赤外線
が透過せず、かつ反射もし難い無反射膜(35)を設けたこ
とを特徴とする請求項1記載の光電変換装置。2. Among the peripheral end faces of the island-shaped superlattice structure portion (12), an end surface facing the reflection surface (13) is opaque so that infrared light propagated from the superlattice structure portion (12) side is not transmitted. Membrane (1
6. The photoelectric conversion device according to claim 1, further comprising a non-reflection film (35) that does not transmit and does not reflect infrared light transmitted from the superlattice structure (12).
板(11)に対向する面と、該光透過基板(11)が露出してい
る島状の超格子構造部(12)の間の間隙部のうちの少なく
とも片方に、赤外線が透過せず、かつ反射もし難い無反
射膜(35)を設けたことを特徴とする請求項1、或いは2
記載の光電変換装置。3. The surface of the island-shaped superlattice structure (12) facing the light transmitting substrate (11), and the island-shaped superlattice structure (12) where the light transmitting substrate (11) is exposed. 3. An anti-reflection film (35), which does not transmit infrared light and hardly reflects light, is provided on at least one of the gaps between the two.
The photoelectric conversion device as described in the above.
り見て、導電性半透明薄膜層(17)、誘電体による透明層
(18)、金属による反射層(19)の3層によって形成され、
該導電性半透明薄膜層(17)を、超格子構造部(12)で赤外
線を検知するための個別電極(33)、或いは接地電極(36)
として、或いは両者の電極の一部として用いることを特
徴とする請求項3記載の光電変換装置。4. The transparent anti-reflection film (35), a conductive semi-transparent thin film layer (17), and a transparent layer made of a dielectric when viewed from the light transmitting substrate (11) side.
(18), formed by three layers of a metal reflective layer (19),
The conductive translucent thin film layer (17), an individual electrode (33) for detecting infrared rays in the superlattice structure (12), or a ground electrode (36)
4. The photoelectric conversion device according to claim 3, wherein the photoelectric conversion device is used as a part of or both of the electrodes.
反対側に、前記光透過基板(11)に平行となるように、表
面に複数の凸部(21)を有する光透過板(22)を配置したこ
とを特徴とする請求項1、2、3或いは4記載の光電変
換装置。5. A light having a plurality of projections (21) on the surface opposite to the surface on which the island-shaped superlattice structure (12) is formed so as to be parallel to the light transmitting substrate (11). 5. The photoelectric conversion device according to claim 1, wherein a transmission plate is provided.
面とは反対側の光透過基板(11)の表面に複数の凸部(21)
を形成したことを特徴とする請求項1、2、3或いは4
記載の光電変換装置。6. A plurality of projections (21) are formed on the surface of the light transmitting substrate (11) opposite to the surface on which the island-like superlattice structure (12) is formed.
5. The method of claim 1, 2, 3 or 4, wherein
The photoelectric conversion device as described in the above.
っていることを特徴とする請求項5または6記載の光電
変換装置。7. The photoelectric conversion device according to claim 5, wherein the plurality of projections have a wavy shape in a semi-cylindrical shape.
側の光透過基板(11)の表面の島状の超格子構造部(12)の
間隙部に、該超格子構造部(12)で検知した赤外線によっ
て発生した信号電荷を蓄積するための信号電荷蓄積部(2
6)と、該信号電荷蓄積部(26)の信号電荷を順次読み出す
ためのライン切り換え用スィッチング回路を設けたこと
を特徴とする請求項5、6または7記載の光電変換装
置。8. The superlattice structure section (12) is provided in the gap of the island-shaped superlattice structure section (12) on the surface of the light transmitting substrate (11) on the side where the island-shaped superlattice structure section (12) is formed. A signal charge storage section (2) for storing signal charges generated by infrared rays detected in (12).
8. The photoelectric conversion device according to claim 5, further comprising a switching circuit for line switching for sequentially reading out the signal charges in the signal charge storage section.
の厚さ、障壁層(32)の障壁高さや厚さを超格子の形成途
中で連続的に変化させることで、検知できる赤外線の波
長域を拡大したことを特徴とする請求項1、2、3、
4、5、6、7或いは8記載の光電変換装置。9. The quantum well layer (31) of the superlattice structure (12)
3. The wavelength range of infrared light that can be detected is expanded by continuously changing the thickness and the barrier height and thickness of the barrier layer (32) during the formation of the superlattice. 3,
The photoelectric conversion device according to 4, 5, 6, 7, or 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2403722A JP2827514B2 (en) | 1990-12-19 | 1990-12-19 | Photoelectric conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2403722A JP2827514B2 (en) | 1990-12-19 | 1990-12-19 | Photoelectric conversion device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04218961A JPH04218961A (en) | 1992-08-10 |
JP2827514B2 true JP2827514B2 (en) | 1998-11-25 |
Family
ID=18513452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2403722A Expired - Lifetime JP2827514B2 (en) | 1990-12-19 | 1990-12-19 | Photoelectric conversion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2827514B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009038071A (en) * | 2007-07-31 | 2009-02-19 | Nippon Telegr & Teleph Corp <Ntt> | Optical detector |
JP6921457B1 (en) * | 2021-01-08 | 2021-08-18 | 株式会社京都セミコンダクター | Semiconductor light receiving element |
-
1990
- 1990-12-19 JP JP2403722A patent/JP2827514B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04218961A (en) | 1992-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2721146B2 (en) | Dual color infrared simultaneous detector with common interlayer metal contact | |
US5721429A (en) | Self-focusing detector pixel structure having improved sensitivity | |
US8698207B2 (en) | Photodetector having a very thin semiconducting region | |
EP0999600A2 (en) | Multi-band infrared photodetector | |
JPH113985A (en) | Patch connection infrared photodetector | |
US6580089B2 (en) | Multi-quantum-well infrared sensor array in spatially-separated multi-band configuration | |
JP2012151452A (en) | Photodetector optimized by metal texturing provided on rear surface | |
US6133570A (en) | Semiconductor photovoltaic diffractive resonant optical cavity infrared detector | |
CA2351430C (en) | Wavelength-insensitive radiation coupling for multi-quantum well sensor based on intersubband absorption | |
JP5785698B2 (en) | Light detection element | |
JP2827514B2 (en) | Photoelectric conversion device | |
US5536948A (en) | Infrared detector element substrate with superlattice layers | |
US7115910B2 (en) | Multicolor photodiode array and method of manufacturing thereof | |
US11282873B2 (en) | Photodetector and imaging device | |
US10749054B2 (en) | Photodetector with helmholtz resonator | |
CN113447140A (en) | CMOS infrared microbridge detector | |
US11927814B2 (en) | Semiconductor photodetector array sensor integrated with optical-waveguide-based devices | |
CN113447142A (en) | Reinforced CMOS infrared detector | |
CN113432726A (en) | Infrared detector with combined columnar structure | |
JP2697081B2 (en) | Semiconductor light receiving device | |
JP6931161B2 (en) | Compound semiconductor device, infrared detector and imaging device | |
CN102637715B (en) | Image sensor | |
JPH08181297A (en) | Infrared detector and infrared detector array | |
JPH0219725A (en) | Pyroelectric type infrared detecting element array, pyroelectric type infrared detector and their production | |
JPH03109769A (en) | Unit pixel of solid-state image pickup device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980818 |