JP2809927B2 - Constant current source circuit - Google Patents
Constant current source circuitInfo
- Publication number
- JP2809927B2 JP2809927B2 JP4075309A JP7530992A JP2809927B2 JP 2809927 B2 JP2809927 B2 JP 2809927B2 JP 4075309 A JP4075309 A JP 4075309A JP 7530992 A JP7530992 A JP 7530992A JP 2809927 B2 JP2809927 B2 JP 2809927B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- constant current
- resistor
- diode
- current source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Continuous-Control Power Sources That Use Transistors (AREA)
- Amplifiers (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、集積回路等でよく使
用される定電流源回路に関し、特にその温度補償の改善
を図ったものに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a constant current source circuit often used in an integrated circuit or the like, and more particularly to a constant current source circuit having improved temperature compensation.
【0002】[0002]
【従来の技術】図11は定電流源回路の従来例を示す回
路図である。図において、1は基準電圧V1 を発生する
基準電圧源、2はこの基準電圧源1の基準電圧V1 がそ
の非反転入力に印加される演算増幅器、3はこの演算増
幅器2の出力がベースに印加され、エミッタが演算増幅
器2の反転入力に接続されたNPN型のトランジスタ、
4はトランジスタ3のエミッタとグランド間に接続され
た抵抗である。2. Description of the Related Art FIG. 11 is a circuit diagram showing a conventional example of a constant current source circuit. In the figure, reference numeral 1 denotes a reference voltage source for generating a reference voltages V 1, 2 is an operational amplifier reference voltage V 1 of the reference voltage source 1 is applied to the non-inverting input, based the output of the operational amplifier 2 is 3 NPN-type transistor whose emitter is connected to the inverting input of the operational amplifier 2,
Reference numeral 4 denotes a resistor connected between the emitter of the transistor 3 and the ground.
【0003】次に動作について説明する。演算増幅器2
とトランジスタ3によって負帰還回路が構成されてお
り、抵抗4には基準電圧源1と同等の電圧が印加されて
いる。基準電圧源1の電圧をV1 、抵抗4の抵抗値をR
1 とすれば、抵抗4に流れる電流は、I1 =V1 /R1
となる。トランジスタ3の電流増幅率が充分高ければ、
コレクタよりほぼI1 と同等の電流を吸い込むことがで
きる。すなわち、V1 が一定、R1 が一定であればトラ
ンジスタ3のコレクタより、一定電流が得られるので、
この回路を定電流源回路として用いることができる。Next, the operation will be described. Operational amplifier 2
And a transistor 3, a negative feedback circuit is formed. A voltage equivalent to that of the reference voltage source 1 is applied to the resistor 4. The voltage of the reference voltage source 1 is V 1 , and the resistance of the resistor 4 is R
Assuming that 1 , the current flowing through the resistor 4 is I 1 = V 1 / R 1
Becomes If the current gain of the transistor 3 is sufficiently high,
It can be sucked almost I 1 equivalent to the current from the collector. That is, if V 1 is constant and R 1 is constant, a constant current can be obtained from the collector of the transistor 3.
This circuit can be used as a constant current source circuit.
【0004】[0004]
【発明が解決しようとする課題】従来の定電流源回路は
以上のように構成されていたため、抵抗に温度特性があ
ると、定電流出力も温度特性を持ってしまうため、温度
特性のない抵抗を使用する必要があった。しかしなが
ら、特に定電流源回路をIC化する場合、IC内部の抵
抗(拡散抵抗、ポリシリコン抵抗等)は、温度特性が大
きいことが通常であり、この従来回路の構成で温度特性
のない定電流源を実現するのは困難であった。Since the conventional constant current source circuit is configured as described above, if the resistance has a temperature characteristic, the constant current output also has a temperature characteristic. Had to use. However, especially when the constant current source circuit is formed into an IC, the resistance (diffusion resistance, polysilicon resistance, etc.) inside the IC usually has a large temperature characteristic. The source was difficult to realize.
【0005】こうした問題を解決するために、抵抗をI
C外部の抵抗として温度補償を行なうことが考えられる
が、それには、ICに余分な端子が必要となり、また外
付け抵抗であるため、IC内部の抵抗との相対比がとれ
ない等の欠点があった。In order to solve such a problem, the resistance is set to I
It is conceivable that temperature compensation is performed as an external resistor. However, this requires extra terminals for the IC, and has the disadvantages that the external resistor cannot provide a relative ratio with the internal resistor. there were.
【0006】本発明は、上記のような問題点を解決する
ためになされたもので、温度特性の補償された定電流源
回路を、IC化に最適な形で提供せんとするものであ
る。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a constant current source circuit having a temperature characteristic compensated in a form most suitable for IC.
【0007】[0007]
【課題を解決するための手段】この発明に係る定電流源
回路は、抵抗の温度特性を補償するために、基準電圧源
に温度補償特性を持たせることによって、定電流源を実
現したものであり、この基準電圧源の温度補償特性はダ
イオードもしくはダイオード接続されたトランジスタの
順方向電圧温度特性を用いて実現したものである。A constant current source circuit according to the present invention realizes a constant current source by providing a reference voltage source with a temperature compensation characteristic in order to compensate for a temperature characteristic of a resistor. The temperature compensation characteristic of the reference voltage source is realized by using a forward voltage temperature characteristic of a diode or a diode-connected transistor.
【0008】[0008]
【作用】この発明においては、上述のように構成したこ
とにより、温度特性の大きいIC内部の抵抗を用いて
も、基準電圧源によって温度補償されるため、温度特性
のない外部抵抗等を用いる必要がなく、温度特性を持た
ない定電流源回路が実現できる。According to the present invention, since the temperature is compensated by the reference voltage source even if the internal resistance of the IC having a large temperature characteristic is used, it is necessary to use an external resistor having no temperature characteristic. And a constant current source circuit having no temperature characteristics can be realized.
【0009】[0009]
【実施例】以下、この発明の一実施例を図について説明
する。図1は本発明の一実施例による定電流源回路を示
すものであり、図において、図11と同一符号は同一の
ものを示す。10は本実施例における基準電圧源であ
り、相互に直列接続された、電流源I2 ,ダイオードD
1 ,電圧源V1 から構成されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a constant current source circuit according to an embodiment of the present invention. In the figure, the same reference numerals as those in FIG. Reference numeral 10 denotes a reference voltage source according to the present embodiment, which is a current source I 2 and a diode D connected in series with each other.
1, and a voltage source V 1.
【0010】この実施例は、基準電圧源10が、電流源
I2 ,ダイオードD1 ,電圧源V1から構成され、抵抗
4の温度特性を補償すべくダイオードD1 により温度補
償特性が付与されている点を除けば、従来例と同様の構
成を持つ。In this embodiment, the reference voltage source 10 comprises a current source I 2 , a diode D 1 , and a voltage source V 1, and a temperature compensation characteristic is provided by the diode D 1 to compensate the temperature characteristic of the resistor 4. Except for this point, it has the same configuration as the conventional example.
【0011】したがって得られる定電流出力I1 は、I
1 =V2 /R1 で、これは従来例と同様である。ここで
V2 は、基準電圧源10の基準電圧である。Therefore, the constant current output I 1 obtained is I
In 1 = V 2 / R 1, which is similar to the conventional example. Here, V 2 is the reference voltage of the reference voltage source 10.
【0012】次にその温度補償動作について説明する。
ダイオードD1 の順方向電圧VF の温度係数をαとす
る。また抵抗4の温度係数をρとすると、電流I1 は、Next, the temperature compensation operation will be described.
The temperature coefficient of the forward voltage V F of the diode D 1 and alpha. If the temperature coefficient of the resistor 4 is ρ, the current I 1 is
【0013】 I1 =〔V1 +VF (1+αT)〕/〔R1 (1+ρT)〕 …(1) I 1 = [V 1 + V F (1 + αT)] / [R 1 (1 + ρT)] (1)
【0014】で表わせる。Tは温度変化値である。した
がって、## EQU1 ## T is a temperature change value. Therefore,
【0015】 〔V1 +VF (1+αT)〕/(1+ρT) …(2) [V 1 + V F (1 + αT)] / (1 + ρT) (2)
【0016】を一定とすれば、I1 の温度補償が実現で
きる。If is kept constant, the temperature compensation of I 1 can be realized.
【0017】以下、理解を容易にするため具体的な数値
例を用いて説明する。室温(25°C)にて抵抗4の値
をR1 =10kΩ,ダイオードD1 の順方向電圧をVF
=0.7V,電圧源V1 の電圧をV1 =0.3Vとする
と、定電流出力をI1 =100μAと設定できる。Hereinafter, a description will be given using specific numerical examples for easy understanding. At room temperature (25 ° C.), the value of the resistor 4 is R 1 = 10 kΩ, and the forward voltage of the diode D 1 is V F
= 0.7 V and the voltage of the voltage source V 1 is V 1 = 0.3 V, the constant current output can be set to I 1 = 100 μA.
【0018】抵抗4の温度係数ρをρ=−2000pp
m/°Cとする。ダイオードD1 はシリコンであれば、
順方向電圧VF の温度特性は絶対値で−2mV/°Cで
あることが理論上知られているため、この温度特性を温
度係数に換算すると、順方向電圧VF の温度係数αはα
=−2860ppm/°Cとなる。The temperature coefficient ρ of the resistor 4 is given by ρ = −2000 pp
m / ° C. If the diode D 1 is a silicon,
Since forward voltage temperature characteristic of the V F is the absolute value -2 mV / ° C is known theoretically, when converted to the temperature characteristics of the temperature coefficient, the temperature coefficient alpha of the forward voltage V F alpha
= -2860 ppm / ° C.
【0019】温度が100°C上昇した場合を考えてみ
ると、抵抗4の値R1 は、R1 =10kΩ・(1+ρ×
100°C)=8kΩとなる。また基準電圧V2 は、V
2 =V1 +VF ・(1+α×100°C)=0.3V+
0.7V・(1−0.286)=0.8Vとなる。この
時の電流I1 を求めると、I1 =V2 /R1 =0.8V
/8kΩ=100μAとなり、室温と比べ変化せず、温
度補償されていることがわかる。Considering the case where the temperature rises by 100 ° C., the value R 1 of the resistor 4 is R 1 = 10 kΩ · (1 + ρ ×
100 ° C.) = 8 kΩ. The reference voltage V 2 is V
2 = V 1 + V F · (1 + α × 100 ° C) = 0.3V +
0.7V · (1−0.286) = 0.8V. When the current I 1 at this time is obtained, I 1 = V 2 / R 1 = 0.8 V
/ 8 kΩ = 100 μA, which does not change compared to room temperature, and it can be seen that the temperature is compensated.
【0020】図2は本発明の他の実施例である。この実
施例は、図1の基準電圧源10に抵抗R2 ,R3 が追加
されている。これは、ダイオードの順方向電圧の温度係
数を抵抗比に応じて任意の温度係数とするためである。FIG. 2 shows another embodiment of the present invention. In this embodiment, resistors R 2 and R 3 are added to the reference voltage source 10 of FIG. This is because the temperature coefficient of the forward voltage of the diode is set to an arbitrary temperature coefficient according to the resistance ratio.
【0021】理解を容易にするために具体的な数値例を
用いて説明する。抵抗の温度係数ρがρ=−1000p
pm/°Cと、図1の実施例の1/2になった場合を考
える。この場合、補償する基準電圧源1の温度係数も1
/2とすれば良い。このため抵抗R2 =R3 =10kΩ
とする。A description will be given using specific numerical examples in order to facilitate understanding. The temperature coefficient ρ of the resistance is ρ = -1000p
pm / ° C., which is の of the embodiment of FIG. In this case, the temperature coefficient of the reference voltage source 1 to be compensated is also 1
/ 2. Therefore, the resistance R 2 = R 3 = 10 kΩ
And
【0022】図1の実施例と同様に、室温での抵抗4の
抵抗値をR1 =10kΩ,ダイオードの順方向電圧をV
F =0.7Vとし、定電流値I1 がI1 =100μAと
なるように基準電圧源10の電圧値をV2 =1Vとす
る。このとき、基準電圧源1の電圧値V2 は、As in the embodiment of FIG. 1, the resistance of the resistor 4 at room temperature is R 1 = 10 kΩ, and the forward voltage of the diode is V.
F = 0.7 V, and the voltage value of the reference voltage source 10 is set to V 2 = 1 V so that the constant current value I 1 becomes I 1 = 100 μA. At this time, the voltage value V 2 of the reference voltage source 1 is
【0023】 V2 =〔(R3 ×VF )/(R2 +R3 )〕+V1 …(3) V 2 = [(R 3 × V F ) / (R 2 + R 3 )] + V 1 (3)
【0024】で与えられるから、電圧源V1 の電圧はV
1 =0.65Vとなる。The voltage of the voltage source V 1 is given by V
1 = 0.65V.
【0025】次に室温から100°C温度上昇した場合
を考えると、抵抗4の抵抗値R1 はR1 =10kΩ・
(1+ρ×100°C)=9kΩとなる。この時、基準
電圧源10の電圧値V2 は、Next, considering the case where the temperature rises from room temperature by 100 ° C., the resistance value R 1 of the resistor 4 is R 1 = 10 kΩ ·
(1 + ρ × 100 ° C.) = 9 kΩ. At this time, the voltage value V 2 of the reference voltage source 10 is
【0026】 V2 =〔(R3 ×VF (1+αT))/(R2 +R3 )〕+V1 …(4) V 2 = [(R 3 × V F (1 + αT)) / (R 2 + R 3 )] + V 1 (4)
【0027】より、V2 =〔(10kΩ×0.7V(1
+α×100°C))/(10kΩ+10kΩ)〕+
0.65V=〔0.7V・(1−0.286)/2〕+
0.65V=0.9Vとなる。From the above, V 2 = [(10 kΩ × 0.7 V (1
+ Α × 100 ° C)) / (10 kΩ + 10 kΩ)] +
0.65V = [0.7V. (1-0.286) / 2] +
0.65V = 0.9V.
【0028】したがって、I1 =V2 /R1 =0.9V
/9kΩ=100μAとなり、定電流値は室温と比べ変
化せず、温度補償されたことがわかる。Therefore, I 1 = V 2 / R 1 = 0.9V
/ 9 kΩ = 100 μA, indicating that the constant current value did not change compared to room temperature, indicating that the temperature was compensated.
【0029】以上の数値例から分かるように、抵抗の温
度係数に応じて抵抗R2 とR3 の分圧比を変えてやれば
任意の温度係数について補償可能である。As can be seen from the above numerical examples, any temperature coefficient can be compensated by changing the voltage dividing ratio between the resistors R 2 and R 3 according to the temperature coefficient of the resistor.
【0030】以上、抵抗の温度係数が負の場合について
述べたが、図1,図2の接続を、図3,図4のごとく変
えてやれば、抵抗の温度係数が正の場合にも同様に実現
できる。The case where the temperature coefficient of the resistor is negative has been described above. However, if the connection in FIGS. 1 and 2 is changed as shown in FIGS. 3 and 4, the same applies to the case where the temperature coefficient of the resistor is positive. Can be realized.
【0031】また、抵抗の温度係数がかなり大きい場合
は、図5のごとくダイオードを接続し、補償温度係数も
大きくする様に改良してやれば良い。If the temperature coefficient of the resistor is considerably large, a diode may be connected as shown in FIG. 5 to improve the compensation temperature coefficient.
【0032】さらに、上記実施例では、設定すべき電流
値I1 の設定を容易に決定するため、電圧源V1 を用い
たが、特定の条件(定電流値)では、図6のごとく電圧
源V1 を用いず接地としてもよく、上記実施例と同様の
効果が得られる。Furthermore, in the above embodiment, in order to easily determine the set of current values I 1 to be set, but with voltage sources V 1, the specific conditions (constant current), the voltage as in FIG. 6 It may be a ground without using the source V 1, the same effects as described above can be obtained.
【0033】また、上記実施例では基準電圧源10に定
電流源I2 を使用したが、条件によっては抵抗に置き換
えてもよく、同様に実現できる。この実施例を図7に示
す。Further, although using a constant current source I 2 to the reference voltage source 10 in the above embodiment, may be replaced by a resistor depending on conditions, it can be similarly realized. This embodiment is shown in FIG.
【0034】また、図8のごとく、演算増幅器2とトラ
ンジスタ3を、トランジスタQ1 と抵抗R4 からなる簡
易なボルテージフォロワ5に置きかえてやれば、少ない
構成素子で同様に実現できる。As shown in FIG. 8, if the operational amplifier 2 and the transistor 3 are replaced with a simple voltage follower 5 composed of a transistor Q 1 and a resistor R 4 , it can be similarly realized with a small number of components.
【0035】また、図1ないし図8のダイオードD1 を
ダイオード接続されたトランジスタに置き換えてもよ
く、同様に実現できる。Further, may be replaced by a transistor diode D 1 is diode-connected in FIGS. 1-8, can be similarly realized.
【0036】また、図9のごとく、トランジスタQ2 の
VBEの温度係数を、基準電圧源10に追加した抵抗
R2 ,R3 を用いてその抵抗比と同数倍した温度変化を
作り出すことにより、抵抗R1 の温度特性を任意に補償
できる。Also, as shown in FIG. 9, the temperature coefficient of V BE of the transistor Q 2 is made the same as the resistance ratio by using the resistors R 2 and R 3 added to the reference voltage source 10 to produce a temperature change. Accordingly, the temperature characteristics of the resistance R 1 can optionally compensate for.
【0037】理解を容易にするため、具体的な数値例を
用いて説明する。室温(25°C)にてR1 =10k
Ω,I1 =100μAに設定すると、V2 =1Vであ
る。R1の温度係数ρをρ=−3000ppm/°Cと
すると、トランジスタQ2 (VBE)の温度係数は−2m
V/°Cであることが理論上解っているため、トランジ
スタQ2 (VBE)の温度係数−2mV/°Cが抵抗R1
の温度係数−3000ppm/°Cに等しくなるように
その値を拡大するためには、抵抗比(R2 +R3 )/R
3 を(R2 +R3 )/R3 =(−3000ppm/°
C)/(−2mV/°C)=1.5に選べば良いから、
R2 =5kΩ,R3 =10kΩとする。したがってV1
=−0.05Vとしてやれば、V2 =1Vとなり、I1
=100μAとなる(但し、VBE=0.7Vとする)。
室温から100°C温度上昇し、125°Cとなった場
合を考えて見ると、R1 =7kΩとなる。このときV2
=1.5VBE−0.05=0.7Vとなり、I1 =10
0μAと変化しないことが解る。なお、VBEは−2mV
/°Cの温度特性を持つため、125°CではVBE=
0.5Vとなる。For easy understanding, a description will be given using specific numerical examples. R 1 = 10k at room temperature (25 ° C)
When Ω, I 1 = 100 μA, V 2 = 1V. Assuming that the temperature coefficient ρ of R 1 is ρ = −3000 ppm / ° C., the temperature coefficient of the transistor Q 2 (V BE ) is −2 m
V / ° C., it is theoretically known that the temperature coefficient of the transistor Q 2 (V BE ) is −2 mV / ° C. and the resistance R 1
In order to increase the value so that the temperature coefficient becomes equal to -3000 ppm / ° C., the resistance ratio (R 2 + R 3 ) / R
3 as (R 2 + R 3 ) / R 3 = (− 3000 ppm / °)
C) / (− 2 mV / ° C.) = 1.5
Let R 2 = 5 kΩ and R 3 = 10 kΩ. Therefore V 1
= −0.05V, V 2 = 1V, and I 1
= 100 μA (provided that V BE = 0.7 V).
Considering the case where the temperature rises from room temperature by 100 ° C. to 125 ° C., R 1 = 7 kΩ. At this time, V 2
= 1.5V BE -0.05 = 0.7V and I 1 = 10
It turns out that it does not change to 0 μA. V BE is -2 mV
/ ° C, so that at 125 ° C, V BE =
It becomes 0.5V.
【0038】次に、R1 の温度係数がρ=−4500p
pm/°Cである場合を考える。この場合は、(R2 +
R3 )/R3 =(−4500ppm/°C)/(−2m
V/°C)=2.25とすれば良く、これはR2 =1
2.5KΩ,R3 =10KΩとすることにより実現でき
る。また電圧源V1 の電圧をV1 =−0.575Vとす
る。室温(25°c)では同様にR1 =10kΩ,VBE
=0.7Vであるから、V2 =1Vとなり、I1 =10
0μAと設定できる。Next, when the temperature coefficient of R 1 is ρ = -4500p
Consider the case of pm / ° C. In this case, (R 2 +
R 3 ) / R 3 = (− 4500 ppm / ° C.) / (− 2 m
V / ° C.) = 2.25, which is R 2 = 1
It can be realized by setting 2.5 KΩ and R 3 = 10 KΩ. The voltage of the voltage source V 1 and V 1 = -0.575V. At room temperature (25 ° C.), R 1 = 10 kΩ, V BE
= 0.7 V, V 2 = 1 V, and I 1 = 10
It can be set to 0 μA.
【0039】室温から100°c温度上昇したと仮定す
ると、R1 =5.5KΩ,V2 =2.25VBE(0.5
V)+V1 (−0.575V)=0.55Vとなり、I
1 =100μAとなり、やはり変化しない。Assuming that the temperature rises from room temperature by 100 ° C., R 1 = 5.5 KΩ, V 2 = 2.25 V BE (0.5
V) + V 1 (−0.575 V) = 0.55 V, and I
1 = 100 μA, which does not change.
【0040】以上述べた様に、この図9の構成によっ
て、トランジスタのVBEの温度係数を抵抗比と同数倍し
てやることによっても、抵抗の温度特性を任意に補償で
き、IC化に最適な温度補償された定電流源を得ること
ができる。As described above, the temperature characteristic of the resistor can be arbitrarily compensated by multiplying the temperature coefficient of V BE of the transistor by the same number as the resistance ratio by the configuration of FIG. A temperature-compensated constant current source can be obtained.
【0041】なお、V1 は設定すべき電流値I1 を任意
に設定するためのものであるが、特定の条件(定電流
値)ではV1 を用いず接地しても同様の効果が得られ
る。Although V 1 is used to arbitrarily set the current value I 1 to be set, the same effect can be obtained even under the specific conditions (constant current value) without using V 1 and grounding. Can be
【0042】また、図9は抵抗の温度係数が負の場合に
ついて述べたが、図10の様に抵抗の温度係数が正の場
合も同様に実現できる。Although FIG. 9 has described the case where the temperature coefficient of the resistor is negative, the same can be realized when the temperature coefficient of the resistor is positive as shown in FIG.
【0043】また、トランジスタQ2 はNPNで説明し
たが、PNPトランジスタにても同様に実現可能であ
る。Although the transistor Q 2 has been described as an NPN, it can be similarly realized by a PNP transistor.
【0044】[0044]
【発明の効果】以上述べたように、この発明に係る定電
流源回路によれば、ダイオードもしくはダイオード接続
されたトランジスタの順方向電圧温度特性を用いて抵抗
の温度特性を補償するような温度補償特性を持たせるよ
うにしたので、抵抗の温度特性の影響を受けず、温度変
化のない定電流源回路が得られ、IC化が容易になるも
のが得られる効果がある。As described above, according to the constant current source circuit of the present invention, the temperature compensation for compensating the temperature characteristic of the resistor by using the forward voltage temperature characteristic of the diode or the diode-connected transistor. Since the characteristic is provided, a constant current source circuit which is not affected by the temperature characteristic of the resistor and does not change in temperature can be obtained, and there is an effect that a circuit which can be easily integrated is obtained.
【図1】この発明の第1の実施例を示す回路図である。FIG. 1 is a circuit diagram showing a first embodiment of the present invention.
【図2】この発明の第2の実施例を示す回路図である。FIG. 2 is a circuit diagram showing a second embodiment of the present invention.
【図3】この発明の第3の実施例を示す回路図である。FIG. 3 is a circuit diagram showing a third embodiment of the present invention.
【図4】この発明の第4の実施例を示す回路図である。FIG. 4 is a circuit diagram showing a fourth embodiment of the present invention.
【図5】この発明の第5の実施例を示す回路図である。FIG. 5 is a circuit diagram showing a fifth embodiment of the present invention.
【図6】この発明の第6の実施例を示す回路図である。FIG. 6 is a circuit diagram showing a sixth embodiment of the present invention.
【図7】この発明の第7の実施例を示す回路図である。FIG. 7 is a circuit diagram showing a seventh embodiment of the present invention.
【図8】この発明の第8の実施例を示す回路図である。FIG. 8 is a circuit diagram showing an eighth embodiment of the present invention.
【図9】この発明の第9の実施例を示す回路図である。FIG. 9 is a circuit diagram showing a ninth embodiment of the present invention.
【図10】この発明の第10の実施例を示す回路図であ
る。FIG. 10 is a circuit diagram showing a tenth embodiment of the present invention.
【図11】従来の定電流源回路を示す回路図である。FIG. 11 is a circuit diagram showing a conventional constant current source circuit.
2 演算増幅器 3 トランジスタ 4,R2 ,R3 抵抗 D1 ダイオード Q2 ダイオード接続されたトランジスタ 10 基準電圧源Second operational amplifier 3 transistors 4, R 2, R 3 resistors D 1 diode Q 2 diode-connected transistor 10 reference voltage source
Claims (1)
定電流を得る定電流源回路において、 上記基準電圧源内に、その順方向電圧温度変化により上
記抵抗の温度変化を補償する、ダイオードもしくはダイ
オード接続されたトランジスタと、該ダイオードもしく
はダイオード接続されたトランジスタと直列接続され
た,任意の上記定電流値を得るための電圧源とを設けて
なることを特徴とする定電流源回路。1. A constant current source circuit for converting a voltage of a reference voltage source by a resistor to obtain a constant current, wherein a diode or a diode in the reference voltage source for compensating a temperature change of the resistor by a forward voltage temperature change. A diode-connected transistor and the diode or
Is connected in series with a diode-connected transistor
And a voltage source for obtaining any of the constant current values .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4075309A JP2809927B2 (en) | 1992-02-24 | 1992-02-24 | Constant current source circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4075309A JP2809927B2 (en) | 1992-02-24 | 1992-02-24 | Constant current source circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05235661A JPH05235661A (en) | 1993-09-10 |
JP2809927B2 true JP2809927B2 (en) | 1998-10-15 |
Family
ID=13572528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4075309A Expired - Fee Related JP2809927B2 (en) | 1992-02-24 | 1992-02-24 | Constant current source circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2809927B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7847534B2 (en) | 2007-03-26 | 2010-12-07 | Panasonic Corporation | Reference current circuit |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5482096B2 (en) * | 2009-10-26 | 2014-04-23 | セイコーエプソン株式会社 | Constant current generation circuit, integrated circuit device, and electronic device |
JP5860644B2 (en) * | 2011-09-15 | 2016-02-16 | セイコーNpc株式会社 | LVDS output circuit |
JP2014099926A (en) * | 2014-02-20 | 2014-05-29 | Seiko Epson Corp | Constant current generating circuit, resistance circuit, integrated circuit device, and electronic apparatus |
JP7534590B2 (en) | 2020-03-24 | 2024-08-15 | ミツミ電機株式会社 | Discharge Control Circuit |
JP7372206B2 (en) * | 2020-05-25 | 2023-10-31 | 日清紡マイクロデバイス株式会社 | constant current circuit |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6017316A (en) * | 1983-07-08 | 1985-01-29 | Canon Inc | Compensating circuit of temperature |
JPH03144812A (en) * | 1989-10-31 | 1991-06-20 | Matsushita Electric Ind Co Ltd | Constant current circuit |
-
1992
- 1992-02-24 JP JP4075309A patent/JP2809927B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7847534B2 (en) | 2007-03-26 | 2010-12-07 | Panasonic Corporation | Reference current circuit |
Also Published As
Publication number | Publication date |
---|---|
JPH05235661A (en) | 1993-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5774013A (en) | Dual source for constant and PTAT current | |
US5229711A (en) | Reference voltage generating circuit | |
US5568045A (en) | Reference voltage generator of a band-gap regulator type used in CMOS transistor circuit | |
KR100233761B1 (en) | Band-gap reference circuit | |
US4935690A (en) | CMOS compatible bandgap voltage reference | |
US4507573A (en) | Current source circuit for producing a small value output current proportional to an input current | |
JPH01143510A (en) | Two-terminal temperture compensation type current source circuit | |
JPH0618015B2 (en) | Current stabilization circuit | |
JP2759905B2 (en) | Circuit device using complementary MOS technology | |
US8446141B1 (en) | Bandgap curvature correction circuit for compensating temperature dependent bandgap reference signal | |
JPS6148168B2 (en) | ||
JP2809927B2 (en) | Constant current source circuit | |
JPH0770935B2 (en) | Differential current amplifier circuit | |
JPS60229125A (en) | Voltage output circuit | |
JPH0526208B2 (en) | ||
US6175265B1 (en) | Current supply circuit and bias voltage circuit | |
JPS5894019A (en) | Band gap regulator | |
US20120153997A1 (en) | Circuit for Generating a Reference Voltage Under a Low Power Supply Voltage | |
JP2729001B2 (en) | Reference voltage generation circuit | |
GB2240442A (en) | Threshold voltage generating circuit for integrated circuit | |
US6407616B1 (en) | Temperature compensation circuit for an electronic device | |
JPH05218290A (en) | Temperature compensation type reference voltage generating circuit for semiconductor device | |
JP2599304B2 (en) | Constant current circuit | |
JP3088336B2 (en) | Frequency conversion circuit | |
JPH0588767A (en) | Band gap reference circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080731 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080731 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090731 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100731 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110731 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110731 Year of fee payment: 13 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110731 Year of fee payment: 13 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |