[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2806408B2 - Self-fusing carbonaceous powder and high density carbon material - Google Patents

Self-fusing carbonaceous powder and high density carbon material

Info

Publication number
JP2806408B2
JP2806408B2 JP4161183A JP16118392A JP2806408B2 JP 2806408 B2 JP2806408 B2 JP 2806408B2 JP 4161183 A JP4161183 A JP 4161183A JP 16118392 A JP16118392 A JP 16118392A JP 2806408 B2 JP2806408 B2 JP 2806408B2
Authority
JP
Japan
Prior art keywords
pitch
carbon
carbon material
fusing
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4161183A
Other languages
Japanese (ja)
Other versions
JPH06145669A (en
Inventor
勲 持田
隆次 藤浦
孝 小島
斉 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP4161183A priority Critical patent/JP2806408B2/en
Priority to DE69301866T priority patent/DE69301866T2/en
Priority to EP93108112A priority patent/EP0575748B1/en
Publication of JPH06145669A publication Critical patent/JPH06145669A/en
Priority to US08/301,038 priority patent/US5547654A/en
Application granted granted Critical
Publication of JP2806408B2 publication Critical patent/JP2806408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Working-Up Tar And Pitch (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高密度炭素材料用原料や
炭素複合材料用バインダーに好適な自己融着性炭素質粉
体およびその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-fusing carbonaceous powder suitable for a raw material for a high-density carbon material and a binder for a carbon composite material, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、高密度炭素材料に関する多くの製
造方法が知られているが、これは出発原料面から次の大
きく2つの方法に分けられる。一般的に行われている
つの方法は、コークス粉末、天然黒鉛、カーボンブラッ
クなどの骨材とコールタールピッチ等の粘結材を混練し
た後、成型、焼成する方法である。この方法では粘結材
の残炭率が非常に低いために一回の炭化では成型体密度
は非常に小さく、密度を上げるために含浸・炭化工程を
何度も繰り返しながら緻密化しなければならない。また
炭化過程においては粘結材中の揮発分の脱ガスが生じ、
急激なガスの逸出は成型体内部に不均質気孔を残存させ
るのみならず、成型体の膨張を引き起こして組織破壊を
招くので、このような悪影響を阻止するために、炭化工
程では 2〜10℃/hr という極めて緩慢な昇温が行なわ
れ、3〜4 週間の製造期間が必要となる。この炭化工程
を経た成型体は用途に応じて2500〜3000℃で焼成され黒
鉛質の炭素材料が製造されるが、この黒鉛化工程でも一
般に 2〜3 週間を要する。このようにコークス等の骨材
とコールタールピッチ等のバインダーから複雑な工程を
経て黒鉛質炭素材料を製造するには、最終的に2〜3 カ
月という長い時間を要する。
2. Description of the Related Art Conventionally, many production methods for high-density carbon materials are known. These methods are roughly divided into the following two methods from the viewpoint of starting materials. One commonly used method is a method of kneading an aggregate such as coke powder, natural graphite and carbon black and a binder such as coal tar pitch, followed by molding and firing. In this method, since the residual carbon ratio of the binder is very low, the density of the molded body is extremely small in one carbonization, and the density must be increased by repeating the impregnation / carbonization process many times in order to increase the density. In the carbonization process, degassing of volatile components in the binder occurs,
The rapid escape of gas not only causes inhomogeneous pores to remain inside the molded body, but also causes expansion of the molded body and causes tissue destruction. The temperature rises very slowly at ℃ / hr, requiring a production period of 3-4 weeks. The molded body after the carbonization step is calcined at 2500 to 3000 ° C. depending on the use to produce a graphitic carbon material. This graphitization step generally requires two to three weeks. As described above, it takes a long time of two to three months to produce a graphitic carbon material from an aggregate such as coke and a binder such as coal tar pitch through a complicated process.

【0003】他の方法は、特開昭46−4513号、特
開昭49−23791号、特公昭51−29523号お
よび特公昭60−25364号に見られるように、バイ
ンダーを用いることなく、高密度炭素材料用原料として
光学的異方性小球体を利用する方法である。即ちコール
タールピッチや石油系重質油等を 350〜500 ℃で熱処理
する過程で生成する光学的異方性小球体(メソフェーズ
球晶)を溶剤分別によってピッチマトリックスから分離
・乾燥し、得られたメソフェーズ球晶を原料として、こ
れを加圧 成型後、焼成する方法であり、高密度・等方
性の炭素材料が製造可能である。しかしながらこの方法
では、球晶・分離工程で多量の抽出溶剤を必要とし、何
度も繰り返して溶剤分別を行なわなければならず、更に
得られた球晶から完全に残存溶剤を除くことが困難であ
るため、後の炭化工程において成型体の割れや膨張の原
因になりやすい。しかもこのような球晶溶剤抽出法で
は、分離収率が低いことに加え、生成球晶の性状コント
ロールは容易でなく、一定品質の原料を安定して製造す
るには工業的に問題が多い。
Another method is disclosed in Japanese Patent Application Laid-Open No. Sho.
No.49-23793, No.51-29523
And Japanese Patent Publication No. 60-25364, in which optically anisotropic small spheres are used as a raw material for a high-density carbon material without using a binder. That is, optically anisotropic small spheres (mesophase spherulites) generated during the heat treatment of coal tar pitch, petroleum heavy oil, etc. at 350-500 ° C are separated from the pitch matrix by solvent fractionation and dried. This is a method in which a mesophase spherulite is used as a raw material, which is press-molded and then fired, and a high-density and isotropic carbon material can be produced. However, in this method, a large amount of extraction solvent is required in the spherulite / separation step, and the solvent must be separated many times, and it is difficult to completely remove the residual solvent from the obtained spherulite. Therefore, it tends to cause cracks and expansion of the molded body in the subsequent carbonization step. Moreover, in such a spherulite solvent extraction method, in addition to a low separation yield, it is not easy to control the properties of the generated spherulites, and there are many industrial problems in stably producing a raw material of a constant quality.

【0004】[0004]

【発明が解決しようとする課題】上記の如く高密度炭素
材料を製造するプロセスは極めて煩雑であり、かつ非常
に長い製造期間を要することから、従来の方法によって
製造される高密度炭素材は高価となり、このため現状で
はその利用分野に大きな制約を受けている。従って高密
度炭素材料場合には、炭化成型体中に揮発ガスによる空
隙が生成しやすく、得られる炭素材料の製造工程を大幅
に簡略化し、かつ製造期間を短縮することは、炭素工業
における大きな課題の一つである。本発明の目的は、高
密度かつ高強度の炭素材料を短時間で安価に製造できる
自己融着性炭素質粉体および高密度炭素材料を提供する
ことにある。
As described above, the process for producing a high-density carbon material is extremely complicated and requires a very long production period, so that the high-density carbon material produced by the conventional method is expensive. Therefore, at present, the field of use is greatly restricted. Therefore, in the case of a high-density carbon material, voids due to volatile gas are easily generated in the carbonized molded body, and it is a major challenge in the carbon industry to greatly simplify the production process of the obtained carbon material and shorten the production period. one of. An object of the present invention is to provide a self-fusing carbonaceous powder and a high-density carbon material capable of producing a high-density and high-strength carbon material in a short time and at low cost.

【0005】[0005]

【課題を解決するための手段】発明者らは上記の目的を
達成すべく鋭意検討した結果、特定のメソフェーズピッ
チを熱処理することによって一定範囲の炭素に対する水
素の原子比(H/C) および酸素に対する酸素の原子比(O/
C) を有する熱処理ピッチを調製し、高められた炭化収
率と優れた自己融着性が付与されたこの熱処理粉体を原
料として用いることによって、バインダーを添加するこ
となく短時間かつ安価に高密度炭素材料が得られること
を見出し、本発明に至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, by heat treating a specific mesophase pitch, an atomic ratio of hydrogen to carbon (H / C) and oxygen Atomic ratio of oxygen to (O /
By preparing a heat-treated pitch having (C) and using the heat-treated powder having an increased carbonization yield and excellent self-fusing property as a raw material, the heat treatment pitch can be increased in a short time and at a low cost without adding a binder. The inventors have found that a high-density carbon material can be obtained, and have reached the present invention.

【0006】すなわち本発明は、炭化収率が70重量% 以
上、軟化点が 170℃以上で、光学的異方性相が 70vol%
以上であるメソフェーズピッチを熱処理することによっ
て得られる、炭素に対する水素の原子比が0.35〜0.48の
範囲であり、且つ炭素に対する酸素の原子比が0.01未満
である自己融着性炭素質粉体、およびこれを成形した
後、非酸化性雰囲気下 600〜1600℃の温度に加熱、また
は更に高温で黒鉛化して得られ高密度炭素材料である。
That is, according to the present invention, the carbonization yield is 70% by weight or more, the softening point is 170 ° C. or more, and the optically anisotropic phase is 70% by volume.
The self-fusing carbonaceous powder obtained by heat-treating the above mesophase pitch has an atomic ratio of hydrogen to carbon in the range of 0.35 to 0.48, and an atomic ratio of oxygen to carbon of less than 0.01, and This is a high-density carbon material obtained by molding and heating it to a temperature of 600 to 1600 ° C. in a non-oxidizing atmosphere or graphitizing it at a higher temperature.

【0007】本発明の自己融着性炭素質粉体の炭素、水
素および酸素含有量は、燃焼ガスの熱伝導度による検出
などの技術を応用した自動分析装置を用いて分析され
る。本発明の自己融着性炭素質粉体を製造するための原
料ピッチは、その炭化収率が70重量% 以上、好ましくは
80wt%以上のメソフェーズピッチが用いられる。この炭
化収率はピッチを不活性雰囲気下で徐々に昇温し、600
℃に到達後 2時間程度保持したときの数値である。炭化
収率の低いピッチを原料とした場合には、炭化成型体中
に揮発ガスによる空隙が生成しやすく、得られる炭素材
料の密度低下を招き、その機械的強度、電気伝導性、熱
伝導性、耐蝕性などに悪い影響を与えるので、高い炭化
収率を持つ原料ピッチを用いることが肝要である。
[0007] The carbon, hydrogen and oxygen contents of the self-fusing carbonaceous powder of the present invention are analyzed using an automatic analyzer to which a technique such as detection by the thermal conductivity of combustion gas is applied. Raw material pitch for producing the self-fusing carbonaceous powder of the present invention has a carbonization yield of 70% by weight or more, preferably
A mesophase pitch of 80 wt% or more is used. The carbonization yield is such that the pitch is gradually heated under an inert atmosphere,
This is the value when the temperature is maintained for about 2 hours after reaching ° C. When a pitch having a low carbonization yield is used as a raw material, voids due to volatile gas are easily generated in the carbonized molded body, which causes a reduction in the density of the obtained carbon material, and its mechanical strength, electrical conductivity, and thermal conductivity. Therefore, it is important to use a raw material pitch having a high carbonization yield since it has a bad influence on corrosion resistance and the like.

【0008】又この原料ピッチは、フローテスターによ
る軟化点が 170℃以上であり、偏光顕微鏡で観察した光
学的異方性相が少なくとも70vol%以上、好ましくは80vo
l%以上、更に好ましくは実質的に 100vol%であるメソフ
ェースピッチが用いられる。これらの条件を満足するメ
ソフェーズピッチであれば、石炭系、石油系の何れでも
良いが、特に特開平 1-13621号、特開平1-254796号およ
び特開平3-223391号に記載の芳香族炭化水素を超強酸 H
F-BF3 触媒で重合して製造されたメソフェーズピッチ
は、高い炭化収率が得られる点で好適に用いられる。
The raw material pitch has a softening point of 170 ° C. or higher by a flow tester and an optically anisotropic phase observed by a polarizing microscope of at least 70 vol%, preferably 80 vol%.
A mesophase pitch of l% or more, more preferably substantially 100 vol%, is used. If mesophase pitch which satisfies these conditions, coal-based, but may be any of petroleum, particularly JP 1-13621, aromatic described in JP-A and JP-A-3 223 391 1-254796 carbide Hydrogen superacid H
Mesophase pitch prepared by polymerizing at F-BF 3 catalyst is suitably used in terms of high carbonization yield is obtained.

【0009】本発明の自己融着性炭素質粉体は上記のメ
ソフェースピッチを熱処理することによって製造され
る。この熱処理条件は炭素に対する水素の原子比(H/C)
が0.35〜0.48の範囲であり且つ炭素に対する酸素の原子
比(O/C) が0.01未満である自己融着性炭素質粉体が得ら
れる熱処理条件を選択すれば良く、特に限定されない。
一般的には、上記のメソフェーズピッチを撹拌下 470〜
550 ℃の温度で熱処理が行われる。
The self-fusing carbonaceous powder of the present invention is produced by heat-treating the above mesoface pitch. This heat treatment condition is the atomic ratio of hydrogen to carbon (H / C)
Is within the range of 0.35 to 0.48 and the heat treatment conditions for obtaining a self-fusing carbonaceous powder having an atomic ratio of oxygen to carbon (O / C) of less than 0.01 may be selected, and there is no particular limitation.
Generally, the above mesophase pitch is stirred under 470 ~
Heat treatment is performed at a temperature of 550 ° C.

【0010】本発明では上記のメソフェーズピッチをこ
のように調製することによってはじめて良好な成型性が
得られ、かつ後の炭化工程において割れや膨張を誘発す
ることなく高密度が達成される。すなわちこのような適
度の熱処理を施すことによって、成型体の炭化初期過程
(400〜600 ℃)において良好な溶融流動性が保証され、
高密度炭素材料用原料として優れた性能を発揮する自己
融着性をもつ粉体に改質できる(実施例1、2)。
In the present invention, good formability can be obtained only by preparing the above-mentioned mesophase pitch in this way, and high density can be achieved without inducing cracking or expansion in the subsequent carbonization step. That is, by performing such a moderate heat treatment, the initial stage of carbonization of the molded body is performed.
(400-600 ° C) good melt flowability is guaranteed,
It can be modified to a powder having a self-fusing property that exhibits excellent performance as a raw material for high-density carbon materials (Examples 1 and 2).

【0011】過度の熱処理はメソフェースピッチ粉体の
融着性を低下させ、所望の性能を持つ炭素材料が得られ
ない(比較例1)。一方、熱処理が不充分であると、後
の炭化工程において揮発ガスによる成型体の膨張や発泡
が起こり易くなり、所望の炭素材料は得られない(比較
例2)。また熱処理ピッチの酸素含有量が増えるにつ
れ、炭化収率の減少と融着性の低下を招くので好ましく
ない(比較例3)。
[0011] Excessive heat treatment lowers the fusibility of the mesoface pitch powder, and a carbon material having desired performance cannot be obtained (Comparative Example 1). On the other hand, if the heat treatment is insufficient, expansion and foaming of the molded body due to the volatile gas are likely to occur in the subsequent carbonization step, and a desired carbon material cannot be obtained (Comparative Example 2). Further, as the oxygen content of the heat-treated pitch increases, the carbonization yield decreases and the fusibility decreases, which is not preferable (Comparative Example 3).

【0012】すなわち H/Cおよび O/Cが上記範囲を満足
するように、メソフェーズピッチの熱処理を適度に行な
うことによって、炭化収率を一層高め、メソフェーズピ
ッチの粘着性を保持しつつ、炭化工程で発生するガスを
極力除去することができるので、一回の焼成のみで高密
度かつ高強度の炭素材料の製造が可能となる。
That is, by appropriately performing heat treatment of the mesophase pitch so that H / C and O / C satisfy the above ranges, the carbonization yield is further increased, and the carbonization process is performed while maintaining the tackiness of the mesophase pitch. As a result, the gas generated in the above process can be removed as much as possible, so that a high-density and high-strength carbon material can be produced by only one firing.

【0013】高密度かつ高強度の炭素材料を得るために
は、このようにして熱処理されたメソフェーズピッチを
まず粉末状にする。粉末化方法ならびに粉体形状は特に
限定されない。粒度分布についても特に限定されない
が、成型の際の充填密度をできるだけ大きくするような
粒度分布が好ましい。一般には 200〜1 μm の粉末で成
型に用いられる。
In order to obtain a high-density and high-strength carbon material, the mesophase pitch heat-treated in this way is first powdered. The powdering method and powder shape are not particularly limited. Although there is no particular limitation on the particle size distribution, a particle size distribution that maximizes the packing density during molding is preferable. Generally, it is used for molding with a powder of 200 to 1 μm.

【0014】次に粉末化された熱処理ピッチを成型す
る。この際バインダーは特に不要である。成型体形状に
ついては、目的、用途等に応じて自由に選択できる。成
型は常温で行う場合と、熱処理粉体が軟化、あるいは溶
融する温度域で行なう場合があり、これは要求される形
状、性能およびコストに応じて決定される。成型体は引
き続き焼成することによって、所望の炭素材料が製造さ
れる。焼成条件は一般に非酸化性雰囲気下、昇温速度 1
〜300 ℃/hで、成型体を 600〜1600℃の温度に加熱し炭
素化することによって行われる。また必要に応じて更に
高温で黒鉛化する工程を含めることもできる。
Next, the powdered heat treatment pitch is formed. At this time, a binder is not particularly required. The shape of the molded body can be freely selected depending on the purpose, application, and the like. The molding may be performed at room temperature or in a temperature range where the heat-treated powder softens or melts, and is determined according to the required shape, performance and cost. The desired carbon material is manufactured by subsequently firing the molded body. The firing conditions are generally in a non-oxidizing atmosphere, and the heating rate is 1
It is carried out by heating the molded body to a temperature of 600 to 1600 ° C. at a temperature of 300 ° C./h to carbonize it. If necessary, a step of graphitizing at a higher temperature may be included.

【0015】[0015]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。但し本発明はこれらの実施例により制限され
るものではない。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited by these examples.

【0016】実施例1 超強酸 HF-BF3 の存在下、ナフタレンを重合させて得ら
れたメソフエーズピッチ AR-1(軟化点 >300 ℃、炭化収
率 91wt%、光学的異方性含有率 100vol%)を、窒素雰囲
気下 300℃/hで 480℃まで昇温し30分間の熱処理を行な
った。この熱処理ピッチの H/Cは0.47、 O/Cは 0.006で
あった。この熱処理ピッチを74μm 以下に粉砕したの
ち、常温にて成型圧 1200kg/cm2 でプレート状 (50mm×
50mm×10mm) に成型した。その後、窒素流通下 600℃ま
で60℃/hで昇温し 2時間保持した。炭化収率は 97wt%で
あった。その後アルゴン流通下1300℃で 2時間焼成する
ことにより、50mm×50mm×10mmの炭化物を得た。更にこ
の炭化物を1900℃で 2時間焼成した。得られた炭化物の
物性(嵩密度、圧縮強度、曲げ強度)を表1に示す。
Example 1 Mesophase pitch AR-1 obtained by polymerizing naphthalene in the presence of superacid HF - BF 3 (softening point> 300 ° C., carbonization yield 91 wt%, optical anisotropy Was heated to 480 ° C. at a rate of 300 ° C./h in a nitrogen atmosphere and heat-treated for 30 minutes. The H / C of this heat-treated pitch was 0.47, and the O / C was 0.006. After grinding the heat treated pitch below 74 .mu.m, the plate-shaped (50 mm × at a molding pressure 1200 kg / cm 2 at room temperature
(50mm × 10mm). Thereafter, the temperature was raised to 600 ° C. at a rate of 60 ° C./h under nitrogen flow, and maintained for 2 hours. The carbonization yield was 97% by weight. Thereafter, the resultant was calcined at 1300 ° C. for 2 hours under a flow of argon to obtain a 50 mm × 50 mm × 10 mm carbide. Further, this carbide was calcined at 1900 ° C. for 2 hours. Table 1 shows the physical properties (bulk density, compressive strength, bending strength) of the obtained carbide.

【0017】実施例2 超強酸 HF-BF3 の存在下、ナフタレンを重合させて得ら
れたメソフェーズピッチ AR-2(軟化点 220℃、炭化収率
83wt%、光学的異方性含有率 100vol%) を窒素雰囲気下
300℃/hで 505℃まで昇温し 2時間の熱処理をした。こ
の熱処理ピッチの H/Cは0.44、 O/Cは0.005 であった。
この熱処理ピッチを74μm 以下に粉砕したのち、常温に
て成型圧 1200kg/cm2 でプレート状 (50mm×50mm×10m
m) に成型した。その後、窒素流通下 600℃まで80℃/h
で昇温し 2時間保持した。炭化収率は 97wt%であった。
更にこれを1300℃および1900℃で焼成し、得られた炭化
物の物性を表1に示す。
Example 2 Mesophase pitch AR-2 (softening point 220 ° C., carbonization yield) obtained by polymerizing naphthalene in the presence of super strong acid HF-BF 3
83wt%, optical anisotropy content 100vol%) under nitrogen atmosphere
The temperature was raised to 505 ° C at 300 ° C / h and heat-treated for 2 hours. The H / C of this heat treatment pitch was 0.44 and the O / C was 0.005.
After grinding the heat treated pitch below 74 .mu.m, with a molding pressure 1200 kg / cm 2 at room temperature the plate-like (50mm × 50mm × 10m
m). Then 80 ℃ / h up to 600 ℃ under nitrogen flow
And kept for 2 hours. The carbonization yield was 97% by weight.
This was further calcined at 1300 ° C. and 1900 ° C., and the physical properties of the obtained carbide are shown in Table 1.

【0018】比較例1 実施例2と同じメソフェースピッチAR-2を用い、これを
窒素雰囲気下 300℃/hで 540℃まで昇温し 5時間熱処理
した。この熱処理ピッチの H/Cは0.34、 O/Cは0.005 で
あった。この熱処理粉体を実施例2と同様条件で成型し
600℃焼成し、更にこれを1300℃及び1900℃で焼成し
た。得られた炭化物の物性を表1に示す。この熱処理粉
体では H/Cが低いので、自己融着性が失われており、黒
色炭素粉が多量に手に付着した。
COMPARATIVE EXAMPLE 1 The same mesoface pitch AR-2 as in Example 2 was used and heated to 540 ° C. at 300 ° C./h in a nitrogen atmosphere and heat-treated for 5 hours. The H / C of this heat treatment pitch was 0.34, and the O / C was 0.005. This heat-treated powder was molded under the same conditions as in Example 2.
It was fired at 600 ° C. and further fired at 1300 ° C. and 1900 ° C. Table 1 shows the physical properties of the obtained carbide. Since the heat-treated powder had a low H / C, the self-fusing property was lost, and a large amount of black carbon powder adhered to hands.

【0019】比較例2 超強酸 HF-BF3 の存在下、ナフタレンを重合させて得ら
れたメソフェーズピッチ AR-3(軟化点 230℃、炭化収率
85wt%、光学的異方性含有率 100vol%) を窒素雰囲気下
300℃/hで 400℃まで昇温し14時間の熱処理をした。こ
の熱処理ピッチの H/Cは0.51、 O/Cは 0.005であった。
この熱処理粉体を実施例1と同様条件で600℃焼成を試
みたが、 H/Cが高いので成型体の膨張が起こり、炭化物
の各物性は測定できなかった。
Comparative Example 2 Mesophase pitch AR-3 (softening point 230 ° C., carbonization yield) obtained by polymerizing naphthalene in the presence of super strong acid HF-BF 3
85wt%, optically anisotropic content 100vol%) under nitrogen atmosphere
The temperature was raised to 400 ° C. at 300 ° C./h and heat-treated for 14 hours. The H / C of this heat treatment pitch was 0.51, and the O / C was 0.005.
The heat-treated powder was fired at 600 ° C. under the same conditions as in Example 1. However, since the H / C was high, the molded product expanded, and the physical properties of the carbide could not be measured.

【0020】比較例3 実施例1と同じメソフェーズピッチ AR-3 を用い、これ
を窒素雰囲気下 300℃/hで 450℃まで昇温し30分間熱処
理した。この熱処理中に一時的に若干の空気を吹き込ん
だ。この熱処理ピッチの H/Cは0.36、 O/Cは0.02であっ
た。以下、実施例1と同様の手順で焼成した。熱処理ピ
ッチの O/Cが高く、表1に示すように高性能の炭素材料
は得られなかった。
Comparative Example 3 Using the same mesophase pitch AR-3 as in Example 1, the temperature was raised to 450 ° C. at a rate of 300 ° C./h in a nitrogen atmosphere and heat-treated for 30 minutes. Some air was blown temporarily during this heat treatment. The H / C of this heat treatment pitch was 0.36 and the O / C was 0.02. Thereafter, firing was performed in the same procedure as in Example 1. The heat treatment pitch was high in O / C, and as shown in Table 1, a high performance carbon material could not be obtained.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】本発明の炭素質粉体は、高密度炭素材料
用原料として炭化・黒鉛化が容易で、かつ炭化収率が極
めて高い熱処理メソフェーズピッチであるので、短時間
で焼成が達成されるとともに一回の焼成のみで充分な高
密度と高強度の炭素材料が得られる。更にメソフェーズ
ピッチに由来する焼成体組織は光学的異方性を示し高緻
密でかつ高純度であるため、形成されるカーボンボンド
は非常に強固である。このカーボンボンドは高温での焼
成により黒鉛化度が向上し、かつ収縮により緻密化がよ
り一層促進されるので、カーボンボンドはさらに強くな
る。加えて本発明において用いられるメソフェーズピッ
チは、適度の熱処理により優れた粘着性が付与されるの
で、バインダーは特に不要である。従って本発明の炭素
質粉体を用いれば高密度高強度の炭素材料が簡単に短時
間で安価に製造でき、本発明の工業的意義は極めて大き
い。
The carbonaceous powder of the present invention is a heat-treated mesophase pitch which can be easily carbonized and graphitized as a raw material for a high-density carbon material and has an extremely high carbonization yield. In addition, a sufficient high density and high strength carbon material can be obtained by only one firing. Further, the fired body structure derived from the mesophase pitch exhibits optical anisotropy and is highly dense and highly pure, so that the carbon bond formed is very strong. Since the degree of graphitization of the carbon bond is improved by firing at a high temperature, and densification is further promoted by shrinkage, the carbon bond is further strengthened. In addition, the mesophase pitch used in the present invention is provided with excellent tackiness by moderate heat treatment, so that a binder is not particularly required. Therefore, if the carbonaceous powder of the present invention is used, a high-density, high-strength carbon material can be easily produced in a short time at low cost, and the industrial significance of the present invention is extremely large.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C10C 3/02 C10C 3/10Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) C10C 3/02 C10C 3/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭化収率が70重量% 以上、軟化点が 170℃
以上で、光学的異方性相が 70vol% 以上であるメソフェ
ーズピッチを熱処理することによって得られる、炭素に
対する水素の原子比が0.35〜0.48の範囲であり、且つ炭
素に対する酸素の原子比が0.01未満である自己融着性炭
素質粉体。
1. A carbonization yield of 70% by weight or more and a softening point of 170 ° C.
Above, the optically anisotropic phase is obtained by heat treatment of a mesophase pitch of 70 vol% or more, the atomic ratio of hydrogen to carbon is in the range of 0.35 to 0.48, and the atomic ratio of oxygen to carbon is less than 0.01. Is a self-fusing carbonaceous powder.
【請求項2】炭化収率が70重量% 以上、軟化点が 170℃
以上で、光学的異方性相が 70vol% 以上であるメソフェ
ーズピッチを熱処理することによって得られる、炭素に
対する水素の原子比が0.35〜0.48の範囲であり、且つ炭
素に対する酸素の原子比が0.01未満である自己融着性炭
素質粉体を成形した後、非酸化性雰囲気下600〜1600℃
の温度で炭素化、または更に高温で黒鉛化して得られる
高密度炭素材
2. A carbonization yield of 70% by weight or more and a softening point of 170 ° C.
Above, the optically anisotropic phase is obtained by heat treatment of a mesophase pitch of 70 vol% or more, the atomic ratio of hydrogen to carbon is in the range of 0.35 to 0.48, and the atomic ratio of oxygen to carbon is less than 0.01. After molding the self-fusing carbonaceous powder that is 600-1600 ° C under non-oxidizing atmosphere
Density carbon material obtained by carbonizing at the temperature of
JP4161183A 1992-06-19 1992-06-19 Self-fusing carbonaceous powder and high density carbon material Expired - Fee Related JP2806408B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4161183A JP2806408B2 (en) 1992-06-19 1992-06-19 Self-fusing carbonaceous powder and high density carbon material
DE69301866T DE69301866T2 (en) 1992-06-19 1993-05-18 Self-adhesive granular carbon materials and high-density carbon articles made therefrom
EP93108112A EP0575748B1 (en) 1992-06-19 1993-05-18 Self-adhesive carbonaceous grains and high density carbon artifacts derived therefrom
US08/301,038 US5547654A (en) 1992-06-19 1994-09-06 Self-adhesive carbonaceous grains and high density carbon artifacts derived therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4161183A JP2806408B2 (en) 1992-06-19 1992-06-19 Self-fusing carbonaceous powder and high density carbon material

Publications (2)

Publication Number Publication Date
JPH06145669A JPH06145669A (en) 1994-05-27
JP2806408B2 true JP2806408B2 (en) 1998-09-30

Family

ID=15730169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4161183A Expired - Fee Related JP2806408B2 (en) 1992-06-19 1992-06-19 Self-fusing carbonaceous powder and high density carbon material

Country Status (1)

Country Link
JP (1) JP2806408B2 (en)

Also Published As

Publication number Publication date
JPH06145669A (en) 1994-05-27

Similar Documents

Publication Publication Date Title
Mochida et al. Carbon disc of high density and strength prepared from heat-treated mesophase pitch grains
US5547654A (en) Self-adhesive carbonaceous grains and high density carbon artifacts derived therefrom
JP2806408B2 (en) Self-fusing carbonaceous powder and high density carbon material
US5609800A (en) Process for producing high-density and high-strength carbon artifacts showing a fine mosaic texture of optical anisotropy
JP2918008B2 (en) Self-fusing carbonaceous powder and high density carbon material
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JP3060450B2 (en) Raw material powder for high density carbon material and method for producing carbon material
JPS62138361A (en) Manufacture of high density formed body from carbon material
JPH0768064B2 (en) Carbon fiber reinforced composite material
JP3060449B2 (en) Raw material powder for high-density and high-strength carbon material and method for producing carbon material
JP2566555B2 (en) Method for producing carbon fiber reinforced carbon composite material
JPS59207822A (en) Production of carbon material
KR101927615B1 (en) Manufacturing method of petroleum-based binder pitch with high quinoline-insoluble content
JP3094502B2 (en) Manufacturing method of carbon material
JP3599062B2 (en) Method for producing carbon material having fine optically anisotropic structure
JPH0550468B2 (en)
JPH0512398B2 (en)
JPH07215775A (en) Production of carbon-carbon composite material
JP2003055057A (en) Method of manufacturing carbon fiber reinforced carbon material
JPH06172032A (en) Production of boron carbide/carbon composite-based neutron shielding material
JPH05330914A (en) Production of carbonaceous material having highly mirror finished surface
JPS6153104A (en) Production of high-strength carbon material
JPH0158124B2 (en)
JPH0569061B2 (en)
JPH02296897A (en) Production of raw material for high-density, high-strength carbon material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees