[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2808479B2 - Method for producing acid-resistant composite separation membrane - Google Patents

Method for producing acid-resistant composite separation membrane

Info

Publication number
JP2808479B2
JP2808479B2 JP2172639A JP17263990A JP2808479B2 JP 2808479 B2 JP2808479 B2 JP 2808479B2 JP 2172639 A JP2172639 A JP 2172639A JP 17263990 A JP17263990 A JP 17263990A JP 2808479 B2 JP2808479 B2 JP 2808479B2
Authority
JP
Japan
Prior art keywords
silica sol
liquid
minutes
electric furnace
porous substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2172639A
Other languages
Japanese (ja)
Other versions
JPH0463119A (en
Inventor
正司 浅枝
竹内  善幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2172639A priority Critical patent/JP2808479B2/en
Publication of JPH0463119A publication Critical patent/JPH0463119A/en
Application granted granted Critical
Publication of JP2808479B2 publication Critical patent/JP2808479B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Silicon Compounds (AREA)
  • Silicon Polymers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐酸性複合分離膜の製造方法に関し、特に有
機酸を含む水溶液から水を選択的に分離することができ
る耐酸性複合分離膜の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing an acid-resistant composite separation membrane, and particularly to a method for producing an acid-resistant composite separation membrane capable of selectively separating water from an aqueous solution containing an organic acid. It relates to a manufacturing method.

〔従来の技術〕[Conventional technology]

有機酸を含む水溶液から水を選択的に分離することが
できる耐酸性の分離膜としては有機高分子膜(ポリイミ
ド系、テフロン系)、無機多孔質膜がある。前者は分離
係数は大きいが透過速度が小さく、かつ耐熱性が悪いの
で比較的低温でしか使用できないという不具合があり、
後者は透過速度が大きく耐熱性はあるが分離係数が小さ
いという不具合があった。
Examples of the acid-resistant separation membrane capable of selectively separating water from an aqueous solution containing an organic acid include an organic polymer membrane (polyimide-based and Teflon-based) and an inorganic porous membrane. The former has a large separation factor but a low permeation rate, and has poor heat resistance, so it can be used only at relatively low temperatures.
The latter has a disadvantage that the permeation rate is large and the heat resistance is high, but the separation coefficient is small.

無機多孔質膜としては無機多孔体を基材とし、その表
面に分離機能を有する無機膜を担持した膜がある。その
例としては、化学工学協会第54年会において広島大学工
学部教授浅枝正司らが発表した方法により製造した無機
膜がある。この製造方法は次のとおりである。
As an inorganic porous membrane, there is a membrane having an inorganic porous body as a base material and an inorganic membrane having a separation function supported on the surface thereof. As an example, there is an inorganic film manufactured by a method announced by Professor Masashi Asaeda of the Faculty of Engineering, Hiroshima University at the 54th Annual Meeting of the Chemical Engineering Association. This manufacturing method is as follows.

無機多孔体としては第1図に示すように種々のものが
ある。しかしながら、無機多孔体の細孔径が大きくある
とシリカゲルの前駆体であるシリカゾルの必要担持量が
多く、かつクラックが発生しやすくなり、また細孔径が
小さすぎると透過性能を低下させるので細孔径が100〜1
0,000Å程度の無機多孔体を使用することが好ましい。
特に、細孔径1,000Å以上の発泡シリカ、焼結アルミナ
及びムライト等が好ましく使用される。
There are various inorganic porous bodies as shown in FIG. However, if the pore size of the inorganic porous material is large, the required amount of silica sol, which is a precursor of silica gel, is required to be large, and cracks are likely to occur, and if the pore size is too small, the permeation performance is reduced. 100-1
It is preferable to use an inorganic porous body of about 0,000 °.
In particular, foamed silica, sintered alumina, mullite, etc. having a pore diameter of 1,000 mm or more are preferably used.

一般に、シリカゲルの製法としては、次の方法があ
る。
Generally, the following method is used as a method for producing silica gel.

(1) 水ガラス溶液に大量のNaCl,Na2SO4等の塩を添
加し、更に酸で中和して白色粉末状のシリカゲルを得る
水ガラス溶液からの沈澱法 (2) SiCl4を水蒸気流中で燃焼させてSiO2ガスを生
成させ、これを捕集するSiCl4燃焼法 (3) SiO2を1,700℃付近で蒸発させ、これを凝縮さ
せるSiO2蒸気凝集法 しかしながら、これらの方法によって得られたSiO2
子を数十μm程度の薄膜にコーティングし、更に10〜30
Å程度の多孔質のものとすることは極めて困難である。
(1) water glass solution into a large amount of NaCl, were added salts such as Na 2 SO 4, precipitation method (2) from the water glass solution to obtain a white powdery silica gel neutralized with further acid SiCl 4 vapor It is burned in the flow to produce a SiO 2 gas, which SiCl 4 combustion method for collecting (3) SiO 2 is evaporated in the vicinity of 1,700 ° C. the, SiO 2 vapor aggregation method to condense it, however, by these methods The obtained SiO 2 particles are coated on a thin film of about several tens μm, and
It is extremely difficult to obtain a porous material of about Å.

浅枝らの提案した方法はシリカゾルを加水分解してシ
リカゲルを製造する方法である。これはシリカゲルの前
駆体となるシリカゾルとして、例えばエトキシシラン
基、メトキシ基等を含むアルコキシシランを加水分解し
て得られるものを使用する。
The method proposed by Asada et al. Is a method for producing silica gel by hydrolyzing silica sol. As the silica sol which is a precursor of silica gel, for example, a silica sol obtained by hydrolyzing an alkoxysilane containing an ethoxysilane group, a methoxy group or the like is used.

これらのアルコキシシランの例としては、テトラエト
キシシラン{ケイ酸エチル、SiO(C2H5}、テトラ
メトキシシラン{ケイ酸メチル、SiO(OCH3}等が
あり、これらはいずれも分離対象となる有機酸混合物に
より分離性能が相違するため使い分けられている。
Examples of these alkoxysilanes include tetraethoxysilane {ethyl silicate, SiO (C 2 H 5 ) 4 }, tetramethoxysilane {methyl silicate, SiO (OCH 3 ) 4 }, and any of these. Since the separation performance differs depending on the organic acid mixture to be separated, they are used properly.

分離膜として使用するシリカゲル膜は原料のテトラエ
トキシシラン等を水で加水分解し、重縮合反応を未完成
のまま途中で停止して活性基として−OHを残存する状態
でゲル化することにより分離膜として使用することに特
徴がある。
The silica gel membrane used as the separation membrane is separated by hydrolyzing the raw material, tetraethoxysilane, etc., with water, stopping the polycondensation reaction halfway without completion, and gelling with -OH remaining as the active group. It is characterized by being used as a membrane.

テトラエトキシシランの反応の例を以下に示す。 An example of the reaction of tetraethoxysilane is shown below.

テトラエトキシシラン等を加水分解した後、800℃以
上に加熱すると−OH基が完全になくなり−Si−O−の結
晶構造を有するガラスとなるが、この製法は既に知られ
ている。
Heating to 800 ° C. or more after hydrolyzing tetraethoxysilane or the like results in complete disappearance of —OH groups, resulting in glass having a —Si—O— crystal structure. This production method is already known.

この重縮合反応の進行度合は見かけ上はゾルの粘度で
判断できる。例えば、後記の第4図のゾル(1−A),
(1−B),(1−C)を選択して適正に担持すること
によりゲルの細孔径を制御することが可能である。
The degree of progress of the polycondensation reaction can be apparently determined by the viscosity of the sol. For example, the sol (1-A) in FIG.
It is possible to control the pore size of the gel by selecting (1-B) and (1-C) and supporting them appropriately.

一般に、加水分解状態のゾルを室温で放置すると約17
0時間で完全にゲル化し、80℃では約40〜120分程度でゲ
ル化する。従って、安定した膜を製造するためには、こ
のゲル化反応(重縮合反応)を凍結する必要がある。そ
こで、ゾルを担持した後の無機多孔体を200℃以上で焼
成する。この焼成が不十分な場合、製造したゲル中に−
C2H5基が残存し耐酸性が不安定な膜となる。
Generally, when a hydrolyzed sol is left at room temperature,
It gels completely in 0 hours, and gels in about 40 to 120 minutes at 80 ° C. Therefore, in order to produce a stable film, it is necessary to freeze this gelling reaction (polycondensation reaction). Then, the inorganic porous body after supporting the sol is fired at 200 ° C. or higher. If this calcination is insufficient,
C 2 H 5 groups remain, resulting in a film having unstable acid resistance.

無機多孔体の細孔内にシリカゾルを担持させる方法は
任意の方法が採用できるが、そのシリカゾルを安定した
シリカゾル膜とするには適正な操作条件がある。その一
例として、化学工学協会第54年会において発表された
「無機多孔質薄膜による有機酸/水系混合物の分離」が
ある。その方法は以下の通りである。
Although any method can be adopted as a method for supporting the silica sol in the pores of the inorganic porous material, there are appropriate operating conditions for making the silica sol a stable silica sol film. One example is "Separation of organic acid / aqueous mixture by inorganic porous thin film" announced at the 54th Annual Meeting of the Society of Chemical Engineers, Japan. The method is as follows.

テトラエトキシシランと酸触媒を常温の水中に加え
てシリカゾルを調製する。その組成を第1表に示す。
A silica sol is prepared by adding tetraethoxysilane and an acid catalyst to water at room temperature. The composition is shown in Table 1.

無機多孔体よりなる管を前記シリカゾル中に浸漬
し、該多孔体の細孔内及びその管外壁に重縮合反応によ
りゲルを形成させる。
A tube made of an inorganic porous material is immersed in the silica sol, and a gel is formed in the pores of the porous material and the outer wall of the tube by a polycondensation reaction.

重合が終了した後、シリカゾル溶液から該多孔体を
取り出し室温で放置して表面を乾燥させる。
After the polymerization is completed, the porous body is taken out of the silica sol solution and left at room temperature to dry the surface.

200℃の乾燥器内で該多孔体を乾燥する。 The porous body is dried in a dryer at 200 ° C.

上記操作をシリカゾル1及び2についてそれぞれ2
〜3回繰り返す。
The above operation was repeated for silica sols 1 and 2 respectively.
Repeat ~ 3 times.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

前記、化学工学協会第54年会において発表された「無
機多孔質薄膜による有機酸/水系混合物の分離」におい
て提案された方法により製造した分離膜を使用して、ア
クリル酸水溶液の分離実験を行った。その結果を第14図
に示す。経過時間の増加により分離性能αが低下してい
る。
Using the separation membrane produced by the method proposed in "Separation of organic acid / aqueous mixture by inorganic porous thin film" presented at the 54th Annual Meeting of the Chemical Engineering Society, a separation experiment of acrylic acid aqueous solution was performed. Was. The results are shown in FIG. As the elapsed time increases, the separation performance α decreases.

本発明は上記技術水準に鑑み、従来の分離膜における
ような不具合がなく、耐酸性、耐熱性耐圧性があり、か
つ透過速度及び分離係数ともに実用上満足できる性質を
有する分離膜を提供しようとするものである。
The present invention has been made in view of the above-mentioned technical level, and aims to provide a separation membrane having properties which are practically satisfactory in both of the conventional separation membranes, having no acidity, heat resistance and pressure resistance, and having a permeation rate and a separation coefficient. Is what you do.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は無機多孔体の細孔内に、エトキシ基またはメ
トキシ基を含むアルコキシシランの加水分解を経て得ら
れたシリカゲルを担持してなる耐酸性複合分離膜の製造
方法において、 (1) シリカゾルの原料であるアルコキシシランと水
と酸触媒の混合割合を変化させて製造する複数の種類の
シリカゾルの調製条件において、担持するシリカゾルの
原料調合割合をシリカゾル1用とシリカゾル2用の2種
類に区別し、 (2) シリカゾル1用原料のアルコキシシランに対す
る水の重量比を0.5〜2.0とし、かつ、反応触媒として、
アルコキシシランに対する酸触媒の重量比を0.01〜0.1
とし、 (3) シリカゾル2用原料のアルコキシシランに対す
る水の重量比を2.0〜50とし、かつ、反応触媒として、
アルコキシシランに対する酸触媒の重量比を0.01〜0.5
とし、 (4) 前記シリカゾル1用原料を沸騰状態に保持し、
沸騰開始後約25分、約20分及び約15分の液をそれぞれ、
1−A、1−B及び1−C液とし、 (5) 前記シリカゾル2用原料を常温で30分〜90分間
撹拌・混合してシリカゾル2を製造し、 (6) 多孔質基材の表面上に前記シリカゾル1−A液
を担持した後、該多孔質基材を約200℃に設定した電気
炉内で5〜15分間焼成し、次に該多孔体を約300℃に設
定した電気炉内で5〜15分間焼成し、次に該多孔質基材
を約400℃に設定した電気炉内で5〜15分間焼成し、次
に該多孔質基材を約500℃に設定した電気炉内で5〜15
分間焼成し、 (7) 該シリカゾル1−A液を担持した多孔質基材の
表面に更にシリカゾル1−A液を担持した後、前記
(6)の操作を2〜3回繰り返し、 (8) 次に該シリカゾル1−A液を担持した多孔質基
材の表面上に更にシリカゾル1−B液を使用して上記
(6)〜(7)と同様の処理を行い、 (9) 次に該シリカゾル1−B液を担持した多孔質基
材の表面上にシリカゾル1−C液を使用して上記(6)
〜(7)と同様の処理を行い、 (10) 次に前記シリカゾル1−A、1−B及び1−C
液を担持してなる多孔質基材の表面上に前記シリカゾル
2液を担持し、該多孔体を約200℃に設定した電気炉内
で5〜15分間焼成し、次に該多孔質基材を約300℃に設
定した電気炉内で5〜15分間焼成し、次に該多孔質基材
を約400℃に設定した電気炉内で5〜15分間焼成し、次
に該多孔質基材を約500℃に設定した電気炉内で5〜15
分間焼成し、 (11) 該シリカゾル2液を担持した多孔質基材の表面
に更にシリカゾル2液を担持した後、前記(10)の操作
を2〜3回繰り返す ことを特徴とする耐酸性複合分離膜の製造方法である。
The present invention relates to a method for producing an acid-resistant composite separation membrane comprising silica gel obtained by hydrolyzing an alkoxysilane containing an ethoxy group or a methoxy group in pores of an inorganic porous material. In the preparation conditions of a plurality of types of silica sols produced by changing the mixing ratio of the raw material alkoxysilane, water and acid catalyst, the raw material mixing ratio of the silica sol to be supported is classified into two types, silica sol 1 and silica sol 2. (2) The weight ratio of water to alkoxysilane as the raw material for silica sol 1 is 0.5 to 2.0, and the reaction catalyst is
The weight ratio of the acid catalyst to the alkoxysilane is 0.01 to 0.1.
(3) The weight ratio of water to alkoxysilane as the raw material for silica sol 2 is set to 2.0 to 50, and as a reaction catalyst,
The weight ratio of the acid catalyst to the alkoxysilane is 0.01 to 0.5.
(4) maintaining the raw material for the silica sol 1 in a boiling state,
About 25 minutes, about 20 minutes and about 15 minutes of liquid after the start of boiling, respectively
1-A, 1-B and 1-C liquids; (5) The raw material for silica sol 2 was stirred and mixed at room temperature for 30 to 90 minutes to produce silica sol 2, (6) Surface of porous substrate After supporting the silica sol 1-A liquid thereon, the porous substrate is baked for 5 to 15 minutes in an electric furnace set at about 200 ° C., and then the porous body is set in an electric furnace set at about 300 ° C. Baking for 5 to 15 minutes in an electric furnace, and then baking the porous substrate in an electric furnace set to about 400 ° C. for 5 to 15 minutes, and then setting the porous substrate to about 500 ° C. in an electric furnace. Within 5 to 15
(7) After the silica sol 1-A liquid is further supported on the surface of the porous substrate supporting the silica sol 1-A liquid, the operation of the above (6) is repeated two to three times, (8) Next, on the surface of the porous substrate supporting the silica sol 1-A liquid, the same treatment as in the above (6) to (7) is further performed using the silica sol 1-B liquid, and (9) (6) using the silica sol 1-C liquid on the surface of the porous substrate supporting the silica sol 1-B liquid
(10) Next, the above silica sols 1-A, 1-B and 1-C
The above-mentioned silica sol 2 liquid is supported on the surface of the porous base material supporting the liquid, and the porous body is baked for 5 to 15 minutes in an electric furnace set at about 200 ° C. Is fired in an electric furnace set at about 300 ° C. for 5 to 15 minutes, and then the porous substrate is fired in an electric furnace set at about 400 ° C. for 5 to 15 minutes, and then the porous substrate 5 to 15 in an electric furnace set to about 500 ° C
(11) After the silica sol 2 liquid is further supported on the surface of the porous base material supporting the silica sol 2 liquid, the operation (10) is repeated two to three times. This is a method for producing a separation membrane.

第2表にシリカゾル調製の薬剤の組成を示す。 Table 2 shows the composition of the drug for preparing the silica sol.

シリカゾル1は沸騰後の保持時間により第4図の性状
を示す。時間経過に伴ってゾルの重縮合が進み、そのゾ
ルを基材に担持して加熱した後に形成されるシリカゲル
の細孔径が小さくなる。従って重縮合の度合を選択する
ことにより分離膜の特性を変化できる。
The silica sol 1 has the properties shown in FIG. 4 depending on the retention time after boiling. The polycondensation of the sol progresses with time, and the pore diameter of silica gel formed after the sol is supported on a substrate and heated is reduced. Therefore, the characteristics of the separation membrane can be changed by selecting the degree of polycondensation.

シリカゾル2は第5図に示すように粘度変化が小さい
(25℃において)が、数千時間後に急激に重縮合が進ん
で高粘度の液になる。
As shown in FIG. 5, the silica sol 2 has a small change in viscosity (at 25 ° C.), but polycondensation proceeds rapidly after several thousand hours to form a high viscosity liquid.

本発明は複数のシリカゾル1を製造{第4図に示す実
施例では(1−A)、(1−B)及び(1−C)液の3
種類}し、該シリカゾル1を多孔質基材表面に順次担持
することにより細孔径を調整し、さらに選択分離機能を
有するシリカゾル2をその表面に担持することにより、
安定した耐酸性複合分離膜を製造する方法を提案するも
のである。
According to the present invention, a plurality of silica sols 1 are produced. In the embodiment shown in FIG. 4, (1-A), (1-B) and (1-C)
By adjusting the pore size by sequentially supporting the silica sol 1 on the surface of the porous substrate, and further supporting the silica sol 2 having a selective separation function on the surface,
A method for producing a stable acid-resistant composite separation membrane is proposed.

すなわち、本発明は以下の方法で製膜を行う。 That is, in the present invention, a film is formed by the following method.

第2表のシリカゾル1の組成の薬剤を使用して第4
図に示す数種類の粘度(細孔径)のゾルを調製する。一
例としては、シリカゾル1用原料を沸騰状態に保持し、
沸騰開始後約25分、約20分及び約15分の液をそれぞれ、
1−A、1−B及び1−C液とする。
Using the chemicals of the composition of silica sol 1 in Table 2
Prepare sols of several viscosities (pore diameters) as shown in the figure. As an example, the raw material for silica sol 1 is kept in a boiling state,
About 25 minutes, about 20 minutes and about 15 minutes of liquid after the start of boiling, respectively
1-A, 1-B and 1-C liquids.

次に、第2表のシリカゾル2の組成の薬剤を使用し
て常温で約30分〜90分間撹拌・混合してシリカゾル2を
製造する。
Next, silica sol 2 is manufactured by stirring and mixing at room temperature for about 30 to 90 minutes using a chemical having the composition of silica sol 2 shown in Table 2.

多孔質基材(第1図参照)の表面上に前記シリカゾ
ル1−A液を担持した後、該多孔質基材を約200℃に設
定した電気炉内で約5〜15分間焼成し、次に該多孔体を
約300℃に設定した電気炉内で約5〜15分間焼成し、次
に該多孔体を約400℃に設定した電気炉内で約5〜15分
間焼成し、次に該多孔質基材を約500℃に設定した電気
炉内で約5〜15分間焼成する。
After supporting the silica sol 1-A liquid on the surface of a porous substrate (see FIG. 1), the porous substrate is baked for about 5 to 15 minutes in an electric furnace set at about 200 ° C. The porous body is fired in an electric furnace set at about 300 ° C. for about 5 to 15 minutes, and then the porous body is fired in an electric furnace set at about 400 ° C. for about 5 to 15 minutes. The porous substrate is fired in an electric furnace set at about 500 ° C. for about 5 to 15 minutes.

該シリカゾル1−A液を担持した多孔質基材の表面
に更にシリカゾル1−A液を担持した後、前記の操作
を2〜3回繰り返す。
After the silica sol 1-A liquid is further supported on the surface of the porous substrate supporting the silica sol 1-A liquid, the above operation is repeated two to three times.

次に該シリカゾル1−A液を担持した多孔質基材の
表面上に更にシリカゾル1−B液を使用して上記〜
と同様の処理を行う。
Next, a silica sol 1-B solution was further used on the surface of the porous base material supporting the silica sol 1-A solution,
The same processing is performed.

次に該シリカゾル1−B液を担持した多孔質基材の
表面上にシリカゾル1−C液を使用して上記〜と同
様の処理を行う。
Next, on the surface of the porous substrate supporting the silica sol 1-B liquid, the same treatment as described above is performed using the silica sol 1-C liquid.

次に前記シリカゾル1−A、1−B及び1−C液を
担持してなる多孔質基材の表面上に前記シリカゾル2液
を担持し、該多孔体を約200℃に設定した電気炉内で約
5〜15分間焼成し、次に該多孔質基材を約300℃に設定
した電気炉内で約5〜15分間焼成し、次に該多孔質基材
を約400℃に設定した電気炉内で約5〜15分間焼成し、
次に該多孔質基材を約500℃に設定した電気炉内で5〜1
5分間焼成する。
Next, the silica sol 2 liquid is supported on the surface of a porous base material supporting the silica sol 1-A, 1-B and 1-C liquid, and the porous body is placed in an electric furnace set at about 200 ° C. For about 5 to 15 minutes, and then the porous substrate is fired for about 5 to 15 minutes in an electric furnace set to about 300 ° C., and then the porous substrate is heated to about 400 ° C. Bake for about 5 to 15 minutes in the furnace,
Next, the porous substrate was placed in an electric furnace set at about 500 ° C. for 5 to 1
Bake for 5 minutes.

該シリカゾル2液を担持した多孔質基材の表面に更
にシリカゾル2液を担持した後、前記の操作を2〜3
回繰り返す。
After further supporting the silica sol 2 liquid on the surface of the porous substrate supporting the silica sol 2 liquid,
Repeat several times.

上記の処理温度、時間、回数等の最適条件は、シリカ
ゾルの状態により相違する。例えば、加水分解の速度
は、テトラエトキシシランに対する水の割合(H2O/Si
(OC2H5=r)に大きく影響する。例えば、80℃に
おけるシリカゾル1の粘度に及ぼすrの影響を第6図に
示す。シリカゾル1に対してはr=0.5〜2.0が工業的に
適用できる条件であり、好ましくは1.0〜2.0である。
The above-mentioned optimum conditions such as the processing temperature, time, and number of times differ depending on the state of the silica sol. For example, the rate of hydrolysis depends on the ratio of water to tetraethoxysilane (H 2 O / Si
(OC 2 H 5 ) 4 = r). For example, FIG. 6 shows the effect of r on the viscosity of silica sol 1 at 80 ° C. For silica sol 1, r = 0.5 to 2.0 is a condition that can be applied industrially, and preferably 1.0 to 2.0.

また、第7図にゲルの粒径に及ぼす酸の量を示す。多
孔質基材の孔径は0.01〜1.0μm程度のものが使用され
る。従って、シリカゾル1を焼成して生成するシリカゲ
ル1の粒径が基材の細孔径より小さい場合には、多孔質
基材の細孔内にゲルが充填されて細孔容積を減少させ、
その結果、分離膜としての透過量が減少し性能低下とな
る。そのため、エトキシシランに対する酸触媒の重量比
は0.01〜0.1にすべきである。一方、シリカゾル2は、
多孔質基材の最上表面に担持され、焼成してゲル化した
後、微細な細孔が分離性能に関与するものであり、約0.
001〜0.01μmの細孔径に設定する必要がある。そのた
め、シリカゲルの粒径を制御するためにはエトキシシラ
ンに対する酸触媒の重量比は0.01〜0.5にすべきであ
り、特に0.2以下にすることが好ましい。
FIG. 7 shows the amount of acid that affects the particle size of the gel. A porous substrate having a pore size of about 0.01 to 1.0 μm is used. Therefore, when the particle size of the silica gel 1 produced by calcining the silica sol 1 is smaller than the pore diameter of the substrate, the gel is filled in the pores of the porous substrate to reduce the pore volume,
As a result, the permeation amount as the separation membrane is reduced, and the performance is reduced. Therefore, the weight ratio of acid catalyst to ethoxysilane should be between 0.01 and 0.1. On the other hand, silica sol 2
After being carried on the uppermost surface of the porous substrate and firing and gelling, the fine pores are involved in the separation performance, and are approximately 0.
It is necessary to set the pore diameter to 001 to 0.01 μm. Therefore, in order to control the particle size of the silica gel, the weight ratio of the acid catalyst to ethoxysilane should be 0.01 to 0.5, particularly preferably 0.2 or less.

なお、本実施例では酸として硝酸HNO3を使用したが、
塩酸等の酸を使用しても同様な効果が得られる。
In this example, nitric acid HNO 3 was used as the acid.
Similar effects can be obtained by using an acid such as hydrochloric acid.

前述のように、組成により加水分解速度および重縮合
速度が変化する。従って、第2表以外の組成でもシリカ
ゲルの製造は可能であるが、工業的規模による製膜時
間、シリカゲル膜としての分離性能に必要な細孔径等か
ら、本発明による条件が適正であると考えられる。
As described above, the hydrolysis rate and the polycondensation rate change depending on the composition. Therefore, it is possible to produce silica gel with a composition other than those in Table 2, but it is considered that the conditions according to the present invention are appropriate in view of the film formation time on an industrial scale, the pore size required for the separation performance as a silica gel membrane, and the like. Can be

また、焼成温度変化についても、約100℃から約500℃
に昇温する過程を段階的でなく保持時間をもちながら連
続的に昇温しても問題はない。
Also, the firing temperature changes from about 100 ° C to about 500 ° C.
There is no problem if the temperature is raised step by step and the temperature is not stepwise but is raised continuously with a holding time.

更にまた、本発明で使用する無機多孔体としては第1
図に示した何れのものも使用できるが、特に、細孔径1,
000Å以上の発泡シリカ、焼結アルミナ及びムライト等
が好ましく使用できる。
Furthermore, as the inorganic porous material used in the present invention, the first
Although any of those shown in the figure can be used,
Foamed silica, sintered alumina, mullite, etc. of 000 mm or more can be preferably used.

以上、本発明と従来の技術の相違をとりまとめると以
下の通りである。
The differences between the present invention and the conventional technology are summarized as follows.

1) 重縮合反応速度の緩和 シリカゾル1の調整において、酸触媒、例えば硝酸の
割合を減少させて重縮合反応を穏やかに進め製膜条件を
安定化させる。
1) Relaxation of Polycondensation Reaction Rate In the preparation of the silica sol 1, the proportion of an acid catalyst, for example, nitric acid, is reduced to promote the polycondensation reaction gently and to stabilize the film forming conditions.

2) 加水分解速度の加速 シリカゾル2の調整において、酸触媒、例えば硝酸の
割合を増加した製膜時間を短縮する。
2) Acceleration of hydrolysis rate In the preparation of the silica sol 2, the film formation time in which the ratio of an acid catalyst, for example, nitric acid is increased, is shortened.

3) シリカゾルの焼成温度を高温化 シリカゾルを100℃から徐々に昇温し、最終的に500℃
で焼成することにより−C2H5基の残存をなくすることに
より耐酸性を向上する。
3) Increase the firing temperature of the silica sol. Gradually increase the temperature of the silica sol from 100 ° C and finally 500 ° C.
In improving the acid resistance by eliminating the residual -C 2 H 5 group by baking.

〔作用〕 シリカゲル膜の構造は下記のようになっている。 [Action] The structure of the silica gel membrane is as follows.

ここで、−OH基にH2Oが選択的に吸着され、他成分は
シリカゲル膜の細孔内に侵入することを妨害される。一
方、−OH基に吸着されたH2Oは細孔内を移動し減圧され
た側で真空蒸発する。
Here, H 2 O is selectively adsorbed to the —OH group, and other components are prevented from entering the pores of the silica gel membrane. On the other hand, H 2 O adsorbed to the —OH group moves in the pores and evaporates in vacuum on the side where the pressure is reduced.

以上のようにして、シリカゲル膜の−OH基により、有
機酸中のH2Oが選択的に分離・除去される。この状態の
模式図を第2図に示す。
As described above, H 2 O in the organic acid is selectively separated and removed by the —OH group of the silica gel membrane. FIG. 2 shows a schematic diagram of this state.

以下、本発明の一実施例を示す。 Hereinafter, an example of the present invention will be described.

〔実施例〕〔Example〕

基材の無機多孔体として、日本ガイシ(株)製セラミ
ック管(平均細孔径0.5μm、外径10mm、長さ500mm)を
使用し、以下の処理を行った。
The following treatment was performed using a ceramic tube (average pore diameter 0.5 μm, outer diameter 10 mm, length 500 mm) manufactured by NGK Insulators, Ltd. as the inorganic porous body of the substrate.

(1) シリカゾル1の調製 ビーカ内に第4表に示す組成の薬剤をいれ、常温でス
ターラで急速撹拌・混合した。撹拌を継続したまま、80
℃(沸騰状態)に予熱すると発熱反応を開始し、約20〜
25分で粘度が急速に高くなる。沸騰開始後25分、20分、
15分の液をそれぞれ冷却し、1−A、1−B、1−C液
とする。1−C液はやや粘度が高い液であり、1−B液
はさらに粘度が高く、常温に冷却するとゼリー状の液で
ある。1−A液は常温冷却により固化する状態にある。
(1) Preparation of silica sol 1 A drug having the composition shown in Table 4 was placed in a beaker, and rapidly stirred and mixed at room temperature with a stirrer. While stirring is continued, 80
Exothermic reaction starts when preheated to ℃ (boiling state)
The viscosity rises rapidly in 25 minutes. 25 minutes after boiling starts, 20 minutes,
The liquids for 15 minutes are cooled to obtain liquids 1-A, 1-B and 1-C. The 1-C liquid has a slightly higher viscosity, and the 1-B liquid has a higher viscosity and is a jelly-like liquid when cooled to room temperature. The 1-A liquid is in a state of being solidified by cooling at room temperature.

(2) シリカゾル2の調製 ビーカ内に第4表に示す組成の薬剤を入れ、常温でス
ターラにより60分間撹拌・混合し、シリカゾル2とし
た。
(2) Preparation of silica sol 2 A drug having the composition shown in Table 4 was placed in a beaker, and stirred and mixed at room temperature with a stirrer for 60 minutes to obtain silica sol 2.

(3) シリカゾルの担持方法 1) シリカゾル1液の担持 無機多孔体よりなる管を前記シリカゾル(1−A)
液中に浸漬して該多孔体表面にシリカゾルを担持した。
(3) Supporting method of silica sol 1) Supporting of one solution of silica sol A tube made of an inorganic porous material was placed in the silica sol (1-A).
The porous body was immersed in a liquid to carry a silica sol on the surface of the porous body.

該多孔体を200℃に設定した電気炉内で10分間焼成
した。
The porous body was fired in an electric furnace set at 200 ° C. for 10 minutes.

次に該多孔体を300℃に設定した電気炉内で10分間
焼成した。
Next, the porous body was fired in an electric furnace set at 300 ° C. for 10 minutes.

次に該多孔体を400℃に設定した電気炉内で10分間
焼成した。
Next, the porous body was fired in an electric furnace set at 400 ° C. for 10 minutes.

次に該多孔体を500℃に設定した電気炉内で10分間
焼成した。
Next, the porous body was fired in an electric furnace set at 500 ° C. for 10 minutes.

上記〜の操作を2回繰り返した。 The above operations-were repeated twice.

次に1−B液を使用して上記〜の処理を行っ
た。
Next, the above processes 1 to 3 were performed using the 1-B solution.

次に1−C液を使用して上記〜の処理を行っ
た。
Next, the above processes 1 to 3 were performed using the 1-C solution.

2) シリカゾル2液の担持 次にシリカゾル2液を使用して上記〜の処理を行
った。
2) Carrying of silica sol 2 liquid Next, the above-mentioned treatments 1 to 2 were performed using silica sol 2 liquid.

上記の方法によって製作したシリカゲルを担持したセ
ラミック管を使用し、第3図に示す装置を使用して有機
酸/水の分離実験を行った。
An organic acid / water separation experiment was performed using a ceramic tube supporting silica gel manufactured by the above method and using the apparatus shown in FIG.

内径30mmの循環式ガラス容器1内に有機酸水溶液350c
cを入れ、モータ2の回転により液を循環させながらヒ
ータ3により昇温し、熱電対により測温しながら温度調
節器5により液温を一定に制御した。
350 c of organic acid aqueous solution in a circulating glass container 1 with an inner diameter of 30 mm
The temperature was raised by the heater 3 while the liquid was circulated by the rotation of the motor 2 and the temperature was controlled by the temperature controller 5 while measuring the temperature with a thermocouple.

所定温度に達した後、真空ポンプ(図示省略)を作動
させて、ゲルを担持したセラミックス管6の内部を1Tor
rに吸引した。セラミックス管6を透過したガスは、液
体窒素で冷却されたガラス容器7内に凝縮させ、その重
量を計測することにより分離性能を測定した。なお、第
3図中、8はコンデンサである。
After reaching a predetermined temperature, a vacuum pump (not shown) is operated to evacuate the inside of the ceramic tube 6 supporting the gel by 1 Torr.
Aspirated to r. The gas passing through the ceramic tube 6 was condensed in a glass container 7 cooled with liquid nitrogen, and the separation performance was measured by measuring its weight. In FIG. 3, reference numeral 8 denotes a capacitor.

その結果を第8〜13図に示す。 The results are shown in FIGS.

ここで、分離係数α={(1−y)/y}/{(1−x)/x} x:原料中の溶剤の組成(モル%) y:透過ガス中の溶剤の組成(モル%) 無機多孔体のみの膜の場合には、分離性能が全然なか
った。
Here, separation coefficient α = {(1-y) / y} / {(1-x) / x} x: composition of solvent in raw material (mol%) y: composition of solvent in permeated gas (mol%) ) In the case of a membrane comprising only an inorganic porous material, there was no separation performance.

(実験例1) 酢酸/水の分離実験 第8図は酢酸/水系における上流側の酢酸濃度と水・
酢酸の透過量及び透過ガス中の酢酸濃度の相関を示す図
表、第9図は酢酸/水系における上流側酢酸濃度と分離
係数の相関を示す図表である。
(Experimental example 1) Separation experiment of acetic acid / water Fig. 8 shows the concentration of acetic acid and water
FIG. 9 is a chart showing the correlation between the amount of acetic acid permeated and the concentration of acetic acid in the permeated gas, and FIG. 9 is a chart showing the correlation between the concentration of acetic acid on the upstream side and the separation coefficient in the acetic acid / water system.

(実験例2) アクリル酸/水の分離実験 第10図はアクリル酸/水系における上流側のアクリル
酸濃度と水・アクリル酸の透過量及び透過ガス中のアク
リル酸濃度の相関を示す図表、第11図はアクリル酸/水
系における上流側アクリル酸濃度と分離係数の相関を示
す図表である。
(Experimental example 2) Separation experiment of acrylic acid / water FIG. 10 is a table showing the correlation between the concentration of acrylic acid on the upstream side in the acrylic acid / water system, the permeation amount of water / acrylic acid, and the concentration of acrylic acid in the permeated gas. FIG. 11 is a chart showing the correlation between the upstream acrylic acid concentration and the separation coefficient in the acrylic acid / water system.

(実験例3) プロピオン酸/水の分離実験 第12図はプロピオン酸/水系における上流側のプロピ
オン酸濃度と水・プロピオン酸の透過量及び透過ガス中
のプロピオン酸濃度の相関を示す図表、第13図はプロピ
オン酸/水系における上流側プロピオン酸濃度と分離係
数の相関を示す図表である。
(Experimental Example 3) Separation experiment of propionic acid / water FIG. 12 is a chart showing the correlation between the concentration of propionic acid on the upstream side in the propionic acid / water system, the permeation amount of water / propionic acid, and the concentration of propionic acid in the permeated gas. FIG. 13 is a chart showing the correlation between the concentration of propionic acid on the upstream side and the separation coefficient in a propionic acid / water system.

(実験例4) 第14図はアクリル酸/水系の長時間(110時間)連続
分離実験の結果を示す図表である。図中○印は、化学工
学協会第54年会で発表した方法で製造した分離膜を使用
して行った実験結果を示し、□印は本発明の実施例で示
す方法で製造した分離膜を使用し、第3図の実験装置で
行った分離実験結果を示す。
(Experimental Example 4) FIG. 14 is a chart showing the results of a long-term (110 hours) continuous separation experiment of an acrylic acid / water system. In the figure, the circles indicate the results of experiments performed using the separation membranes manufactured by the method presented at the 54th Annual Meeting of the Society of Chemical Engineers, and the squares indicate the separation membranes manufactured by the method described in Examples of the present invention. The results of a separation experiment performed using the experimental apparatus shown in FIG. 3 are shown.

この結果、本発明の実施例で示す方法で製造した分離
膜は膜性能の変化は全く認められないことが明である。
As a result, it is clear that the separation membrane manufactured by the method shown in the example of the present invention shows no change in the membrane performance.

〔発明の効果〕〔The invention's effect〕

本発明方法で製造された耐酸性複合分離膜は有機酸/
水混合物から水を高分離性能で、しかも高透過流束で分
離することが可能であり、さらに本発明分離膜の製造方
法も容易であることから、本発明は工業上極めて有益で
ある。
The acid-resistant composite separation membrane produced by the method of the present invention comprises an organic acid /
The present invention is extremely useful industrially because water can be separated from a water mixture with high separation performance and high permeation flux, and the method for producing the separation membrane of the present invention is easy.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明において使用しうる無機多孔体の種類と
その細孔径の関係を示す図表、第2図は本発明で製造し
た耐酸性複合分離膜の水の選択分離の原理を説明する模
式図、第3図は本発明で製造した耐酸性複合分離膜によ
る有機酸を含む水溶液から水を選択的に分離するのに使
用した実験装置の概略図、第4〜第13図は本発明の実施
例で製造した耐酸性複合分離膜を使用して酢酸/水、ア
クリル酸/水、プロピオン酸/水系における分離特性を
示す図表、第14図はアクリル酸/水系の長時間連続実験
の結果を本発明の実施例で製造した耐酸性分離膜及び化
学工学協会54年会で発表した方法で製造した耐酸性分離
膜を使用して比較した図表である。
FIG. 1 is a table showing the relationship between the types of inorganic porous materials usable in the present invention and the pore diameter thereof, and FIG. 2 is a schematic diagram illustrating the principle of selective separation of water in an acid-resistant composite separation membrane produced by the present invention. FIG. 3 is a schematic view of an experimental apparatus used for selectively separating water from an aqueous solution containing an organic acid by an acid-resistant composite separation membrane produced by the present invention, and FIGS. FIG. 14 is a table showing separation characteristics in acetic acid / water, acrylic acid / water, and propionic acid / water systems using the acid-resistant composite separation membrane produced in the example. FIG. 14 shows the results of a long-term continuous experiment of the acrylic acid / water system. 4 is a table comparing an acid-resistant separation membrane manufactured in an example of the present invention with an acid-resistant separation membrane manufactured by a method presented at the 54th Annual Meeting of the Society of Chemical Engineers of Japan.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−145414(JP,A) 特開 昭59−22927(JP,A) 特開 昭57−3735(JP,A) 特開 平2−31824(JP,A) (58)調査した分野(Int.Cl.6,DB名) B01D 71/02 C01B 33/141 C08J 9/00──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-2-145414 (JP, A) JP-A-59-22927 (JP, A) JP-A-57-3735 (JP, A) JP-A-2- 31824 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B01D 71/02 C01B 33/141 C08J 9/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】無機多孔体の細孔内に、エトキシ基または
メトキシ基を含むアルコキシシランの加水分解を経て得
られたシリカゲルを担持してなる耐酸性複合分離膜の製
造方法において、 (1) シリカゾルの原料であるアルコキシシランと水
と酸触媒の混合割合を変化させて製造する複数の種類の
シリカゾルの調製条件において、担持するシリカゾルの
原料調合割合をシリカゾル1用とシリカゾル2用の2種
類に区別し、 (2) シリカゾル1用原料のアルコキシシランに対す
る水の重量比を0.5〜2.0とし、かつ、反応触媒として、
アルコキシシランに対する酸触媒の重量比を0.01〜0.1
とし、 (3) シリカゾル2用原料のアルコキシシランに対す
る水の重量比を2.0〜50とし、かつ、反応触媒として、
アルコキシシランに対する酸触媒の重量比を0.01〜0.5
とし、 (4) 前記シリカゾル1用原料を沸騰状態に保持し、
沸騰開始後約25分、約20分及び約15分の液をそれぞれ、
1−A、1−B及び1−C液とし、 (5) 前記シリカゾル2用原料を常温で30分〜90分間
撹拌・混合してシリカゾル2を製造し、 (6) 多孔質基材の表面上に前記シリカゾル1−A液
を担持した後、該多孔質基材を約200℃に設定した電気
炉内で5〜15分間焼成し、次に該多孔体を約300℃に設
定した電気炉内で5〜15分間焼成し、次に該多孔質基材
を約400℃に設定した電気炉内で5〜15分間焼成し、次
に該多孔質基材を約500℃に設定した電気炉内で5〜15
分間焼成し、 (7) 該シリカゾル1−A液を担持した多孔質基材の
表面に更にシリカゾル1−A液を担持した後、前記
(6)の操作を2〜3回繰り返し、 (8) 次に該シリカゾル1−A液を担持した多孔質基
材の表面上に更にシリカゾル1−B液を使用して上記
(6)〜(7)と同様の処理を行い、 (9) 次に該シリカゾル1−B液を担持した多孔質基
材の表面上にシリカゾル1−C液を使用して上記(6)
〜(7)と同様の処理を行い、 (10) 次に前記シリカゾル1−A、1−B及び1−C
液を担持してなる多孔質基材の表面上に前記シリカゾル
2液を担持し、該多孔体を約200℃に設定した電気炉内
で5〜15分間焼成し、次に該多孔質基材を約300℃に設
定した電気炉内で5〜15分間焼成し、次に該多孔質基材
を約400℃に設定した電気炉内で5〜15分間焼成し、次
に該多孔質基材を約500℃に設定した電気炉内で5〜15
分間焼成し、 (11) 該シリカゾル2液を担持した多孔質基材の表面
に更にシリカゾル2液を担持した後、前記(10)の操作
を2〜3回繰り返す ことを特徴とする耐酸性複合分離膜の製造方法。
1. A method for producing an acid-resistant composite separation membrane comprising silica gel obtained by hydrolyzing an alkoxysilane containing an ethoxy group or a methoxy group in pores of an inorganic porous material, comprising: In the preparation conditions of a plurality of types of silica sols produced by changing the mixing ratio of the alkoxysilane, which is a raw material of the silica sol, water and an acid catalyst, the raw material mixing ratio of the silica sol to be supported is reduced to two types for silica sol 1 and silica sol 2. (2) The weight ratio of water to alkoxysilane as the raw material for silica sol 1 is 0.5 to 2.0, and the reaction catalyst is
The weight ratio of the acid catalyst to the alkoxysilane is 0.01 to 0.1.
(3) The weight ratio of water to alkoxysilane as the raw material for silica sol 2 is set to 2.0 to 50, and as a reaction catalyst,
The weight ratio of the acid catalyst to the alkoxysilane is 0.01 to 0.5.
(4) maintaining the raw material for the silica sol 1 in a boiling state,
About 25 minutes, about 20 minutes and about 15 minutes of liquid after the start of boiling, respectively
1-A, 1-B and 1-C liquids; (5) The raw material for silica sol 2 was stirred and mixed at room temperature for 30 to 90 minutes to produce silica sol 2, (6) Surface of porous substrate After supporting the silica sol 1-A liquid thereon, the porous substrate is baked for 5 to 15 minutes in an electric furnace set at about 200 ° C., and then the porous body is set in an electric furnace set at about 300 ° C. Baking for 5 to 15 minutes in an electric furnace, and then baking the porous substrate in an electric furnace set to about 400 ° C. for 5 to 15 minutes, and then setting the porous substrate to about 500 ° C. in an electric furnace. Within 5 to 15
(7) After the silica sol 1-A liquid is further supported on the surface of the porous substrate supporting the silica sol 1-A liquid, the operation of the above (6) is repeated two to three times, (8) Next, on the surface of the porous substrate supporting the silica sol 1-A liquid, the same treatment as in the above (6) to (7) is further performed using the silica sol 1-B liquid, and (9) (6) using the silica sol 1-C liquid on the surface of the porous substrate supporting the silica sol 1-B liquid
(10) Next, the above silica sols 1-A, 1-B and 1-C
The above-mentioned silica sol 2 liquid is supported on the surface of the porous base material supporting the liquid, and the porous body is baked for 5 to 15 minutes in an electric furnace set at about 200 ° C. Is fired in an electric furnace set at about 300 ° C. for 5 to 15 minutes, and then the porous substrate is fired in an electric furnace set at about 400 ° C. for 5 to 15 minutes, and then the porous substrate 5 to 15 in an electric furnace set to about 500 ° C
(11) After the silica sol 2 liquid is further supported on the surface of the porous substrate supporting the silica sol 2 liquid, the operation (10) is repeated two or three times. A method for producing a separation membrane.
JP2172639A 1990-07-02 1990-07-02 Method for producing acid-resistant composite separation membrane Expired - Lifetime JP2808479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2172639A JP2808479B2 (en) 1990-07-02 1990-07-02 Method for producing acid-resistant composite separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2172639A JP2808479B2 (en) 1990-07-02 1990-07-02 Method for producing acid-resistant composite separation membrane

Publications (2)

Publication Number Publication Date
JPH0463119A JPH0463119A (en) 1992-02-28
JP2808479B2 true JP2808479B2 (en) 1998-10-08

Family

ID=15945614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2172639A Expired - Lifetime JP2808479B2 (en) 1990-07-02 1990-07-02 Method for producing acid-resistant composite separation membrane

Country Status (1)

Country Link
JP (1) JP2808479B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052497A1 (en) * 2005-11-07 2007-05-10 National University Of Corporation Hiroshima University Composite separation membrane, process for producing the same, and method of separating organic liquid mixture with the composite separation membrane
WO2008111672A1 (en) 2007-03-15 2008-09-18 Mitsubishi Heavy Industries, Ltd. Dehydration system and dehydration method
WO2008111671A1 (en) 2007-03-15 2008-09-18 Mitsubishi Heavy Industries, Ltd. Dehydration device, dehydration system, and dehydration method
WO2009084521A1 (en) 2007-12-28 2009-07-09 Mitsubishi Heavy Industries, Ltd. Dehydrating system, and dehydrating method
WO2009084522A1 (en) 2007-12-28 2009-07-09 Mitsubishi Heavy Industries, Ltd. Dehydrating system and method
WO2009090929A1 (en) 2008-01-18 2009-07-23 Mitsubishi Heavy Industries, Ltd. Dehydrator
EP2196253A2 (en) 2008-11-13 2010-06-16 Mitsubishi Heavy Industries, Ltd. Membrane container
US7819944B2 (en) 2006-03-14 2010-10-26 Ngk Insulators, Ltd. Method of dehydration, dehydrating apparatus, and membrane reactor
WO2012032994A1 (en) 2010-09-09 2012-03-15 三菱重工業株式会社 Dehydrating device
WO2012035986A1 (en) 2010-09-17 2012-03-22 三菱重工業株式会社 Membrane vessel used in dewatering device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ811300A0 (en) * 2000-06-09 2000-07-06 University Of Queensland, The Improved silica membrane and process of production therefor
JP2004089883A (en) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Reaction apparatus and compound producing method
AU2003261858A1 (en) 2002-08-30 2004-03-19 Mitsubishi Chemical Corporation Separator, reactor, and process for producing aromatic carboxylic acid
JP4942946B2 (en) * 2005-04-27 2012-05-30 株式会社クラレ Method for recovering carboxylic acid
JP2012040549A (en) 2010-07-22 2012-03-01 Ngk Insulators Ltd Silica membrane and method for manufacturing the same
JP6326896B2 (en) * 2014-03-25 2018-05-23 富士ゼロックス株式会社 Sol-gel silica particles, electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus and image forming method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052497A1 (en) * 2005-11-07 2007-05-10 National University Of Corporation Hiroshima University Composite separation membrane, process for producing the same, and method of separating organic liquid mixture with the composite separation membrane
US7819944B2 (en) 2006-03-14 2010-10-26 Ngk Insulators, Ltd. Method of dehydration, dehydrating apparatus, and membrane reactor
WO2008111672A1 (en) 2007-03-15 2008-09-18 Mitsubishi Heavy Industries, Ltd. Dehydration system and dehydration method
WO2008111671A1 (en) 2007-03-15 2008-09-18 Mitsubishi Heavy Industries, Ltd. Dehydration device, dehydration system, and dehydration method
EP2522420A2 (en) 2007-03-15 2012-11-14 Mitsubishi Heavy Industries Dehydration device, and dehydration system
WO2009084521A1 (en) 2007-12-28 2009-07-09 Mitsubishi Heavy Industries, Ltd. Dehydrating system, and dehydrating method
WO2009084522A1 (en) 2007-12-28 2009-07-09 Mitsubishi Heavy Industries, Ltd. Dehydrating system and method
WO2009090929A1 (en) 2008-01-18 2009-07-23 Mitsubishi Heavy Industries, Ltd. Dehydrator
EP2196253A2 (en) 2008-11-13 2010-06-16 Mitsubishi Heavy Industries, Ltd. Membrane container
WO2012032994A1 (en) 2010-09-09 2012-03-15 三菱重工業株式会社 Dehydrating device
WO2012035986A1 (en) 2010-09-17 2012-03-22 三菱重工業株式会社 Membrane vessel used in dewatering device

Also Published As

Publication number Publication date
JPH0463119A (en) 1992-02-28

Similar Documents

Publication Publication Date Title
JP2808479B2 (en) Method for producing acid-resistant composite separation membrane
US6207098B1 (en) Method for producing porous inorganic materials
US5770275A (en) Molecular sieving silica membrane fabrication process
Zawrah et al. Facile and economic synthesis of silica nanoparticles
US5935646A (en) Molecular sieving silica membrane fabrication process
JPH05192545A (en) Supported porous ceramic membrane
JP2001130911A (en) Method for producing high crystal silica mesoporous thin film
RU2278079C2 (en) Sol-gel method for preparation of large-size dry gels and modified glasses
GB2267486A (en) Porous amorphous silica-alumina
JP4427545B2 (en) Titania composite membrane for water / alcohol separation and method for producing the same
JPH06170188A (en) Gas separation membrane and production thereof
JP4693267B2 (en) Inorganic porous material for gas separation filter, gas separation filter and method for producing the same
JP2004168615A (en) Porous silica membrane and method for manufacturing the same
JP3207886B2 (en) Method for producing metal oxide thin film
RU2088319C1 (en) Ceramic ultra- and nanofiltration membrane with selective layer based on transition metal oxides and method of manufacturing thereof
Logan et al. Sol-gel films with tailored microstructures
JPH01183421A (en) Production of quartz glass
JP2004131343A (en) Method of manufacturing porous body composed of dry gel and porous body obtained by the method
Kamiya et al. Preparation of Porous ZrO2-SiO2 Glasses by the Sol-Gel Method Effect of Hydrolysis-Condensation Conditions on Pore Characteristics
JP2602813B2 (en) Method for producing silica glass
JP2000005578A (en) Carbon dioxide separation membrane
JPS62265127A (en) Production of silica glass
JPH10212174A (en) Porous body and its production
JPH05238728A (en) Production of aluminum oxide thin film
JPH0388711A (en) Production of spherical porous body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100731

Year of fee payment: 12

EXPY Cancellation because of completion of term