JP2826717B2 - Method for manufacturing capacitor of semiconductor device - Google Patents
Method for manufacturing capacitor of semiconductor deviceInfo
- Publication number
- JP2826717B2 JP2826717B2 JP8001741A JP174196A JP2826717B2 JP 2826717 B2 JP2826717 B2 JP 2826717B2 JP 8001741 A JP8001741 A JP 8001741A JP 174196 A JP174196 A JP 174196A JP 2826717 B2 JP2826717 B2 JP 2826717B2
- Authority
- JP
- Japan
- Prior art keywords
- forming
- capacitor
- electrode
- connection hole
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003990 capacitor Substances 0.000 title claims description 52
- 239000004065 semiconductor Substances 0.000 title claims description 31
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 238000000034 method Methods 0.000 title claims description 20
- 230000004888 barrier function Effects 0.000 claims description 26
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 15
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 13
- 229910052718 tin Inorganic materials 0.000 claims description 13
- 238000005530 etching Methods 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 10
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 5
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910021332 silicide Inorganic materials 0.000 claims description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910002367 SrTiO Inorganic materials 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 239000010408 film Substances 0.000 description 35
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 6
- 229910015801 BaSrTiO Inorganic materials 0.000 description 4
- 230000008021 deposition Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910019899 RuO Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
- H01L28/60—Electrodes
- H01L28/75—Electrodes comprising two or more layers, e.g. comprising a barrier layer and a metal layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
- H01L28/60—Electrodes
- H01L28/65—Electrodes comprising a noble metal or a noble metal oxide, e.g. platinum (Pt), ruthenium (Ru), ruthenium dioxide (RuO2), iridium (Ir), iridium dioxide (IrO2)
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Semiconductor Memories (AREA)
- Semiconductor Integrated Circuits (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体素子のキャ
パシターの製造方法に係るもので、詳しくは、高集積
(high−intergrated)DRAM(dy
namic random access memor
y)素子のキャパシターとして必要な高誘電膜キャパシ
ターに適合する半導体素子のキャパシターの製造方法に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a capacitor of a semiconductor device, and more particularly, to a high-integrated DRAM (dy).
natural random access memory
y) The present invention relates to a method for manufacturing a capacitor of a semiconductor device which is compatible with a high dielectric film capacitor required as a capacitor of the device.
【0002】[0002]
【従来の技術】従来、半導体素子の高集積化に伴い、1
6Mbits及び64MbitsのDRAMは量産され
ているが、256Mbits、1GbitsのDRAM
は未だ開発段階である。即ち、該DRAMの高集積化に
従い単位セル(cell)のキャパシタンス領域が減小
するので、その縮小された領域で所望のキャパシタンス
を得る研究が活発に行われている。従って、高誘電体材
料(high dielectric constan
t material)のキャパシター誘導体フィルム
を用い、高誘電体薄膜を形成する研究が進行されてお
り、該高誘電体材料の物質は複合酸化物の形態として、
主に、BaSrTiO3(BST)、BaTiO3、S
rTiO3、PbZrO3等が用いられている。2. Description of the Related Art Conventionally, with the increasing integration of semiconductor devices, 1
Although 6Mbits and 64Mbits DRAMs are mass-produced, 256Mbits and 1Gbits DRAMs
Is still in development. That is, since the capacitance area of a unit cell is reduced in accordance with the high integration of the DRAM, studies for obtaining a desired capacitance in the reduced area are being actively conducted. Therefore, a high dielectric material (high dielectric constant) is required.
Research on forming a high dielectric thin film using a capacitor derivative film of (t material) has been progressing, and the substance of the high dielectric material is in the form of a complex oxide,
Mainly, BaSrTiO 3 (BST), BaTiO 3 , S
rTiO 3 , PbZrO 3 and the like are used.
【0003】且つ、このような複合酸化物の形態は、6
00〜700℃の高温下でフィルムの蒸着が行われるた
め、該高温に適合する電極の物質及び電極の構造を得る
ことが主要な課題となっている。そこで、従来、多結晶
シリコンを電極の材料として用いていたが、該多結晶シ
リコンは蒸着の際、酸化して拡散されるので、その酸化
をある程度抑止する物質を用いるべきであった。従っ
て、高誘電体膜をキャパシター誘導体に用いるときは、
電極の構造を多層に構成し、該誘電体と基板間の拡散を
防止する拡散障壁層(diffusion barri
er)と、酸化をある程度抑制し電導性を有する電極層
と、基板との電気的連結を行う接続プラグと、を夫々形
成していた。[0003] The form of such a composite oxide is 6
Since film deposition is performed at a high temperature of 00 to 700 ° C., it is a main issue to obtain an electrode material and an electrode structure that are compatible with the high temperature. Therefore, conventionally, polycrystalline silicon has been used as a material of the electrode. However, since the polycrystalline silicon is oxidized and diffused at the time of vapor deposition, a material that suppresses the oxidation to some extent should be used. Therefore, when using a high dielectric film for a capacitor derivative,
A diffusion barrier layer (diffusion barrier layer) for preventing the diffusion between the dielectric and the substrate by forming a multilayer structure of the electrode.
er), an electrode layer having conductivity by suppressing oxidation to some extent, and a connection plug for electrically connecting to the substrate.
【0004】即ち、従来、半導体素子のキャパシターの
製造方法においては、図2に示したように、半導体基板
1上に一双の絶縁ゲート電極2a、2bを有するFET
トランジスタ(図示せず)が形成され、それらゲート電
極2a、2b上に絶縁層3が形成され、該絶縁層3の中
央基板1上に接続ホールが食刻形成されて該接続ホール
内基板1上にソースまたはドレイン領域6が形成され、
該ソースまたはドレイン領域6上面接続ホール内に多結
晶シリコンプラグ4が形成され、それら多結晶シリコン
プラグ4及び絶縁層上面にキャパシター5が形成されて
いた。且つ、該キャパシター5の構造及び形成段階にお
いては、先ず、前記多結晶シリコンプラグ4及び絶縁層
3上面所定部位にTaまたはTiNのような導電性物質
の障壁層9が形成され、該障壁層9上に下部電極7aが
形成され、それら下部電極7a上面及び障壁層9両方側
面にBaSrTiO3の誘電フィルム8が被覆され、該
誘電フィルム8上に上部電極7bが形成されていた。That is, in a conventional method of manufacturing a capacitor of a semiconductor device, as shown in FIG. 2, an FET having a pair of insulated gate electrodes 2a and 2b on a semiconductor substrate 1 is used.
A transistor (not shown) is formed, an insulating layer 3 is formed on the gate electrodes 2a and 2b, and a connection hole is formed on the central substrate 1 of the insulating layer 3 by etching. A source or drain region 6 is formed,
A polycrystalline silicon plug 4 was formed in the connection hole on the upper surface of the source or drain region 6, and a capacitor 5 was formed on the upper surface of the polycrystalline silicon plug 4 and the insulating layer. In the structure and formation of the capacitor 5, a barrier layer 9 made of a conductive material such as Ta or TiN is first formed on a predetermined portion of the upper surface of the polycrystalline silicon plug 4 and the insulating layer 3. A lower electrode 7a was formed thereon, a dielectric film 8 of BaSrTiO 3 was coated on both the upper surface of the lower electrode 7a and the side surfaces of the barrier layer 9, and an upper electrode 7b was formed on the dielectric film 8.
【0005】[0005]
【発明が解決しようとする課題】然るに、このような従
来半導体素子のキャパシターの製造方法においては、次
のような不都合な点があった。、下部電極7a及び障
壁層9の積層された上面及び両方側面に誘電フィルム8
を被覆するようになっているため、該誘電フィルム8の
被覆の際、積層段のコーナー10a、10b部位に充填
漏泄が発生し、該充填漏泄部位にSiO2のような絶縁
物質が蒸着され易いという憂いがあった。、誘電フィ
ルム8の蒸着される間、障壁層9の両方側壁は露出され
るため高温の障壁層9が酸化して接触抵抗を起こし、該
障壁層9両方側壁面の酸化物により該障壁層9と下部電
極7a間の接着性が低下される。、障壁層9両方側壁
面の酸化により該障壁層9と多結晶シリコンプラグ4間
の接着性が低下し、該多結晶シリコンプラグ4の表面が
酸化する憂いがあった。However, the conventional method for manufacturing a capacitor of a semiconductor device has the following disadvantages. A dielectric film 8 on the upper surface and both side surfaces on which the lower electrode 7a and the barrier layer 9 are laminated.
When the dielectric film 8 is coated, filling and leaking occurs at the corners 10a and 10b of the laminating step, and an insulating material such as SiO 2 is easily deposited on the filling and leaking portion. I was sorry. During the deposition of the dielectric film 8, both sidewalls of the barrier layer 9 are exposed, so that the high-temperature barrier layer 9 is oxidized to cause contact resistance, and the oxide on both sidewall surfaces of the barrier layer 9 causes the barrier layer 9 to be exposed. And the lower electrode 7a has reduced adhesiveness. The adhesion between the barrier layer 9 and the polycrystalline silicon plug 4 is reduced due to oxidation of the side wall surfaces of both the barrier layer 9 and the surface of the polycrystalline silicon plug 4 is oxidized.
【0006】[0006]
【課題を解決するための手段】本発明の目的は、多層電
極形成時のエッチングを容易に行い、キャパシター面積
の縮小に伴うミスアラインの発生を減らし得る半導体素
子のキャパシターの製造方法を提供しようとするもので
ある。SUMMARY OF THE INVENTION An object of the present invention is to provide a method of manufacturing a capacitor of a semiconductor device which can easily perform etching when forming a multilayer electrode and reduce the occurrence of misalignment due to a reduction in capacitor area. Things.
【0007】また、本発明の他の目的は、プラグの表面
酸化によりキャパシターの性能が低下する現象を防止
し、障壁層の酸化により体積が膨張し応力を受けて電極
が割れる現象を防止し得る半導体素子のキャパシターの
製造方法を提供しようとするものである。Another object of the present invention is to prevent the performance of the capacitor from being degraded due to the oxidation of the surface of the plug, and to prevent the electrode from cracking due to the volume expansion and stress caused by the oxidation of the barrier layer. An object of the present invention is to provide a method for manufacturing a capacitor of a semiconductor device.
【0008】請求項1の発明による半導体素子のキャパ
シターの製造方法は、半導体基板上に絶縁膜を形成する
工程と、該絶縁膜を選択的に食刻し、該絶縁膜の所定部
位に接続ホールを形成する工程と、該接続ホール内部に
電導性プラグを形成する工程と、該接続ホール内の電導
性プラグ上に障壁層を形成する工程と、それら障壁層及
び絶縁膜上に第1金属層を形成する工程と、接続ホール
に対応するように第1金属層上にマスクパターンを形成
する工程と、該マスクパターンをマスクとし、第1金属
層をBCl3/Cl2ガスにより食刻して第1電極パタ
ーンを形成する工程と、該第1電極パターン上に形成さ
れたマスクパターンを除去する工程と、マスクパターン
を包含する半導体基板全面に誘電体層を形成する工程
と、該誘電体層上に第2電極を形成する工程とを順次行
う。According to a first aspect of the present invention, there is provided a method of manufacturing a capacitor of a semiconductor device, comprising the steps of forming an insulating film on a semiconductor substrate, selectively etching the insulating film, and forming a connection hole in a predetermined portion of the insulating film. Forming a conductive plug in the connection hole, forming a barrier layer on the conductive plug in the connection hole, and forming a first metal layer on the barrier layer and the insulating film. Forming a mask pattern on the first metal layer so as to correspond to the connection holes, and etching the first metal layer with a BCl 3 / Cl 2 gas using the mask pattern as a mask. Forming a first electrode pattern; removing a mask pattern formed on the first electrode pattern; forming a dielectric layer over the entire surface of the semiconductor substrate including the mask pattern; Up Successively performing the step of forming a second electrode.
【0009】請求項2の発明による半導体素子のキャパ
シターの製造方法は、請求項1の発明の構成において、
接続ホールを形成する工程と該接続ホール内に電導性プ
ラグを形成する工程間に、該接続ホール及び絶縁膜上に
多結晶シリコン層を蒸着する段階と、該多結晶シリコン
層をエッチバックする段階と、が追加して行われる。According to a second aspect of the present invention, there is provided a method of manufacturing a capacitor of a semiconductor device, comprising the steps of:
Depositing a polysilicon layer on the connection hole and the insulating film between the step of forming the connection hole and the step of forming the conductive plug in the connection hole; and etching back the polysilicon layer. And is done in addition.
【0010】請求項3の発明による半導体素子のキャパ
シターの製造方法は、請求項1の発明の構成において、
障壁層を形成する工程では、TiN、Ta、W、Moの
金属合金及びそれらの金属ケイ化物(Silicid
e)中のいすれか一つを用いる。According to a third aspect of the present invention, there is provided a method of manufacturing a capacitor of a semiconductor device, comprising the steps of:
In the step of forming the barrier layer, a metal alloy of TiN, Ta, W, and Mo and a metal silicide thereof (Silicid) are used.
e) Use one of the above.
【0011】請求項4の発明による半導体素子のキャパ
シターの製造方法は、請求項1の発明の構成において、
第4金属層は、Pt、Pd、Ru、RuO2及び電導性
を有する酸化物中のいずれか一つを用いて形成する。According to a fourth aspect of the present invention, there is provided a method of manufacturing a capacitor of a semiconductor device, comprising the steps of:
The fourth metal layer is formed using one of Pt, Pd, Ru, RuO 2 and an oxide having conductivity.
【0012】請求項5の発明による半導体素子のキャパ
シターの製造方法は、請求項1の発明の構成において、
誘電体層の形成は、Ta2O5、BaSrTiO3、S
rTiO3、BaTiO3、PbZrO3、PZT、及
びPLZTでなるグループから選択されたいずれか一つ
の物質を用いて行う。According to a fifth aspect of the present invention, there is provided a method of manufacturing a capacitor of a semiconductor device, comprising the steps of:
The dielectric layer is formed of Ta 2 O 5 , BaSrTiO 3 , S
This is performed using any one material selected from the group consisting of rTiO 3 , BaTiO 3 , PbZrO 3 , PZT, and PLZT.
【0013】請求項6の発明による半導体素子のキャパ
シターの製造方法は、請求項1の発明の構成において、
第2電極は、Pt、W、及びTiN中のいすれか一つに
より製造される。According to a sixth aspect of the present invention, there is provided a method of manufacturing a capacitor of a semiconductor device, comprising the steps of:
The second electrode is made of any one of Pt, W, and TiN.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施の形態に対し
説明する。本発明に係る方法により製造された半導体素
子のキャパシターにおいては、図1(J)に示したよう
に、半導体基板20上に形成され接続ホール29を有し
た絶縁膜28と、該絶縁膜のTiNプラグ35と、それ
らTiNプラグ35及び絶縁膜28の接続ホール29内
に該絶縁膜28の厚さよりも低い厚さを有して形成され
たプラグ32と、該接続ホール29内のプラグ32上面
に形成された障壁層28上に形成されたキャパシター第
1電極36と、該キャパシター第1電極36上に形成さ
れた誘電体層40と、該誘電体層40上に形成されたキ
ャパシター第2電極42と、を備えている。Embodiments of the present invention will be described below. In a capacitor of a semiconductor device manufactured by the method according to the present invention, as shown in FIG. 1J, an insulating film 28 formed on a semiconductor substrate 20 and having a connection hole 29, and a TiN film of the insulating film. The plug 35, the plug 32 formed in the connection hole 29 of the TiN plug 35 and the insulating film 28 with a thickness smaller than the thickness of the insulating film 28, and the upper surface of the plug 32 in the connection hole 29 A first capacitor electrode 36 formed on the formed barrier layer 28, a dielectric layer 40 formed on the first capacitor electrode 36, and a second capacitor electrode 42 formed on the dielectric layer 40 And
【0015】そして、本発明に係る半導体素子のキャパ
シターを製造する方法においては、図1(A)に示した
ように、基板20上に所定形状のゲート電極22とn+
型不純物拡散(ソース/ドレイン)領域24、25とフ
ィールド酸化膜26とを夫々形成する。次いで、それら
ゲート電極22、n+型不純物拡散(ソース/ドレイ
ン)領域24、25及びフィールド酸化膜26上に、図
1(B)に示したように、3000Åの厚さの絶縁膜2
8を化学蒸着法により蒸着する。次いで、図1(C)に
示したように、該絶縁膜28の所定部位に写真食刻を施
しキャパシターストレージノード(capacitor
storage node)の形成される接続ホール
29を形成する。その後、それら接続ホール29及び絶
縁膜28上に2000Åの厚さの多結晶シリコン層30
を低圧化学蒸着法により蒸着する。In the method for manufacturing a capacitor of a semiconductor device according to the present invention, as shown in FIG. 1A, a gate electrode 22 having a predetermined shape and an n +
Formed impurity diffusion (source / drain) regions 24 and 25 and a field oxide film 26 are formed, respectively. Then, on their gate electrode 22, n + -type impurity diffusion (source / drain) regions 24 and 25 and the field oxide film 26, as shown in FIG. 1 (B), the insulating thickness of 3000Å film 2
8 is deposited by a chemical vapor deposition method. Next, as shown in FIG. 1C, photo-etching is performed on a predetermined portion of the insulating film 28, and a capacitor storage node (capacitor) is formed.
A connection hole 29 in which a storage node is formed is formed. After that, a polycrystalline silicon layer 30 having a thickness of 2000 .ANG.
Is deposited by a low pressure chemical vapor deposition method.
【0016】次いで、図1(D)に示したように、該多
結晶シリコン層30をCl2/O2を用い3000Åの
厚さにエッチバックして除去し、前記接続ホール29内
の絶縁膜28上面から約1000Å下方側にプラグ32
を形成する。この場合、該プラグ32は多結晶シリコン
にて形成される。次いで、図1(E)に示したように、
それらプラグ32及び第1絶縁膜28上に障壁層の役割
をするTiN層34を1500Åの厚さに蒸着するが、
この場合、該TiN層34は、Ta、W、Moの金属合
金及びそれらの金属ケイ化物中のいずれか一つにて代替
することもできる。Then, as shown in FIG. 1D, the polycrystalline silicon layer 30 is removed by etching back to a thickness of 3000 ° using Cl 2 / O 2, and the insulating film in the connection hole 29 is removed. The plug 32 is about 1000 ° below the upper surface of the plug.
To form In this case, the plug 32 is formed of polycrystalline silicon. Next, as shown in FIG.
A TiN layer 34 serving as a barrier layer is deposited on the plug 32 and the first insulating film 28 to a thickness of 1500 °.
In this case, the TiN layer 34 can be replaced with any one of a metal alloy of Ta, W, and Mo and a metal silicide thereof.
【0017】次いで、図1(F)に示したように、該T
iN層34をBCl3/Cl2を用いRIE(Reac
tive Ion Etching)法により1500
Åの厚さにエッチングし、前記接続ホール29内のプラ
グ32上にTiNプラグ23を形成する。次いで、図1
(G)に示したように、それらTiNプラグ35及び絶
縁膜28上に2000Åの厚さのキャパシター第1電極
36をスパッタリング法により蒸着するが、この場合、
該第1電極36はPtを使用し、Ptの代わりに、P
d、Ru、RuO2及び電導性を有する酸化物中のいず
れか一つを使用することができる。Next, as shown in FIG.
The iN layer 34 is formed by RIE (Reac) using BCl 3 / Cl 2.
1500 by the active ion etching method.
Etching is performed to a thickness of Å to form a TiN plug 23 on the plug 32 in the connection hole 29. Then, FIG.
As shown in (G), a capacitor first electrode 36 having a thickness of 2000 Å is deposited on the TiN plug 35 and the insulating film 28 by a sputtering method.
The first electrode 36 uses Pt, and instead of Pt, Pt is used.
Any one of d, Ru, RuO 2 and an oxide having conductivity can be used.
【0018】次いで、図1(H)に示したように、該キ
ャパシター第1電極36上面にマスク用の感光膜38を
形成し、Ptのキャパシター第1電極36には写真食刻
を施してキャパシターストレージノードの形成される領
域を形成し、BCl3/Cl2を用いてRIE法により
エッチングを施し所定形状のキャパシター第1電極36
を形成する。その後、図1(I)に示したように、該キ
ャパシター第1電極36上の感光膜38は、H2SO4
/H2O2湿式溶液(wet solution)に浸
漬(dipping)して完全に除去する。Next, as shown in FIG. 1 (H), a photosensitive film 38 for a mask is formed on the upper surface of the capacitor first electrode 36, and the Pt capacitor first electrode 36 is photo-etched to form a capacitor. A region where a storage node is to be formed is formed, and is etched by RIE using BCl 3 / Cl 2 to form a capacitor first electrode 36 having a predetermined shape.
To form Thereafter, as shown in FIG. 1I, the photosensitive film 38 on the capacitor first electrode 36 is made of H 2 SO 4
Dip in / H 2 O 2 wet solution to remove completely.
【0019】次いで、図1(J)に示したように、それ
らキャパシター第1電極36及び絶縁膜28上に500
Åの厚さの誘電体層40を化学蒸着法により蒸着する
が、この場合、該誘電体層40は3以上の誘電常数を有
するBaSrTiO3、SrTiO3、BaTiO3、
PbZrO3、PZT、及びPLZTでなるグループか
ら選択されたいずれか一つの物質を用いる。その後、該
誘電体層40上にPtのキャパシター第2電極42を蒸
着するが、この場合、該Ptの代わりにWまたはTiN
を使用することもできる。Next, as shown in FIG. 1 (J), 500 μm is formed on the capacitor first electrode 36 and the insulating film 28.
A dielectric layer 40 having a thickness of Å is deposited by a chemical vapor deposition method. In this case, the dielectric layer 40 has BaSrTiO 3 , SrTiO 3 , BaTiO 3 having a dielectric constant of 3 or more,
PbZrO 3, PZT, and one material selected from the group consisting of PLZT used. Thereafter, a capacitor second electrode 42 of Pt is deposited on the dielectric layer 40. In this case, instead of Pt, W or TiN is used.
Can also be used.
【0020】このように製造される本発明に係る半導体
素子のキャパシターの製造方法においては、Ptの薄膜
をエッチングして簡単にキャパシター第1電極を形成す
るようになるため、従来よりも電極の形成工程が極めて
容易に行われる。且つ、ノードの接続とノードのパター
ン間にミスアライン(mis−align)が発生して
も、単結晶シリコンプラグは露出されず、障壁層のTi
Nプラグが露出されるため、従来障壁層の酸化により電
極が割れる現象が防止されキャパシターの信頼性が向上
される。In the method of manufacturing a capacitor of a semiconductor device according to the present invention manufactured as described above, the first electrode of the capacitor can be easily formed by etching the thin film of Pt. The process is performed very easily. In addition, even if a mis-alignment occurs between the connection of the node and the pattern of the node, the single crystal silicon plug is not exposed, and the Ti of the barrier layer is not exposed.
Since the N plug is exposed, the electrode is prevented from being broken due to the oxidation of the barrier layer, and the reliability of the capacitor is improved.
【0021】[0021]
【発明の効果】以上、説明したように、本発明に係る半
導体素子のキャパシターの製造方法においては、絶縁膜
の接続ホール内に障壁層のTiNプラグを形成し、該T
iNプラグ上にキャパシター第1電極を被覆形成してな
るため、従来の誘電体膜蒸着時に発生する障壁層の酸化
問題が解決され、電極が応力を受けて割れる現象が防止
されて、キャパシターの信頼性が向上されるという効果
がある。As described above, in the method of manufacturing a capacitor of a semiconductor device according to the present invention, a TiN plug of a barrier layer is formed in a connection hole of an insulating film, and a TN plug is formed.
Since the first electrode of the capacitor is formed on the iN plug, the problem of oxidation of the barrier layer, which occurs during the conventional deposition of a dielectric film, is solved, and the electrode is prevented from cracking due to stress. This has the effect of improving the performance.
【図1】(A)−(J)は本発明に係る半導体素子のキ
ャパシターの製造工程図である。1 (A) to 1 (J) are manufacturing process diagrams of a capacitor of a semiconductor device according to the present invention.
【図2】従来の半導体素子のキャパシターの構造を示し
た縦断面図である。FIG. 2 is a longitudinal sectional view showing a structure of a capacitor of a conventional semiconductor device.
1、20:半導体基板 2a、2b、22:ゲート電極 3:絶縁層 4:多結晶シリコンプラグ 5:キャパシター 6:ソースまたはドレイン領域 7a:下部電極 7b:上部電極 8:誘電フィルム 9:障壁層 24、25:不純物拡散(ソース/ドレイン)領域 26:フィールド酸化膜 28:絶縁膜 30:多結晶シリコン層 32:プラグ 34:障壁層 35:TiNプラグ 36:キャパシター第1電極 38:感光膜 40:誘電体層 42:キャパシター第2電極 1, 20: semiconductor substrate 2a, 2b, 22: gate electrode 3: insulating layer 4: polycrystalline silicon plug 5: capacitor 6: source or drain region 7a: lower electrode 7b: upper electrode 8: dielectric film 9: barrier layer 24 , 25: impurity diffusion (source / drain) region 26: field oxide film 28: insulating film 30: polycrystalline silicon layer 32: plug 34: barrier layer 35: TiN plug 36: capacitor first electrode 38: photosensitive film 40: dielectric Body layer 42: Capacitor second electrode
フロントページの続き (56)参考文献 特開 平8−335680(JP,A) 特開 平2−83978(JP,A) 特開 平3−127826(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 27/108 H01L 21/28 301 H01L 21/822 H01L 21/8242 H01L 27/04Continuation of the front page (56) References JP-A-8-335680 (JP, A) JP-A-2-83978 (JP, A) JP-A-3-127826 (JP, A) (58) Fields investigated (Int) .Cl. 6 , DB name) H01L 27/108 H01L 21/28 301 H01L 21/822 H01L 21/8242 H01L 27/04
Claims (6)
法であって、 半導体基板上に絶縁膜を形成する工程と、 該絶縁膜を選択的に食刻し、該絶縁膜の所定部位に接続
ホールを形成する工程と、 該接続ホール内部に電導性プラグを形成する工程と、 該接続ホール内の電導性プラグ上に障壁層を形成する工
程と、 それら障壁層及び絶縁膜上に第1金属層を形成する工程
と、 前記接続ホールに対応するように前記第1金属層上にマ
スクパターンを形成する工程と、 該マスクパターンをマスクとし、前記第1金属層をBC
l3/Cl2ガスにより食刻して第1電極パターンを形
成する工程と、 該第1電極パターン上に形成された前記マスクパターン
を除去する工程と、 前記マスクパターンを包含する前記半導体基板全面に誘
電体層を形成する工程と、 該誘電体層上に第2電極を形成する工程と、 を順次行う半導体素子のキャパシターの製造方法。1. A method of manufacturing a capacitor of a semiconductor device, comprising: forming an insulating film on a semiconductor substrate; selectively etching the insulating film; and forming a connection hole in a predetermined portion of the insulating film. Forming a conductive plug in the connection hole, forming a barrier layer on the conductive plug in the connection hole, forming a first metal layer on the barrier layer and the insulating film. Forming, forming a mask pattern on the first metal layer corresponding to the connection hole, using the mask pattern as a mask, and forming the first metal layer on a BC.
forming a first electrode pattern by etching with l 3 / Cl 2 gas; removing the mask pattern formed on the first electrode pattern; and entire surface of the semiconductor substrate including the mask pattern Forming a second electrode on the dielectric layer, and sequentially forming a second electrode on the dielectric layer.
ホール内に電導性プラグを形成する工程間に、該接続ホ
ール及び前記絶縁膜上に多結晶シリコン層を蒸着する段
階と、該多結晶シリコン層をエッチバックする段階と、
が追加して行われる、請求項1記載の半導体素子のキャ
パシターの製造方法。2. A step of depositing a polycrystalline silicon layer on the connection hole and the insulating film between the step of forming the connection hole and the step of forming a conductive plug in the connection hole; Etching back the silicon layer;
2. The method for manufacturing a capacitor of a semiconductor device according to claim 1, further comprising:
N、Ta、W、Moの金属合金及びそれらの金属ケイ化
物(silicide)中のいずれか一つを用いる、請
求項1記載の半導体素子のキャパシターの製造方法。3. The step of forming the barrier layer, the step of forming
2. The method according to claim 1, wherein one of a metal alloy of N, Ta, W, and Mo and a metal silicide thereof is used.
RuO2及び電導性を有する酸化物中のいずれか一つを
用いて形成する、請求項1記載の半導体素子のキャパシ
ターの製造方法。4. The method according to claim 1, wherein the first metal layer comprises Pt, Pd, Ru,
The method for manufacturing a capacitor of a semiconductor device according to claim 1, wherein the capacitor is formed using one of RuO 2 and an oxide having conductivity.
aSrTiO3、SrTiO3、BaTiO3、PbZ
rO3、PZT、及びPLZTでなるグループから選択
されたいずれか一つの物質を用いて行う、請求項1記載
の半導体素子のキャパシターの製造方法。5. The method according to claim 1, wherein the dielectric layer is formed of Ta 2 O 5 , B
aSrTiO 3 , SrTiO 3 , BaTiO 3 , PbZ
The method of claim 1, wherein the method is performed using any one material selected from the group consisting of rO 3 , PZT, and PLZT.
中のいずれか一つにより製造される、請求項1記載の半
導体素子のキャパシターの製造方法。6. The method according to claim 6, wherein the second electrode comprises Pt, W, and TiN.
The method for manufacturing a capacitor of a semiconductor device according to claim 1, wherein the capacitor is manufactured by any one of the following.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019950035979A KR100199093B1 (en) | 1995-10-18 | 1995-10-18 | Fabrication method of capacitor device |
KR95P35979 | 1995-10-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09129849A JPH09129849A (en) | 1997-05-16 |
JP2826717B2 true JP2826717B2 (en) | 1998-11-18 |
Family
ID=19430543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8001741A Expired - Fee Related JP2826717B2 (en) | 1995-10-18 | 1996-01-09 | Method for manufacturing capacitor of semiconductor device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2826717B2 (en) |
KR (1) | KR100199093B1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001057412A (en) | 1999-08-19 | 2001-02-27 | Mitsubishi Electric Corp | Semiconductor device and manufacture thereof |
JP2001217403A (en) * | 2000-02-04 | 2001-08-10 | Hitachi Ltd | Semiconductor integrated circuit device and manufacturing method therefor |
JP4470144B2 (en) | 2003-03-19 | 2010-06-02 | エルピーダメモリ株式会社 | Manufacturing method of semiconductor integrated circuit device |
JP2007036126A (en) | 2005-07-29 | 2007-02-08 | Fujitsu Ltd | Semiconductor device and method for manufacturing the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08335680A (en) * | 1995-06-06 | 1996-12-17 | Texas Instr Inc <Ti> | Method and equipment for forming internal electrode in high-density and high-permittivity memory device |
-
1995
- 1995-10-18 KR KR1019950035979A patent/KR100199093B1/en not_active IP Right Cessation
-
1996
- 1996-01-09 JP JP8001741A patent/JP2826717B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR970024208A (en) | 1997-05-30 |
KR100199093B1 (en) | 1999-06-15 |
JPH09129849A (en) | 1997-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6211005B1 (en) | Methods of fabricating integrated circuit ferroelectric memory devices including a material layer on the upper electrodes of the ferroelectric capacitors thereof | |
JP3720434B2 (en) | Capacitor using high dielectric constant material and manufacturing method thereof | |
JP3384599B2 (en) | Semiconductor device and manufacturing method thereof | |
US8026542B2 (en) | Low resistance peripheral local interconnect contacts with selective wet strip of titanium | |
US5918118A (en) | Dual deposition methods for forming contact metallizations, capacitors, and memory devices | |
JP3579576B2 (en) | Method for manufacturing metal wiring structure of semiconductor device | |
JPH08330513A (en) | Capacitor of semiconductor device and its preparation | |
JP2001044376A (en) | Semiconductor device and manufacture thereof | |
JP2816321B2 (en) | Method for forming charge storage electrode of semiconductor device | |
JP2003188281A (en) | Semiconductor device and manufacturing method thereof | |
JP2988864B2 (en) | Method of manufacturing high dielectric constant capacitor for semiconductor device | |
US5742472A (en) | Stacked capacitors for integrated circuit devices and related methods | |
JP2601022B2 (en) | Method for manufacturing semiconductor device | |
JP2004111624A (en) | Semiconductor device | |
JPH11345944A (en) | Dram cell capacitor and manufacture thereof | |
JP2741672B2 (en) | Method of manufacturing capacitor for stacked DRAM cell | |
JP3172832B2 (en) | Method for manufacturing capacitor of semiconductor device | |
US6395601B2 (en) | Method for forming a lower electrode for use in a semiconductor device | |
JP2636194B2 (en) | Method for manufacturing capacitor of semiconductor DRAM cell and semiconductor DRAM cell | |
JP2826717B2 (en) | Method for manufacturing capacitor of semiconductor device | |
JP2001053251A (en) | Manufacture of semiconductor device | |
JP2002190580A (en) | Semiconductor device and manufacturing method therefor | |
JP2001053249A (en) | Semiconductor device and manufacture thereof | |
KR100464938B1 (en) | A method for forming capacitor using polysilicon plug structure in semiconductor device | |
JP2001267529A (en) | Semiconductor device and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980804 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080918 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080918 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090918 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100918 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |