JP2804966B2 - High strength copper alloy for conductive - Google Patents
High strength copper alloy for conductiveInfo
- Publication number
- JP2804966B2 JP2804966B2 JP3565293A JP3565293A JP2804966B2 JP 2804966 B2 JP2804966 B2 JP 2804966B2 JP 3565293 A JP3565293 A JP 3565293A JP 3565293 A JP3565293 A JP 3565293A JP 2804966 B2 JP2804966 B2 JP 2804966B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- wire
- tensile strength
- present
- elongation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Conductive Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、伸線特性に優れた導電
用銅合金に係り、更に詳細には引張強さ及び繰り返し屈
曲強度等の機械的特性に優れ、しかも高い導電性と伸び
とを備えた自動車用の電線導体に好適な導電用銅合金に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive copper alloy having excellent wire drawing properties, and more particularly to a copper alloy having excellent mechanical properties such as tensile strength and repetitive bending strength. The present invention relates to a conductive copper alloy suitable for an electric wire conductor for an automobile provided with the above.
【0002】[0002]
【従来の技術】自動車に搭載された種々の車載装置は、
近年、自動車の運転を制御するため、或いはその車載装
置自体の操作を容易にするために、電子化或いは電動化
される傾向にある。このような傾向に伴い、電源と車載
装置間又は車載装置同士間での配線回路数が著しく増加
し、自動車における自動車用電線の総重量及び車内占積
空間が増加している。この結果、自動車全体の重量及び
所要空間が増大して、燃費が嵩み経済的に不利であるば
かりでなく、省エネルギーの社会的要請に反することに
なる。このため、引張強さ及び繰り返し屈曲強度等の機
械的特性に優れ、しかも高い導電性と伸びとを備えた自
動車用電線の導体を実現し、それにより自動車用電線の
軽量化及びその占積空間の狭小化を図ることが要望され
ている。2. Description of the Related Art Various in-vehicle devices mounted on an automobile are:
2. Description of the Related Art In recent years, in order to control driving of an automobile or to facilitate operation of an in-vehicle device itself, there is a tendency to be electronic or electric. With this trend, the number of wiring circuits between the power supply and the in-vehicle device or between the in-vehicle devices has increased remarkably, and the total weight and the occupied space inside the vehicle of the automobile have increased. As a result, the weight and the required space of the entire vehicle are increased, fuel economy is increased, which is not only economically disadvantageous but also against social demands for energy saving. For this reason, it is possible to realize a conductor for an automobile electric wire having excellent mechanical properties such as tensile strength and repeated bending strength, and also having high conductivity and elongation, thereby reducing the weight of the automobile electric wire and the space occupied by the conductor. There is a demand for narrowing of the size.
【0003】従来は、自動車用電線の導体として、主に
軟銅線が使用されてきたが、軟銅線は、機械的特性に劣
るため、微小電流回路用の実際には極細線でもよいとこ
ろを走行中の振動衝撃等に対する機械的強度を確保する
ため電気的必要径よりも大きな導体を用いる必要があ
り、重量の軽減を図ることは困難であった。このため、
軟銅線に代わる材料として硬銅線が検討されたが、硬銅
線は伸びが著しく小さいため、端子圧着箇所が外力によ
る機械的弱点となり信頼性に乏しい結果となった。そこ
で、軟銅線に代わる優れた特性を有する線材、即ち引張
強さ及び繰り返し屈曲強度等の機械的特性が優れてい
て、導体径を細くすることが可能で、導電性と伸びが良
好な線材が必要となる。かかる線材用素材として、Cu
−Mg合金あるいは特開平1−212732号に開示さ
れているようなCu−Fe−P−Mn−Si合金等が開
発されている。この後者の合金は、Fe、P、Mn、S
iの金属間化合物を銅マトリックス中に析出させたもの
であって、比較的良好な導電性を有し、伸線特性、引張
強さ及び繰り返し屈曲特性に優れている。Conventionally, annealed copper wire has been mainly used as a conductor for electric wires for automobiles. However, since annealed copper wire has inferior mechanical properties, it travels in a place where an ultrafine wire for a minute current circuit may actually be used. It was necessary to use a conductor larger than the required electrical diameter in order to secure mechanical strength against vibrations and shocks inside, and it was difficult to reduce the weight. For this reason,
Hard copper wire was studied as a material to replace the soft copper wire, but the hard copper wire has a remarkably low elongation, and the terminal crimping portion is a mechanical weak point due to external force, resulting in poor reliability. Therefore, a wire having excellent properties in place of annealed copper wire, that is, a wire having excellent mechanical properties such as tensile strength and repetitive bending strength, capable of reducing the conductor diameter, and having good conductivity and elongation. Required. As such a wire material, Cu
-Mg alloy or Cu-Fe-P-Mn-Si alloy as disclosed in JP-A-1-212732. This latter alloy is composed of Fe, P, Mn, S
It is obtained by depositing the intermetallic compound of i in a copper matrix, has relatively good conductivity, and is excellent in wire drawing properties, tensile strength, and repeated bending properties.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上述の
Cu−Mg合金は、MgをCuに固溶させることにより
引張強さを向上させてはいるが充分ではなく、また屈曲
強度も低い。更に、Mgは溶解,鋳造時での酸化消失が
激しく、添加成分が変動しやすいため特性が不安定にな
りやすい。また、鋳造性に難点があるために連続鋳造時
に鋳造割れが発生しやすく、以後の伸線加工時に断線が
多発する恐れがある。更にこれにSnを加えたCu−M
g−Sn合金も提案されているが、引張強さが多少向上
するものの充分ではない。また、上述のCu−Fe−P
−Mn−Si合金は、Fe,P,Mn,Siを微細に析
出させて、引張強さ,伸び,導電率を向上させているの
で特性的には良好であるが、時効硬化型の合金のため、
通常の電線製造工程とは別に、熱処理の温度を正確に制
御した溶体化処理,時効硬化処理を必要とする。このた
め、設備増や工程増となり製造コストのアップを招いて
しまう。また、合金中のPが、脱酸剤として作用し、合
金の線材化のための連続鋳造工程中に酸素と反応して鋳
造品のP含有量にバラツキが生じ、製品線材の特性にム
ラが生じるという問題もあった。However, the above-mentioned Cu-Mg alloy improves the tensile strength by dissolving Mg in Cu, but is insufficient, and has a low flexural strength. Further, Mg is highly susceptible to oxidation and elimination during melting and casting, and tends to have unstable characteristics because the added components are apt to fluctuate. In addition, since there is a difficulty in castability, casting cracks are likely to occur during continuous casting, and there is a possibility that disconnection frequently occurs during subsequent wire drawing. Cu-M with Sn added to it
g-Sn alloy has also been proposed, but enough of those tensile strength is somewhat improved not name. Further, the above-mentioned Cu-Fe-P
-Mn-Si alloy has good characteristics because it precipitates Fe, P, Mn, and Si finely to improve tensile strength, elongation, and electrical conductivity. For,
In addition to the usual electric wire manufacturing process, a solution treatment and an age hardening treatment in which the temperature of the heat treatment is accurately controlled are required. For this reason, the number of equipments and the number of steps are increased, and the production cost is increased. In addition, P in the alloy acts as a deoxidizing agent and reacts with oxygen during a continuous casting process for converting the alloy into a wire, causing a variation in the P content of the cast product, resulting in uneven characteristics of the product wire. There was also a problem that would occur.
【0005】本発明は、複雑な熱処理工程を必要とせ
ず、伸線加工性に優れ、かつ強度,伸び,導電性,耐屈
曲性に優れた固溶強化型銅合金である導電用高力銅合金
の提供を目的としている。[0005] The present invention provides a high-strength copper for conductive use which is a solid solution strengthened copper alloy which does not require a complicated heat treatment step, is excellent in wire drawing workability, and is excellent in strength, elongation, conductivity and bending resistance. The purpose is to provide alloys.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、Mgを0.1〜0.5wt%、Niを0.1〜
0.5wt%、Snを0.1〜0.5wt%、Liを0.02 〜0.2
wt%含有し、残部が実質的にCuからなることを特徴と
している。In order to achieve the above-mentioned object, the present invention relates to a method for producing Mg in an amount of 0.1 to 0.5 wt% and Ni in an amount of 0.1 to 0.5 wt%.
0.5 wt%, Sn: 0.1 to 0.5 wt%, Li: 0.02 to 0.2
wt.%, with the balance substantially consisting of Cu.
【0007】また、本発明は、Mgを0.1〜0.5wt%、
Snを0.15 〜0.75wt %、Inを0.05 〜0.35wt %
含有し、残部がCuからなり、かつMg:Snの含有比
率が1:1.2〜1.8の範囲にあるものでもよく、それに
より伸線特性に優れた導電用高力銅合金を実現してい
る。Further, the present invention relates to a method for preparing Mg from 0.1 to 0.5 wt%,
0.15 to 0.75 wt% of Sn, 0.05 to 0.35 wt% of In
May be contained, the balance being Cu, and the content ratio of Mg: Sn being in the range of 1: 1.2 to 1.8, thereby realizing a high-strength copper alloy for conductive use having excellent wire drawing properties. doing.
【0008】請求項1に係る本発明合金は、Mg,Sn
をCu母相中に固溶させて、引張強さ,焼鈍後の伸びを
向上させ、Niを添加することで鋳造性を向上させてい
る。また更に、Liを添加することによってMg含有量
の安定化が図られている。本発明において、Mgの含有
量を0.1 〜0.5 wt%に規定した理由について説明する。
MgをCuに添加すると、鋳造時に鋳巣が発生しやすく
鋳造性が悪化する。特に、連続鋳造時に鋳造割れが発生
しやすく、微細な割れでも後工程の冷間圧延及び伸線時
において欠陥部となり断線が多発する。このため、Cu
−Mg合金は表面を面削してから伸線をおこなうが断線
が多発することがある。しかしながら、Mgの固溶は導
電率の低下が少ない割に引張強さの向上効果が大きい。
Mgの含有量が0.1wt %以下では引張強さの向上効果は
小さく、Mgの含有量が0.5wt %以上では引張強さの向
上効果は飽和し、導電率の低下が大きくなり鋳造性が悪
くなる。そこで、0.1 〜0.5wt %とした。[0008] The alloy of the present invention according to claim 1 comprises Mg, Sn
Is dissolved in a Cu matrix to improve tensile strength and elongation after annealing, and by adding Ni, castability is improved. Further, the addition of Li stabilizes the Mg content. In the present invention, the reason why the content of Mg is defined as 0.1 to 0.5 wt% will be described.
When Mg is added to Cu, cast cavities are likely to occur during casting, and castability deteriorates. In particular, casting cracks are apt to occur during continuous casting, and even fine cracks become defective portions during cold rolling and wire drawing in the subsequent steps, and disconnection frequently occurs. Therefore, Cu
-Magnesium alloy is drawn after its surface is chamfered, but breakage may occur frequently. However, the solid solution of Mg has a large effect of improving the tensile strength, although the decrease in the conductivity is small.
When the content of Mg is less than 0.1 wt%, the effect of improving the tensile strength is small, and when the content of Mg is more than 0.5 wt%, the effect of improving the tensile strength is saturated, the electric conductivity is greatly reduced, and the castability is poor. Become. Therefore, the content was set to 0.1 to 0.5 wt%.
【0009】Ni含有量を0.1 〜0.5wt %に規定した理
由について説明する。NiをCu−Mg合金に添加する
と、Mgによって悪化した鋳造性が飛躍的に向上するの
みならず、引張強さや焼鈍後の伸びも向上する。ところ
が、Ni含有量が0.1wt %以下ではMgの添加によって
低下した鋳造性を改善しきれず、また0.5wt %以上では
鋳造性は向上するが導電率の低下が大きく実用的ではな
いのみならず、引張強さや焼鈍後の伸びが飽和してしま
う。また、Niは導電率を低下させるので添加量はあま
り多くないほうが望ましく、Mg:Niの比率は0.8 〜
1.0 程度がよい。Mg:Niの比率が0.8 以下ではMg
による鋳造性の低下を補い切れず、反面Niの添加量が
あまり多いと鋳造性は向上するが導電率が低下して実用
的ではない。The reason for limiting the Ni content to 0.1 to 0.5 wt% will be described. When Ni is added to a Cu-Mg alloy, not only the castability deteriorated by Mg is remarkably improved, but also the tensile strength and elongation after annealing are improved. However, when the Ni content is less than 0.1 wt%, the castability reduced by the addition of Mg cannot be completely improved, and when the Ni content is 0.5 wt% or more, the castability is improved but the conductivity is greatly reduced, which is not practical. Tensile strength and elongation after annealing are saturated. Also, since Ni lowers the electrical conductivity, it is desirable that the amount of addition is not so large, and the ratio of Mg: Ni is 0.8 to 0.8.
1.0 is good. When the ratio of Mg: Ni is 0.8 or less, Mg
However, if the amount of Ni is too large, the castability is improved, but the electrical conductivity is lowered, which is not practical.
【0010】Sn含有量を0.1 〜0.5wt %に規定した理
由について説明する。Snは焼鈍後の伸びの向上効果が
非常に大きく、耐屈曲性も大幅に向上し、引張強さの向
上効果も大きく鋳造性の向上効果もNiについで大き
い。しかし、0.1wt %以下では効果はあまりなく、0.5w
t %以上では向上効果は飽和するとともに、導電率の減
少が大きくなり実用的ではない。The reason for limiting the Sn content to 0.1 to 0.5 wt% will be described. Sn has a very large effect of improving elongation after annealing, has significantly improved bending resistance, has a large effect of improving tensile strength, and has a larger effect of improving castability than Ni. However, less than 0.1 wt% has little effect,
Above t%, the effect of improvement is saturated and the decrease in conductivity is increased, which is not practical.
【0011】Li含有量を0.02〜0.2wt %に規定した理
由について説明する。Liは引張強さの向上に寄与し、
導電率の低下も少ない。しかし、Li添加の主目的はM
g含有量の安定化にある。通常、MgはCu中に溶解さ
れると酸化のため消失が大きいので、Mgを添加した銅
合金は炉内雰囲気を不活性ガスにしたり、溶湯表面を酸
化防止のフラックス等で保護して酸化防止を図っている
が、鋳造が長時間の時、Mgは溶銅中及び雰囲気中の酸
素と反応して酸化消失する。Liを添加することにより
溶銅中及び雰囲気中の酸素は優先的に反応しMgの酸化
を防止する。溶銅中に残存したLiは引張強さの向上に
寄与する。Liの添加が0.02wt%以下では上記の効果は
得られず、また0.2wt %以上になるとLiは高価なため
コストアップになり導電率も低下する。The reason for limiting the Li content to 0.02 to 0.2 wt% will be described. Li contributes to the improvement of the tensile strength,
There is little decrease in conductivity. However, the main purpose of Li addition is M
g content stabilization. Normally, when Mg is dissolved in Cu, it is largely lost due to oxidation. Therefore, the copper alloy containing Mg is protected from oxidation by changing the atmosphere in the furnace to an inert gas or protecting the surface of the molten metal with a flux for preventing oxidation. However, when casting is performed for a long time, Mg reacts with oxygen in the molten copper and in the atmosphere to be oxidized and disappear. By adding Li, oxygen in the molten copper and in the atmosphere reacts preferentially and prevents oxidation of Mg. Li remaining in the molten copper contributes to improvement in tensile strength. If the addition of Li is 0.02% by weight or less, the above effect cannot be obtained. If the addition is 0.2% by weight or more, Li is expensive, so that the cost is increased and the conductivity is lowered.
【0012】また、請求項2に係る本発明合金は、M
g、Sn及びInをCuマトリックス中に固溶させるこ
とにより、比較的高い導電性を維持しつつ、しかも引張
強さを増強し、焼鈍後の伸びを向上させたものである。
本発明において、Mgを含有させる理由は、上述したよ
うにMgの含有が引張強さを増強するからであり、また
Mg含有量を0.1〜0.5wt%の範囲に限定した理由も、
上述のように0.5wt%以上では引張強さ増強の効果が飽
和し、しかもインゴット鋳造中に鋳巣などの欠陥が発生
し易く鋳造性が悪化し、特に連続鋳造時に鋳造割れが発
生し易くなるからであり、一方、0.1wt%以下では引張
強さの増強効果が低いからである。Further, the alloy according to the present invention according to claim 2 is characterized in that:
By dissolving g, Sn, and In in a Cu matrix, the comparatively high conductivity is maintained, the tensile strength is enhanced, and the elongation after annealing is improved.
In the present invention, the reason why Mg is contained is that the content of Mg enhances the tensile strength as described above, and also the reason that the Mg content is limited to the range of 0.1 to 0.5 wt%,
As described above, when the content is 0.5 wt% or more, the effect of increasing the tensile strength is saturated, and moreover, defects such as cavities are likely to occur during ingot casting, and castability is deteriorated. On the other hand, when the content is less than 0.1 wt%, the effect of increasing the tensile strength is low.
【0013】本発明において、Snを含有させる理由
も、上述したとうりで、連続鋳造性を大幅に改善し、か
つ引張強さの増強及び焼鈍後の伸びの向上に寄与し、特
に繰り返し屈曲特性を大幅に向上させるからである。ま
た、Sn含有量を0.15 〜0.75wt %の範囲に限定した
理由は、0.75wt %以上では引張強さの増強効果、焼鈍
後の伸び及び繰り返し屈曲特性の向上効果に比べて導電
率の低下が大きくなるからであり、一方0.15wt %以下
では、連続鋳造性改善の効果が小さく、また引張強さを
増強させる効果並びに焼鈍後の伸び及び繰り返し屈曲特
性を向上させる効果も低いからである。In the present invention, the reason why Sn is contained is that, as described above, the continuous castability is greatly improved, the tensile strength is enhanced, and the elongation after annealing is improved. Is greatly improved. Also, the reason why the Sn content is limited to the range of 0.15 to 0.75 wt% is that when the Sn content is 0.75 wt% or more, the conductivity is higher than that of the effect of enhancing the tensile strength, elongation after annealing and improving the repetitive bending characteristics. On the other hand, if it is 0.15 wt% or less, the effect of improving the continuous castability is small, and the effect of increasing the tensile strength and the effect of improving the elongation after annealing and the repetitive bending characteristics are also low. Because.
【0014】本発明において、Inを含有させる理由
は、Inの含有が導電性を犠牲にすることなく引張強さ
を増強するからである。In含有量を0.05 〜0.35wt
%の範囲に限定した理由は、Inは高価な元素であるか
ら出来るだけ少量の含有量で済ませるべきであって、
0.35wt %以上では引張強さ増強の効果が飽和し、しか
もコストが大幅に増加するためであり、一方0.05wt %
以下では引張強さの増強効果が小さいからである。In the present invention, the reason for including In is that the inclusion of In enhances the tensile strength without sacrificing conductivity. In content 0.05 ~ 0.35wt
The reason for limiting to the range of% is that In is an expensive element, so that the content should be as small as possible.
If the content is more than 0.35% by weight, the effect of enhancing the tensile strength is saturated, and the cost is greatly increased.
This is because the effect of increasing the tensile strength is small below.
【0015】本発明において、MgとSnとの含有比率
を1:1.2〜1.8の範囲に限定した理由は、MgとSn
との含有比率が1:1.2以下ではMgの含有による鋳造
性の劣化をSnの含有による鋳造性の改善では補えず、
鋳造割れが発生し易くなり、そのため断線が発生し易い
からである。鋳造割れは、圧延後の伸線工程において欠
陥となって出現し、それにより断線が多発する。また、
MgとSnとの含有比率が、1:1.8以上では、Snに
よる鋳造性の改善効果が飽和するからである。In the present invention, the reason why the content ratio of Mg and Sn is limited to the range of 1: 1.2 to 1.8 is that Mg and Sn are contained.
If the content ratio is 1: 1.2 or less, the deterioration of castability due to the inclusion of Mg cannot be compensated for by the improvement of castability due to the inclusion of Sn.
This is because casting cracks are likely to occur, and as a result, disconnection is likely to occur. Cast cracks appear as defects in the wire drawing process after rolling, and as a result, disconnection frequently occurs. Also,
If the content ratio of Mg and Sn is 1: 1.8 or more, the effect of improving the castability by Sn is saturated.
【0016】[0016]
【実施例】以下、本発明の第1の実施例について説明す
る。表1に示す本発明の銅合金及び比較例No.1〜1
2としての合金から、以下のようにして試料線材を得
た。先ず、不活性ガス雰囲気に保たれた溶解炉で黒鉛粒
被覆下にて銅(Cu)を溶解後、Mg,Ni,Sn及び
Liを純金属の形態でそれぞれ所要量添加し、均一な組
成の溶湯を得た。これを連続鋳造により、それぞれ表1
に示す組成の20mmφの鋳造棒を作製した。これを、冷
間圧延後、1mmφに伸線し、電気抵抗式焼鈍機にて通電
焼鈍をおこない、引張強さ,伸び,導電率,繰返し屈曲
強度を測定した。なお、比較例No.13は硬銅線であ
り、純銅である。The first embodiment of the present invention will be described below. Table 1 shows the copper alloy of the present invention and Comparative Example No. 1 to 1
From the alloy as No. 2, a sample wire was obtained as follows. First, copper (Cu) is melted under a graphite particle coating in a melting furnace maintained in an inert gas atmosphere, and then Mg, Ni, Sn and Li are added in required amounts in the form of pure metals, respectively, to obtain a uniform composition. A molten metal was obtained. This was subjected to continuous casting, as shown in Table 1.
A 20 mmφ cast rod having the composition shown in Table 1 was produced. This was cold-rolled, drawn to 1 mmφ, electrically annealed by an electric resistance annealing machine, and the tensile strength, elongation, electrical conductivity, and repeated bending strength were measured. In addition, the comparative example No. Reference numeral 13 denotes a hard copper wire, which is pure copper.
【0017】[0017]
【表1】 [Table 1]
【0018】また、従来例の合金である比較例No.1
4のCu−Fe−P−Mn−Si合金は、不活性ガス雰
囲気に保たれた溶解炉で黒鉛粒被覆下にて銅を溶解後、
Fe,P,Mn,Siを母合金の形態で添加し均一な溶
湯を得た。これを連続鋳造により表1に示す組成の20
mmφの鋳造棒を作成した。これを、冷間圧延及び伸線し
3.2mmφの線材を得た。この線材を不活性ガス雰囲気炉
で900℃で1時間加熱後水冷して溶体化処理をおこな
った。その後、1.0mmφまで伸線し不活性ガス雰囲気炉
にて470℃で6時間の時効硬化処理を施し、引張強
さ,伸び,導電率,繰返し屈曲強度を測定した。なお、
表1では導電率は%IACS、引張強さはKg/mm2 、
伸びは%、繰り返し屈曲強度は回数でそれぞれ表示され
ている。In addition, in Comparative Example No. 1
The Cu-Fe-P-Mn-Si alloy of No. 4 was prepared by melting copper under a graphite particle coating in a melting furnace maintained in an inert gas atmosphere.
Fe, P, Mn, and Si were added in the form of a mother alloy to obtain a uniform molten metal. This was continuously cast into a 20
A mmφ cast rod was prepared. This was cold-rolled and drawn to obtain a 3.2 mmφ wire. This wire was heated in an inert gas atmosphere furnace at 900 ° C. for 1 hour and then water-cooled to perform a solution treatment. Thereafter, the wire was drawn to 1.0 mmφ and subjected to age hardening treatment in an inert gas atmosphere furnace at 470 ° C. for 6 hours, and the tensile strength, elongation, electric conductivity, and repeated bending strength were measured. In addition,
In Table 1, the conductivity is% IACS, the tensile strength is Kg / mm 2 ,
The elongation is indicated by%, and the repeated bending strength is indicated by the number of times.
【0019】次に、本発明に係る合金の鋳造性を評価す
るために、0.08 mmφまでの細線をおこなった。連続鋳
造で作成した20mmφの鋳造棒を冷間圧延し、9.5mmφ
の荒引線を作成した。これを、大型連続伸線機で2.6mm
φまで伸線した。続いて、小型伸線機で2.6mmφより
0.6mmφまで伸線した。更に、細線機で0.6mmφより
0.08mm φまで伸線し、それぞれの断線回数を調査し、
上述の表1に示した。なお、伸線数量は線材重量50k
gを取り出しておこなった。Next, in order to evaluate the castability of the alloy according to the present invention, a thin wire up to 0.08 mmφ was drawn. Cold rolled 20mmφ cast rod made by continuous casting, 9.5mmφ
Created a rough drawing line. This is 2.6mm with a large continuous wire drawing machine.
Wire was drawn to φ. Subsequently, the wire was drawn from 2.6 mmφ to 0.6 mmφ using a small wire drawing machine. Furthermore, the wire was drawn from 0.6mmφ to 0.08mmφ with a fine wire machine, and the number of disconnections was investigated.
This is shown in Table 1 above. The wire drawing quantity is 50k wire weight.
g was taken out.
【0020】屈曲試験は、図1に示すように、治具1に
供試料2を挟んで、他端を2kgの引張荷重Wを加えた
状態で(a)→(b)→(c)→(d)と左右に90°
曲げるのを1回として、破断するまで繰返しおこない、
その回数を屈曲強度とした。In the bending test, as shown in FIG. 1, a sample 2 is interposed between a jig 1 and a tensile load W of 2 kg is applied to the other end of the jig 1, and (a) → (b) → (c) → 90 ° left and right with (d)
Bending once, repeat until break,
The number of times was defined as bending strength.
【0021】表1に示すように、本発明の合金No.1
〜No.9と比較合金No.14とを比べると、導電率
は若干低下するものの、引張強さ,伸び,屈曲強度で同
等以上の特性を有していることがわかる。なお、比較合
金No.14は、解決課題のところで述べたように、溶
体化処理,時効硬化処理等の複雑な熱処理工程を経てい
る。As shown in Table 1, the alloy No. 1
-No. 9 and Comparative Alloy No. 9 In comparison with No. 14, it can be seen that the conductivity is slightly lower, but has the same or higher characteristics in tensile strength, elongation and flexural strength. In addition, comparative alloy No. No. 14 has undergone a complicated heat treatment step such as a solution treatment and an age hardening treatment as described in the section of the problem to be solved.
【0022】比較合金No.1とNo.2は、通常のC
u−Mg合金である。本発明合金と比較すると、導電率
は同等であるが引張強さ,伸び,屈曲強度が大幅に劣
る。比較合金No.3は、Cu−Ni合金であるが、導
電率,引張強さ,伸び,屈曲強度が劣る。比較合金N
o.4とNo.5は、Cu−Sn合金である。導電率は
同等であるが引張強さ,伸び,屈曲強度が劣る。比較合
金No.6は、Mg,Ni,Sn,Liが本発明合金の
下限以下である。導電率は優れているが、引張強さ,伸
び,屈曲強度で劣る。比較合金No.7は、Cu−Mg
−Sn合金である。導電率は同等であるが引張強さ,伸
び,屈曲強度が劣る。比較合金No.8は、Cu−Mg
−Ni合金である。導電率は同等であるが引張強さ,伸
び,屈曲強度が劣る。Comparative Alloy No. 1 and No. 2 is normal C
It is a u-Mg alloy. Compared with the alloy of the present invention, the conductivity is the same, but the tensile strength, elongation and flexural strength are significantly inferior. Comparative alloy No. Reference numeral 3 denotes a Cu—Ni alloy, which is inferior in conductivity, tensile strength, elongation, and flexural strength. Comparative alloy N
o. 4 and No. 5 is a Cu-Sn alloy. Conductivity is the same, but tensile strength, elongation and flexural strength are inferior. Comparative alloy No. In No. 6, Mg, Ni, Sn and Li are lower than the lower limit of the alloy of the present invention. Excellent conductivity, but poor in tensile strength, elongation, and flexural strength. Comparative alloy No. 7 is Cu-Mg
-Sn alloy. Conductivity is the same, but tensile strength, elongation and flexural strength are inferior. Comparative alloy No. 8 is Cu-Mg
-Ni alloy. Conductivity is the same, but tensile strength, elongation and flexural strength are inferior.
【0023】比較合金No.9、No.10、No.1
1は Cu−Mg−Ni−Sn合金である。No.9は
NiとSnの含有量が本発明合金の上限以上のため導電
率が大幅に劣る。No.10とNo.11は同一組成で
あるが、No.11は鋳造開始直後の組成で、No.1
0は鋳造開始後2時間経過後の組成である。不活性ガス
雰囲気,黒鉛粒被覆下にもかかわらず、Mgの量が約3
0%減少している。このため、引張強さ,伸びが若干減
少している。一方、本発明合金No.8は鋳造直後の組
成であり、本発明合金No.9は6時間経過後の鋳造終
了時での組成である。LiがMgの酸化・消失を保護し
ているのでMgの減少は殆どなく、特性にも変化はな
い。本発明合金No.5は、比較合金No.11にLi
を添加した組成である。引張強さ,伸び,屈曲強度にお
ける特性が向上している。Comparative Alloy No. 9, No. 10, No. 1
1 is a Cu-Mg-Ni-Sn alloy. No. No. 9 has significantly lower conductivity because the content of Ni and Sn is equal to or more than the upper limit of the alloy of the present invention. No. 10 and No. No. 11 has the same composition. No. 11 is the composition immediately after the start of casting. 1
0 is the composition 2 hours after the start of casting. Despite the inert gas atmosphere and under the graphite particle coating, the amount of Mg is about 3
It has decreased by 0%. For this reason, the tensile strength and elongation are slightly reduced. On the other hand, the alloy No. of the present invention. No. 8 is a composition immediately after casting. 9 is the composition at the end of casting after 6 hours. Since Li protects the oxidation and disappearance of Mg, there is almost no decrease in Mg, and there is no change in characteristics. The alloy No. of the present invention. No. 5 is a comparative alloy No. 11 to Li
Is a composition to which is added. The properties in tensile strength, elongation and flexural strength are improved.
【0024】比較合金No.12は、Mg,Ni,S
n,Liが本発明合金の上限以上の組成である。導電率
が極端に悪化しており実用的でない。比較合金No.1
4は、上述したように、特性は良好であるが、鋳造→圧
延→伸線→溶体化処理→伸線→時効硬化処理と製造工程
が複雑であり、正確な温度管理も必要となり、製造コス
トが非常に高くなるという問題がある。Comparative alloy no. 12 is Mg, Ni, S
n and Li are compositions that are equal to or more than the upper limit of the alloy of the present invention. The conductivity is extremely deteriorated and is not practical. Comparative alloy No. 1
No. 4 has good properties as described above, but the manufacturing process of casting → rolling → drawing → solution treatment → drawing → age hardening treatment is complicated, and accurate temperature control is required, and the manufacturing cost is high. Is very high.
【0025】また、本発明合金の鋳造性を評価するた
め、伸線特性の検討をおこなった。比較合金No.1、
No.2はCu−Mg合金であり、伸線特性は非常に悪
く、0.6mmφ→0.08 mmφへの伸線は断線が多発して不
可能であった。比較合金No.7はCu−Mg−Sn合
金であるが、Niを含有していないために断線が非常に
多く発生した。No.12は本発明合金と同成分である
が、含有量が本発明合金の上限より多いため、細線機で
断線が多発した。これは、特にMg含有量が0.9%と多
いため、Ni含有量を増加しても伸線特性を向上するこ
とができなかっためである。その他の比較合金の伸線特
性は良好であった。Further, in order to evaluate the castability of the alloy of the present invention, the drawing characteristics were examined. Comparative alloy No. 1,
No. No. 2 is a Cu-Mg alloy, and the drawing properties were very poor, and drawing from 0.6 mmφ to 0.08 mmφ was impossible due to frequent breakage. Comparative alloy No. 7 is a Cu-Mg-Sn alloy, but because it does not contain Ni, very many disconnections occurred. No. 12 is the same component as that of the alloy of the present invention, but since the content is more than the upper limit of the alloy of the present invention, wire breakage frequently occurred in the fine wire machine. This is because, especially since the Mg content is as high as 0.9%, the wire drawing characteristics cannot be improved even if the Ni content is increased. The wire drawing characteristics of the other comparative alloys were good.
【0026】次に、本発明の第2の実施例について説明
する。表2に示す本発明合金No.1〜9及び比較例N
o.1〜8としての合金から、以下のようにして、試料
線材を得た。先ず、不活性ガス雰囲気に保たれた溶解炉
で黒鉛粒被覆下にて銅を溶解し、その後、Mg、Sn及
びInを純金属の形態でそれぞれ所要量添加し、均一な
組成の溶湯を得た。これを連続鋳造して、それぞれ表2
に示す組成の20mmφの鋳造棒を形成した。次いで、得
た鋳造棒を冷間圧延し、その後、1mmφに伸線し、更に
電気抵抗式焼鈍機で通電焼鈍して、引張強さ,伸び,導
電率,繰返し屈曲強度を測定した。また、従来例の合金
である比較例No.9のCu−Fe−P−Mn−Si合
金は、不活性ガス雰囲気に保たれた溶解炉で黒鉛粒被覆
下にて銅を溶解後、Fe,P,Mn,Siを母合金の形
態で添加し均一な溶湯を得た。これを連続鋳造により表
1に示す組成の20mmφの鋳造棒を作製した。これを、
冷間圧延及び伸線し3.2mmφの線材を得た。この線材を
不活性ガス雰囲気炉で900℃で1時間加熱後水冷して
溶体化処理をおこなった。その後、1.0mmφまで伸線し
不活性ガス雰囲気炉にて470℃で6時間の時効硬化処
理を施し、引張強さ,伸び,導電率,繰返し屈曲強度を
測定した。常用の試験方法に従って、この試料線材につ
いて引張強さ、伸び、導電率及び繰り返し屈曲強度を測
定し、その結果を表2に示した。表2では、導電率は%
IACSで、引張強さはKg/mm2で、伸びは%で、及び繰
り返し屈曲強度は回数でそれぞれ表示されている。Next, a second embodiment of the present invention will be described. The alloys of the present invention shown in Table 2 1 to 9 and Comparative Example N
o. From the alloys Nos. 1 to 8, sample wires were obtained as follows. First, copper is melted under a graphite particle coating in a melting furnace maintained in an inert gas atmosphere, and then Mg, Sn and In are added in required amounts in the form of pure metals, respectively, to obtain a molten metal having a uniform composition. Was. This was continuously cast, and Table 2
A 20 mmφ cast rod having the composition shown in Table 1 was formed. Next, the obtained cast rod was cold-rolled, then drawn to 1 mmφ, and further electrically annealed by an electric resistance annealing machine to measure tensile strength, elongation, electrical conductivity, and repeated bending strength. In addition, in Comparative Example No. Cu-Fe-P-Mn-Si alloy No. 9 was prepared by dissolving copper under a graphite particle coating in a melting furnace maintained in an inert gas atmosphere, and then adding Fe, P, Mn, and Si in the form of a master alloy. Then a uniform molten metal was obtained. This was subjected to continuous casting to produce a 20 mmφ cast rod having the composition shown in Table 1. this,
Cold rolling and drawing were performed to obtain a 3.2 mmφ wire. This wire was heated in an inert gas atmosphere furnace at 900 ° C. for 1 hour and then water-cooled to perform a solution treatment. Thereafter, the wire was drawn to 1.0 mmφ and subjected to age hardening treatment in an inert gas atmosphere furnace at 470 ° C. for 6 hours, and the tensile strength, elongation, electric conductivity, and repeated bending strength were measured. The tensile strength, elongation, electrical conductivity and repetitive bending strength of this sample wire were measured according to a conventional test method, and the results are shown in Table 2. In Table 2, conductivity is%
In IACS, the tensile strength is expressed in Kg / mm 2 , the elongation is expressed in%, and the repeated bending strength is expressed in number.
【0027】[0027]
【表2】 [Table 2]
【0028】屈曲試験は、第1の実施例と同様に、図1
に示すような治具1にておこなった。In the bending test, as in the case of the first embodiment, FIG.
The jig 1 shown in FIG.
【0029】また、本発明合金の鋳造性を評価するため
に、表2に示す本発明合金No.1から9の組成の合金か
ら作った試料線材の伸線試験を線径0.08mm φまで伸線
して行った。そのために、先ず本発明合金から連続鋳造
により作製した20mmφの鋳造棒を冷間圧延し、9.5mm
φの荒引線を得た。これを大型連続伸線機で2.6mmφま
で伸線を行い、次いで小型伸線機で2.6mmφから0.6mm
φまで伸線を行い、更に細線機で0.6mmφより0.08mm
φまで伸線を行った。大型伸線機、小型伸線機及び細線
機による伸線工程での断線回数を計数し、その断線回数
で以て伸線特性を評価した。尚、各伸線工程における断
線回数は、線材重量50Kg当たりの伸線の断線回数であ
る。Further, in order to evaluate the castability of the alloy of the present invention, the alloy No. of the present invention shown in Table 2 was evaluated. A wire drawing test of a sample wire rod made of an alloy having a composition of 1 to 9 was performed by drawing to a wire diameter of 0.08 mmφ. For this purpose, first, a 20 mmφ cast rod produced by continuous casting from the alloy of the present invention was cold-rolled to 9.5 mmφ.
A rough drawing of φ was obtained. This is drawn to 2.6mmφ using a large continuous wire drawing machine, and then from 2.6mmφ to 0.6mm using a small wire drawing machine.
Draw wire to φ, then use a fine wire machine to increase the diameter from 0.6mmφ to 0.08mm
The wire was drawn to φ. The number of breaks in the wire drawing process using a large wire drawing machine, a small wire drawing machine, and a fine wire drawing machine was counted, and the wire drawing characteristics were evaluated based on the number of times of wire breaking. In addition, the number of times of wire breakage in each wire drawing process is the number of times of wire breakage per 50 kg of wire material weight.
【0030】本発明合金の試料線材と同様にして、得た
比較合金の試料線材について導電率、引張強さ、伸び、
繰り返し屈曲強度及び伸線特性を測定し、その結果を表
2に記載した。また、本発明合金の試料線材と同様にし
て、得た従来合金の試料線材について導電率、引張強
さ、伸び及び繰り返し屈曲強度並びに伸線特性を測定
し、その結果を表2に記載した。更に、参考例として硬
銅のみからなる線材についても同様に作製し、試験を行
い、その結果を表示した。In the same manner as the sample wire of the alloy of the present invention, the conductivity, tensile strength, elongation,
The flexural strength and drawing characteristics were measured repeatedly, and the results are shown in Table 2. In the same manner as the sample wire of the alloy of the present invention, the electrical conductivity, tensile strength, elongation, repeated bending strength, and wire drawing characteristics of the obtained sample wire of the conventional alloy were measured, and the results are shown in Table 2. Further, as a reference example, a wire made of only hard copper was similarly manufactured, tested, and the results were displayed.
【0031】以下に、試料線材の導電率、引張強さ、伸
び及び繰り返し屈曲強度について、本発明合金No. 1〜
9、比較合金No. 1〜9を比較して検討する。本発明合
金は、その導電率が従来のCu−Fe−P−Mn−Si
合金より僅かに低い値を示しているが、実用上差し支え
のない程度の低下であって、一方、引張強さ、伸び及び
繰り返し屈曲強度は、Cu−Fe−P−Mn−Si合金
に比べて同等ないしそれ以上の良好な値を示している。Hereinafter, the electrical conductivity, tensile strength, elongation, and repeated bending strength of the sample wire rods will be described.
9. Comparative alloy Nos. 1 to 9 will be compared and examined. The alloy of the present invention has a conventional Cu-Fe-P-Mn-Si conductivity.
Although it shows a value slightly lower than that of the alloy, it is a decrease that is not problematic in practical use, while the tensile strength, elongation and cyclic bending strength are lower than those of the Cu-Fe-P-Mn-Si alloy. It shows equal or better values.
【0032】比較合金No. 1、No. 2及びNo. 4は、I
nを添加しなかった合金である。それから作製した試料
線材は、導電率は本発明合金とほぼ同等であるが、引張
強さが大幅に低下している。比較合金No. 3は、Sn含
有量が本発明で規定したSn含有量の下限以下のため、
伸び及び繰り返し屈曲強度が本発明合金に比べてかなり
低い。一方、比較合金No. 5は、Snを全く添加しなか
った合金である。これから作製した試料線材は、伸び及
び繰り返し屈曲強度が大幅に低下している。The comparative alloys No. 1, No. 2 and No. 4
An alloy to which n was not added. The sample wire produced therefrom has substantially the same conductivity as the alloy of the present invention, but has a significantly reduced tensile strength. Comparative alloy No. 3 has a Sn content equal to or less than the lower limit of the Sn content defined in the present invention.
The elongation and the flexural strength are considerably lower than those of the alloy of the present invention. On the other hand, Comparative Alloy No. 5 is an alloy to which Sn was not added at all. The sample wire produced from this has significantly reduced elongation and repeated bending strength.
【0033】比較合金No. 6は、Mg、Sn及びInが
本発明で規定した含有量の下限以下のため、引張強さ、
伸び及び繰り返し屈曲強度が大幅に低下している。一
方、比較合金No. 7は、Mg含有量が本発明で規定した
含有量の上限以上であるため、導電率が本発明合金に比
べて大幅に低下している。比較合金No. 8は、Sn含有
量が本発明で規定した含有量の上限以上のため、導電率
が本発明合金に比べて大幅に低下している。Comparative alloy No. 6 has a tensile strength, since Mg, Sn and In are not more than the lower limits of the contents specified in the present invention.
The elongation and the flexural strength are significantly reduced. On the other hand, in Comparative Alloy No. 7, since the Mg content is equal to or more than the upper limit of the content specified in the present invention, the conductivity is significantly lower than that of the alloy of the present invention. In Comparative Alloy No. 8, since the Sn content was equal to or more than the upper limit of the content specified in the present invention, the conductivity was significantly lower than that of the alloy of the present invention.
【0034】次に、本発明合金の鋳造性を評価するため
に試料線材の伸線特性について検討する。本発明合金N
o. 1〜9では、伸線時に断線が発生していない。これ
は、本発明合金は、極めて良好な伸線特性を有すること
を示している。一方、比較合金は、以下に説明するよう
に伸線特性が本発明合金に比較して劣っている。先ず、
比較合金No. 1〜3は、Mg:Snが本発明で規定した
比率の範囲の下限以下であるため、本発明合金に比べて
伸線時に断線が多発した。比較合金No. 5は、Snが添
加されていない合金であるため、伸線時に断線が多発
し、特に線径0.6mmφから0.08mm φへの伸線は、すぐ
に断線するため事実上不可能であった。比較合金No. 7
は、SnとInの添加量及びMg:Snの添加比率を本
発明で規定した範囲内にあるが、Mg含有量が本発明で
規定した含有量の上限以上であるため、伸線特性が本発
明合金に比べて低下した。Next, in order to evaluate the castability of the alloy of the present invention, the drawing characteristics of the sample wire are examined. Invention alloy N
o. In Nos. 1 to 9, no disconnection occurred during wire drawing. This indicates that the alloy of the present invention has extremely good drawing properties. On the other hand, the comparative alloy is inferior to the alloy of the present invention in wire drawing characteristics as described below. First,
In Comparative Alloy Nos. 1 to 3, since the ratio of Mg: Sn was equal to or less than the lower limit of the range of the ratio specified in the present invention, disconnection occurred more frequently during drawing than in the alloy of the present invention. Since Comparative Alloy No. 5 is an alloy to which Sn was not added, wire breakage frequently occurred during wire drawing, and in particular, wire drawing from a wire diameter of 0.6 mmφ to 0.08 mmφ was broken immediately because it was broken immediately. It was impossible. Comparative alloy No. 7
Is that the addition amounts of Sn and In and the addition ratio of Mg: Sn are within the ranges specified in the present invention, but since the Mg content is equal to or more than the upper limit of the content specified in the present invention, the drawing property is It was lower than the invention alloy.
【0035】一方、比較合金No. 4は、MgとSnの含
有量及びMg:Snの含有比率が本発明の規定した範囲
内にあるので、伸線特性は良好であった。比較合金No.
6は、Mg、Sn及びInの含有量が本発明の規定した
下限以下であるが、Mg:Snの含有比率が本発明の規
定した範囲内にあるので、伸線特性は良好であった。比
較合金No. 8は、Sn含有量及びMg:Snの含有比率
が本発明の規定した上限以上であるが、伸線特性は良好
であった。比較合金No.9に示すCu−Fe−P−M
n−Si合金と参考例の硬銅線とも伸線特性が良好であ
る。On the other hand, Comparative Alloy No. 4 had good wire drawing characteristics because the contents of Mg and Sn and the content ratio of Mg: Sn were within the ranges specified by the present invention. Comparative alloy No.
In No. 6, although the contents of Mg, Sn, and In were not more than the lower limits specified by the present invention, the content ratio of Mg: Sn was within the range specified by the present invention, so that the drawing properties were good. In Comparative Alloy No. 8, the Sn content and the Mg: Sn content ratio were equal to or higher than the upper limits specified in the present invention, but the drawing properties were good. Comparative alloy No. Cu-Fe-PM shown in 9
Both the n-Si alloy and the hard copper wire of the reference example have good wire drawing characteristics.
【0036】以上のように、本発明合金は、従来のCu
−Fe−P−Mn−Si合金に比べて遙に簡単な製造工
程で製造することができるにもかかわらず、それと同等
の特性を備えていることが確認された。換言すれば、本
発明合金は、比較的高い導電性と伸びとを備え、しかも
引張強さ及び繰り返し屈曲強度等の機械的特性並びに伸
線特性に優れた銅合金であって、従来のCu−Fe−P
−Mn−Si合金に比べてより経済的に製造できる銅合
金であることが確認された。As described above, the alloy of the present invention is made of the conventional Cu
Although it can be manufactured by a much simpler manufacturing process than that of the -Fe-P-Mn-Si alloy, it has been confirmed that the alloy has the same characteristics. In other words, the alloy of the present invention is a copper alloy having relatively high conductivity and elongation, and excellent in mechanical properties such as tensile strength and repetitive bending strength and wire drawing properties. Fe-P
-It was confirmed that the copper alloy can be produced more economically than the Mn-Si alloy.
【0037】[0037]
【発明の効果】以上説明したように、本発明による合金
は、導電性は硬銅に比べやや低下するが、硬銅と同等の
引張強さを有し、伸び,屈曲性は大幅に向上する。ま
た、従来のCu−Mg合金,Cu−Mg−Sn合金に比
べて伸線性が大幅に向上し、導電率,引張強さ,伸び,
屈曲性も優れている。時効硬化型のCu−Fe−P−M
n−Si合金に比べ、導電率は若干低下するものの、引
張強さ,伸び,屈曲性で同等以上の特性を有し、製造工
程が時効硬化型のように複雑でなく、純銅と同じため製
造コストが低い。以上説明したように、本発明による合
金は、先ず、第1には、導電率は硬銅に比べて実用上で
差し支えない程度の低下を招くが、引張強さが硬銅と同
等以上であって、しかも伸び,屈曲性が硬銅に比べて大
幅に増加する。As described above, the alloy according to the present invention has slightly lower conductivity than hard copper, but has the same tensile strength as hard copper, and has significantly improved elongation and flexibility. . In addition, the drawability is significantly improved as compared with conventional Cu-Mg alloys and Cu-Mg-Sn alloys, and the conductivity, tensile strength, elongation,
Excellent flexibility. Age hardening type Cu-Fe-PM
Although the conductivity is slightly lower than that of the n-Si alloy, it has the same or better characteristics in tensile strength, elongation and flexibility, and its manufacturing process is not as complicated as that of the age hardening type and is the same as pure copper. Low cost. As described above, first, the alloy according to the present invention firstly causes the conductivity to be reduced to a degree that is not harmful to practical use as compared with hard copper, but the tensile strength is equal to or higher than that of hard copper. In addition, elongation and flexibility are greatly increased as compared with hard copper.
【図1】図1(a)、(b)、(c)及び(d)は、線
材の屈曲試験方法を説明する説明図である。FIGS. 1 (a), (b), (c) and (d) are explanatory views for explaining a bending test method of a wire rod.
1 試験のための治具 2 供試材 1 jig for test 2 test material
───────────────────────────────────────────────────── フロントページの続き (72)発明者 滝 康仁 静岡県沼津市大岡2771 矢崎電線株式会 社内 (56)参考文献 特開 昭63−243239(JP,A) 特開 平4−28838(JP,A) 特公 昭50−4179(JP,B1) (58)調査した分野(Int.Cl.6,DB名) C22C 9/00 - 9/10──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasuhito Taki 2771 Ooka, Numazu-shi, Shizuoka Yazaki Electric Wire & Cable Co., Ltd. In-house (56) References JP-A-63-243239 (JP, A) JP-A-4-28838 (JP, A) Japanese Patent Publication No. 50-4179 (JP, B1) (58) Field surveyed (Int. Cl. 6 , DB name) C22C 9/00-9/10
Claims (2)
0.5wt%、Snを0.1〜0.5wt%、Liを0.02 〜0.2
wt%含有し、残部が実質的にCuからなることを特徴と
する伸線特性に優れた導電用高力銅合金。1. Mg content of 0.1 to 0.5 wt% and Ni content of 0.1 to 0.5 wt%.
0.5 wt%, Sn: 0.1 to 0.5 wt%, Li: 0.02 to 0.2
A high-strength copper alloy for conductive use having excellent wire drawing characteristics, containing wt% and the balance substantially consisting of Cu.
0.75wt %、Inを0.05 〜0.35wt %含有し、残部が
実質的にCuからなり、かつMg:Snの含有比率が
1:1.2〜1.8の範囲にあることを特徴とする伸線特性
に優れた導電用高力銅合金。2. Mg: 0.1 to 0.5 wt%, Sn: 0.15 to
0.75% by weight, 0.05 to 0.35% by weight of In, the balance substantially consisting of Cu, and the content ratio of Mg: Sn in the range of 1: 1.2 to 1.8. High-strength copper alloy for electrical conductivity with excellent wire drawing characteristics.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3565293A JP2804966B2 (en) | 1993-02-24 | 1993-02-24 | High strength copper alloy for conductive |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3565293A JP2804966B2 (en) | 1993-02-24 | 1993-02-24 | High strength copper alloy for conductive |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06248376A JPH06248376A (en) | 1994-09-06 |
JP2804966B2 true JP2804966B2 (en) | 1998-09-30 |
Family
ID=12447811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3565293A Expired - Fee Related JP2804966B2 (en) | 1993-02-24 | 1993-02-24 | High strength copper alloy for conductive |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2804966B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102666888B (en) * | 2010-01-26 | 2014-06-18 | 三菱综合材料株式会社 | Copper alloy with high strength and high electrical conductivity |
-
1993
- 1993-02-24 JP JP3565293A patent/JP2804966B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06248376A (en) | 1994-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3999676B2 (en) | Copper-based alloy and method for producing the same | |
JP3699701B2 (en) | Easy-to-process high-strength, high-conductivity copper alloy | |
EP1973120B1 (en) | Electrical wire conductor for wiring, electrical wire for wiring, and their production methods | |
US20100294534A1 (en) | Conductor wire for electronic apparatus and electrical wire for wiring using the same | |
JP4984108B2 (en) | Cu-Ni-Sn-P based copper alloy with good press punchability and method for producing the same | |
JP3383615B2 (en) | Copper alloy for electronic materials and manufacturing method thereof | |
JP2004307905A (en) | Cu alloy and method for producing the same | |
JP5589754B2 (en) | Dilute copper alloy material and method for producing diluted copper alloy material excellent in hydrogen embrittlement resistance | |
EP0460454B1 (en) | High-tensile copper alloy for current conduction having superior flexibility | |
JP2813652B2 (en) | High strength copper alloy for conductive | |
JP2804966B2 (en) | High strength copper alloy for conductive | |
JP3279374B2 (en) | Copper alloy wire and method of manufacturing the same | |
JPH0987814A (en) | Production of copper alloy for electronic equipment | |
JP3302840B2 (en) | High-strength copper alloy for electric conduction excellent in elongation characteristics and bending characteristics, and method for producing the same | |
JP3333654B2 (en) | High-strength copper alloy for electric conduction excellent in elongation characteristics and bending characteristics, and method for producing the same | |
JP2743342B2 (en) | Copper base alloy for connector and method of manufacturing the same | |
JPH0355532B2 (en) | ||
JP3381817B2 (en) | High strength copper alloy for electric wire conductor and method for producing electric wire conductor | |
JPH05311298A (en) | Copper base alloy for connector and its manufacture | |
JPH10298679A (en) | High strength and high conductivity copper alloy | |
JPH0995747A (en) | High tensile conductive copper alloy excellent in drawability and bendability and its production | |
JPH07331362A (en) | High strength conductive copper alloy excellent in bendability and wire drawability | |
JPH0676630B2 (en) | Copper alloy for wiring connector | |
JPH0527699B2 (en) | ||
JPH01139736A (en) | Copper alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980428 |
|
LAPS | Cancellation because of no payment of annual fees |