[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2800408B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2800408B2
JP2800408B2 JP2327069A JP32706990A JP2800408B2 JP 2800408 B2 JP2800408 B2 JP 2800408B2 JP 2327069 A JP2327069 A JP 2327069A JP 32706990 A JP32706990 A JP 32706990A JP 2800408 B2 JP2800408 B2 JP 2800408B2
Authority
JP
Japan
Prior art keywords
film
semiconductor device
amorphous silicon
oxide film
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2327069A
Other languages
Japanese (ja)
Other versions
JPH04196435A (en
Inventor
啓仁 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2327069A priority Critical patent/JP2800408B2/en
Priority to US07/672,073 priority patent/US5366917A/en
Priority to EP95110516A priority patent/EP0689252B1/en
Priority to DE69130263T priority patent/DE69130263T2/en
Priority to DE69132354T priority patent/DE69132354T2/en
Priority to EP91302414A priority patent/EP0448374B1/en
Priority to DE69122796T priority patent/DE69122796T2/en
Priority to KR91004366A priority patent/KR960012915B1/en
Priority to EP94111698A priority patent/EP0630055B1/en
Publication of JPH04196435A publication Critical patent/JPH04196435A/en
Priority to US08/177,995 priority patent/US5723379A/en
Priority to US08/447,678 priority patent/US5623243A/en
Priority to US08/447,561 priority patent/US5691249A/en
Priority to KR95018393A priority patent/KR960012248B1/en
Priority to KR95018392A priority patent/KR960012247B1/en
Application granted granted Critical
Publication of JP2800408B2 publication Critical patent/JP2800408B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多結晶シリコン膜の製造工程を有する半導
体装置の製造方法に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device having a process for manufacturing a polycrystalline silicon film.

〔従来の技術〕[Conventional technology]

近年、DRAMの高集積化に伴いセルサイズは縮小し、キ
ャパシタの面積は小さくなる傾向にある。そこで、十分
な容量を確保するため、容量部面積が大きく、耐α線特
性や容量部関の干渉が少ないスタックトキャパシタやト
レンチスタックトキャパシタが用いられている。しか
し、64MbitのDRAMではセル面積は1.5μm2以下になると
見込まれており、これらの構造を用いたとしても、容量
絶縁膜として酸化膜換算膜厚で50Å以下の容量絶縁膜が
要求される。この様に薄い容量絶縁膜を欠陥なく均質に
チップ全体に形成することは極めて難しい。そこで容量
部の面積を増やすことで容量膜厚を現状維持する方法が
提案されている。
In recent years, as the integration of DRAMs has increased, the cell size has tended to decrease, and the area of capacitors has tended to decrease. Therefore, in order to secure a sufficient capacitance, a stacked capacitor or a trench stacked capacitor having a large capacitance portion area and having little α-ray resistance and little interference with the capacitance portion is used. However, the cell area of a 64 Mbit DRAM is expected to be 1.5 μm 2 or less, and even if these structures are used, a capacitance insulating film having an oxide film equivalent thickness of 50 ° or less is required as a capacitance insulating film. It is extremely difficult to uniformly form such a thin capacitive insulating film without defects on the entire chip. Therefore, a method has been proposed in which the current thickness of the capacitor is maintained by increasing the area of the capacitor.

本発明者は特願平2−72462号(平成2年3月20日出
願)明細書で、LPCVDにおけるポリシリコン形成をある
温度範囲で行うと、アモルファス領域からポリシリコン
に変化する境界で、表面に半円球状のグレインが緻密に
成長し、表面積は他の温度で成長したシリコン膜の約2
倍になることを示している。このポリシリコンをスタッ
クトキャパシタの蓄積電極に適応することにより、厚さ
100Å程度の酸化膜換算膜厚の容量絶縁膜で十分な蓄積
電荷を蓄え、リーク電流も減少させている。
In the specification of Japanese Patent Application No. 2-72462 (filed on Mar. 20, 1990), the present inventor described that when polysilicon is formed in LPCVD in a certain temperature range, the boundary between the amorphous region and the polysilicon changes at the surface. The hemispherical grains grew densely and the surface area was about 2 times that of the silicon film grown at other temperatures.
It shows that it becomes double. By adapting this polysilicon to the storage electrode of the stacked capacitor,
A sufficient amount of accumulated charge is stored in the capacitance insulating film having a thickness equivalent to an oxide film of about 100 °, and the leak current is also reduced.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、上述の方法では半円球状のグレインが表面状
に出現する条件は、成長温度が545℃から555℃のわずか
10℃の範囲であり、生産に用いる場合、LPCVDの温度管
理が非常に難しいという問題点があった。
However, in the above-described method, the condition under which hemispherical grains appear on the surface is that the growth temperature is slightly higher than 545 ° C to 555 ° C.
The temperature is in the range of 10 ° C., and when used for production, there is a problem that the temperature control of LPCVD is very difficult.

本発明の目的はこのような管理の難しい工程を必要と
せず、しかも上述の方法と同じ程度にシリコン膜の表面
積を大きくすることのできる多結晶シリコン膜の製造工
程を有する半導体装置の製造方法を提供することにあ
る。
An object of the present invention is to provide a method of manufacturing a semiconductor device which does not require such difficult-to-manage steps and has a polycrystalline silicon film manufacturing step capable of increasing the surface area of a silicon film to the same extent as the above-described method. To provide.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の半導体装置の製造方法は、基板上にアモルフ
ァスシリコン層を形成する工程と、前記アモルファスシ
リコン層の表面の自然酸化膜を除去する工程と、前記自
然酸化膜が除去された状態において熱処理を加えること
により前記アモルファスシリコン層の表面に結晶化を起
こし表面が凹凸とされたシリコン層を形成する工程とを
有することを特徴とする。
The method for manufacturing a semiconductor device according to the present invention includes a step of forming an amorphous silicon layer on a substrate, a step of removing a native oxide film on a surface of the amorphous silicon layer, and a heat treatment in a state where the native oxide film is removed. Forming a silicon layer having an irregular surface due to crystallization of the surface of the amorphous silicon layer.

〔作用〕[Action]

本発明者はLPCVD法等で堆積したアモルファスシリコ
ンを大気中にとり出すことなく、清浄な表面状態を維持
した状態で真空中あるいは不活性ガス等の非酸化雰囲気
中で加熱処理することにより結晶化する際、表面でのシ
リコンのマイグレーションおよび結晶化によりシリコン
膜表面に凹凸が高密度に形成されることを見出した。こ
の凹凸を利用して表面積の大きいポリシリコン膜を形成
することができる。このときアモルファスシリコンの成
長条件,真空中あるいは非酸化雰囲気中での加熱処理の
条件は、非常にゆるかやであり上述の方法のような難し
い工程管理を必要としない。
The present inventor crystallizes amorphous silicon deposited by LPCVD or the like by heat treatment in a vacuum or a non-oxidizing atmosphere such as an inert gas while maintaining a clean surface state without taking it out to the atmosphere. At that time, they found that irregularities were formed at high density on the surface of the silicon film due to migration and crystallization of silicon on the surface. A polysilicon film having a large surface area can be formed by utilizing the unevenness. At this time, the conditions for growing the amorphous silicon and the conditions for the heat treatment in a vacuum or in a non-oxidizing atmosphere are very loose, and do not require difficult process management as in the above-described method.

また本発明者は、アモルファスシリコンを大気中にと
り出し、アモルファスシリコン表面に自然酸化膜が形成
されてしまっても、この自然酸化膜を還元除去あるいは
スパッタリング等により除去した後に、真空中あるいは
不活性ガス等の非酸化雰囲気中で加熱処理することによ
り結晶化する際、表面からの結晶化および表面でのシリ
コンのマイグレーションによりシリコン膜表面に凹凸が
形成されることを見出した。この凹凸を利用して表面積
の大きいポリシリコン膜を形成することができる。この
ときも、管理の難しい工程はない。
Further, the present inventor takes out amorphous silicon into the atmosphere, and even if a natural oxide film is formed on the surface of the amorphous silicon, the natural oxide film is removed by reduction or sputtering or the like, and then removed in a vacuum or an inert gas. It has been found that when crystallizing by heat treatment in a non-oxidizing atmosphere such as the above, irregularities are formed on the surface of the silicon film due to crystallization from the surface and migration of silicon on the surface. A polysilicon film having a large surface area can be formed by utilizing the unevenness. Again, there are no difficult steps to manage.

なお、本発明ではいずれの製造方法においても半導体
基板上の少なくとも一部に設けられた酸化膜を介してア
モルファスシリコン膜を堆積しているので、アモルファ
スシリコン膜を加熱しても単結晶化せず、非常に緻密な
多結晶シリコンよりなる凹凸の形成が可能である。つま
り、この酸化膜は基板の結晶構造の影響をアモルファス
シリコンに及ぼさないようにするものであり、本発明の
方法によって多結晶シリコン膜を形成する際には、この
ような膜を設ける必要がある。
In the present invention, in any of the manufacturing methods, since the amorphous silicon film is deposited via the oxide film provided on at least a part of the semiconductor substrate, the amorphous silicon film does not become single-crystallized even when heated. It is possible to form irregularities made of very dense polycrystalline silicon. In other words, this oxide film is to prevent the influence of the crystal structure of the substrate from affecting amorphous silicon, and it is necessary to provide such a film when forming a polycrystalline silicon film by the method of the present invention. .

〔実施例〕〔Example〕

実施例1 第3図の断面図に示す構造を有するキャパシタを作成
するものとする。厚いSiO2膜52が形成されたSi基板50上
に、シリコン膜54を510℃で厚さ2500Å堆積した。達積
はLPCVD法で行い、使用ガスはSiH4+He(SiH4:20%,He:
80%)、圧力は1Torrである。
Example 1 A capacitor having the structure shown in the sectional view of FIG. 3 is to be manufactured. On the Si substrate 50 on which the thick SiO 2 film 52 was formed, a silicon film 54 was deposited at 510 ° C. and 2500 mm thick. The deposition is performed by the LPCVD method, and the gas used is SiH 4 + He (SiH 4 : 20%, He:
80%) and the pressure is 1 Torr.

第1図(a)に、堆積したシリコン膜54を大気中に取
り出した時の表面状態を示す。第1図(b)には、堆積
したシリコン膜54を大気中に取り出すことなくArガスを
炉内に導入し600℃で1時間アニールした後、シリコン
膜を大気中に取り出した時の表面状態を示す。第1図
(a),(b)は、今回形成したシリコン膜表面の走査
電子顕微鏡(SEM)写真で、第1図(a)は倍率10万倍
であり、第1図(b)は倍率40万倍である。この走査電
子顕微鏡の加速電圧は20kvである。次に、堆積したシリ
コン膜54に、820℃,60分の条件でリン拡散を行い、その
あと表面に容量絶縁膜56を形成し、その上に上層電極と
なりポリシリコン膜58を形成する。容量絶縁膜56の形成
は、まずシリコン膜54上にLPCVD法でSi3N4膜を形成し、
そのあとSi3N4膜表面を酸化する。Si3N4膜は、温度780
℃,使用ガスSiH4+NH3(SiH4/NH3=1/100),圧力30Pa
で厚さ120Å堆積し、表面を900℃,wet1:1のパイロジェ
ニック酸化で120Åのうち酸化膜換算で20Å増加する程
度まで酸化をした。この条件では容量絶縁膜56はSiO2
換算で100Å相当(deffと表記)となる。deff=100Åの
容量絶縁膜56を形成した後、その上に600℃でポリシリ
コン膜58を堆積し、その後リンを拡散した。その後、リ
ソグラフィ技術及びドライエッチング技術で1mm×1mmの
大きさに分割し、第3図に示すようなスタックトキャパ
シタを得た。
FIG. 1A shows a surface state when the deposited silicon film 54 is taken out to the atmosphere. FIG. 1 (b) shows the surface state when the silicon film 54 was taken out into the atmosphere after the Ar gas was introduced into the furnace without annealing and the silicon film was annealed at 600 ° C. for 1 hour. Is shown. FIGS. 1 (a) and 1 (b) are scanning electron microscope (SEM) photographs of the surface of the silicon film formed this time. FIG. 1 (a) is a magnification of 100,000 and FIG. 1 (b) is a magnification. It is 400,000 times. The accelerating voltage of this scanning electron microscope is 20 kv. Next, phosphorus diffusion is performed on the deposited silicon film 54 at 820 ° C. for 60 minutes, and thereafter a capacitance insulating film 56 is formed on the surface, and a polysilicon film 58 is formed thereon as an upper electrode. To form the capacitive insulating film 56, first, a Si 3 N 4 film is formed on the silicon film 54 by an LPCVD method,
After that, the surface of the Si 3 N 4 film is oxidized. The Si 3 N 4 film has a temperature of 780
° C, working gas SiH 4 + NH 3 (SiH 4 / NH 3 = 1/100), pressure 30Pa
Then, the surface was oxidized by pyrogenic oxidation at 900 ° C. and wet 1: 1 until the thickness increased by 20% in terms of oxide film out of 120 mm. Under these conditions, the capacitance insulating film 56 is equivalent to 100 ° (expressed as deff) in terms of a SiO 2 film. After forming the capacitance insulating film 56 with deff = 100 °, a polysilicon film 58 was deposited thereon at 600 ° C., and then phosphorus was diffused. Thereafter, the substrate was divided into a size of 1 mm × 1 mm by a lithography technique and a dry etching technique to obtain a stacked capacitor as shown in FIG.

第1図(a)に示すように510℃で堆積しただけのシ
リコン膜54の表面は非常に滑らかであり、グレインの成
長は見られず、1mm×1mmの大きさに分割したときその表
面積は1mm2である。キャパシタ容量は、第2図に示すよ
うに3.5nFであった。
As shown in FIG. 1 (a), the surface of the silicon film 54 deposited only at 510 ° C. is very smooth, no grain growth is observed, and the surface area when divided into 1 mm × 1 mm is a 1mm 2. The capacitance of the capacitor was 3.5 nF as shown in FIG.

510℃で2500Å堆積したシリコン膜54を大気中に取り
出すことなくArガスを炉内に導入し600℃で1時間アニ
ールすると、第1図(b)に示すように径が1000Å程度
の半球状のグレインが高密度にしかも一様に形成され、
表面に微細な凹凸が生じ表面積が激増する。容量は第2
図からわかるように7nF,表面積が約2mm2と510℃のとき
の約2倍となる。なお第2図は加熱処理(アニール)の
前後によるキャパシタ容量(シリコン膜の表面積)の変
化を示している。
Ar gas was introduced into the furnace without taking out the silicon film 54 deposited at 510 ° C. to 2500 ° C. into the atmosphere and annealed at 600 ° C. for 1 hour. As shown in FIG. Grains are formed densely and uniformly,
Fine irregularities occur on the surface, and the surface area increases drastically. Capacity is 2nd
As can be seen from the figure, it is 7 nF, the surface area is about 2 mm 2, which is about twice that at 510 ° C. FIG. 2 shows the change in the capacitance of the capacitor (the surface area of the silicon film) before and after the heat treatment (annealing).

実施例1ではArガス中でアニールを行ったが、He,Ne,
真空中のアニールにおいても、同様の結果が得られる。
In the first embodiment, annealing was performed in Ar gas, but He, Ne,
Similar results can be obtained by annealing in a vacuum.

以上述べたように、大気中に取り出していない清浄な
表面を有する堆積シリコン膜を非酸化性雰囲気中で加熱
処理することで、シリコン膜表面に非常に微細な凹凸が
生じ、表面積が増加することがわかる。この実施例にお
いて、アモルファスシリコン膜の堆積には、温度等に厳
しい条件が必要ない。またアニールも同様であり、例え
ば温度は650℃程度でもよい。
As described above, heat treatment of a deposited silicon film having a clean surface that has not been taken out to the atmosphere in a non-oxidizing atmosphere causes very fine irregularities on the surface of the silicon film and increases the surface area. I understand. In this embodiment, the deposition of the amorphous silicon film does not require strict conditions such as temperature. The same applies to annealing, for example, the temperature may be about 650 ° C.

実施例2 実施例1に示したような方法でシリコン膜の形成を行
えば、表面積を増やすことができるが、アモルファスシ
リコン表面を清浄な状態に常に保つことは難しい。例え
ばアニールを別な炉で行う時には、アモルファスシリコ
ンを成長炉から取り出し、大気中に搬送する。このため
にアモルファスシリコン表面には自然酸化膜が形成され
る。この自然酸化膜が存在すると、シリコン表面でのシ
リコン原子のマイグレーションが抑制されるために、加
熱処理してもシリコン膜表面に凹凸は形成されない。そ
こでアモルファスシリコン上に形成されている自然酸化
膜を低温で除去した後に加熱処理すればよい。アモルフ
ァスシリコンの自然酸化膜をArガスのプラズマにより除
去した後に真空中で加熱処理した時の表面状態も、第1
図(b)と同様に表面に緻密な凹凸を有していた。Arガ
スのプラズマは13.56MHzの高周波により発生した。
Embodiment 2 If a silicon film is formed by the method shown in Embodiment 1, the surface area can be increased, but it is difficult to always keep the amorphous silicon surface clean. For example, when annealing is performed in another furnace, amorphous silicon is taken out of the growth furnace and transported to the atmosphere. For this reason, a natural oxide film is formed on the surface of the amorphous silicon. When the natural oxide film is present, migration of silicon atoms on the silicon surface is suppressed, so that no unevenness is formed on the silicon film surface even by the heat treatment. Therefore, heat treatment may be performed after removing the natural oxide film formed on the amorphous silicon at a low temperature. The surface state when the natural oxide film of amorphous silicon is removed by Ar gas plasma and then heat-treated in vacuum is also the first condition.
As in FIG. 2B, the surface had fine irregularities. The Ar gas plasma was generated by a high frequency of 13.56 MHz.

また次の様な実験も行っている。アモルファスシリコ
ンの自然酸化膜をSiH4ガスの酸化膜還元効果を用いて除
去した後に真空中で加熱処理した時の表面形状も、第1
図(b)に示した写真と同様表面に緻密な凹凸を有して
いた。SiH4ガスにより酸化膜の還元は、炉内温度480℃
でSiH4+He(SiH:20%,He:80%)ガスを用いて0.1Torr
の雰囲気下のもとで5分間行った。
We are also conducting the following experiments. After removing the natural oxide film of amorphous silicon using the oxide film reducing effect of SiH 4 gas, the surface shape when heat-treated in a vacuum is also the first.
The surface had fine irregularities as in the photograph shown in FIG. Reduction of oxide film by SiH 4 gas, furnace temperature 480 ° C
0.1Torr using SiH 4 + He (SiH: 20%, He: 80%) gas
Under an atmosphere of 5 minutes.

本実施例も実施例1と同様にアモルファスシリコン膜
の堆積,自然酸化膜除去,アニールに厳しい条件を必要
としない。
As in the first embodiment, the present embodiment does not require strict conditions for deposition of an amorphous silicon film, removal of a natural oxide film, and annealing.

〔発明の効果〕〔The invention's effect〕

本発明によれば、表面に微細な凹凸を有するシリコン
膜を形成するとき管理の難しい工程を必要とせず極めて
容易に形成できる。
ADVANTAGE OF THE INVENTION According to this invention, when forming the silicon film which has a fine unevenness | corrugation on a surface, it can be formed very easily, without requiring the process difficult to manage.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a),(b)はそれぞれアモルファスシリコン
膜と、それを加熱処理した膜の表面の粒子構造を示す電
子顕微鏡写真である。 第2図は加熱処理(アニール)の前後によるキャパシタ
容量(シリコン膜の表面積)の変化を示す図である。 第3図はキャパシタの構造を示す断面図である。 54……シリコン膜 56……容量絶縁膜 58……ポリシリコン膜
FIGS. 1 (a) and 1 (b) are electron micrographs showing the grain structure of the surface of an amorphous silicon film and a film obtained by heat-treating the same. FIG. 2 is a diagram showing a change in capacitor capacity (surface area of a silicon film) before and after a heat treatment (annealing). FIG. 3 is a sectional view showing the structure of the capacitor. 54: Silicon film 56: Capacitive insulating film 58: Polysilicon film

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 27/04 H01L 21/822 H01L 21/20Continued on the front page (58) Fields surveyed (Int.Cl. 6 , DB name) H01L 27/04 H01L 21/822 H01L 21/20

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上にアモルファスシリコン層を形成す
る工程と、前記アモルファスシリコン層の表面の自然酸
化膜を除去する工程と、前記自然酸化膜が除去された状
態において熱処理を加えることにより前記アモルファス
シリコン層の表面に結晶化を起こし表面が凹凸とされた
シリコン層を形成する工程とを有することを特徴とする
半導体装置の製造方法。
A step of forming an amorphous silicon layer on a substrate, a step of removing a native oxide film on a surface of the amorphous silicon layer, and performing a heat treatment in a state where the native oxide film is removed. Forming a silicon layer whose surface is made uneven by crystallization on the surface of the silicon layer.
【請求項2】前記シリコン層の表面の凹凸上に誘電体層
を形成し、この誘電体層上に導電体層を形成して、これ
らの層でなるキャパシタを形成する工程をさらに有する
ことを特徴とする請求項1に記載の半導体装置の製造方
法。
2. The method according to claim 1, further comprising the step of forming a dielectric layer on the irregularities on the surface of the silicon layer, forming a conductor layer on the dielectric layer, and forming a capacitor comprising these layers. The method for manufacturing a semiconductor device according to claim 1, wherein:
【請求項3】前記誘電体層が酸化窒化シリコン層である
請求項2に記載の半導体装置の製造方法。
3. The method according to claim 2, wherein said dielectric layer is a silicon oxynitride layer.
【請求項4】前記アモルファスシリコン層を、半導体基
板上の少なくとも一部に設けられた酸化膜上に形成する
ことを特徴とする請求項1から請求項3のいずれかに記
載の半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 1, wherein said amorphous silicon layer is formed on an oxide film provided on at least a part of a semiconductor substrate. Method.
【請求項5】前記熱処理を真空中または非酸化雰囲気中
で行うことを特徴とする請求項1から請求項4のいずれ
かに記載の半導体装置の製造方法。
5. The method according to claim 1, wherein the heat treatment is performed in a vacuum or a non-oxidizing atmosphere.
【請求項6】前記非酸化雰囲気が、アルゴン、ヘリウム
または窒素から選ばれたガスの雰囲気であることを特徴
とする請求項5に記載の半導体装置の製造方法。
6. The method of manufacturing a semiconductor device according to claim 5, wherein said non-oxidizing atmosphere is an atmosphere of a gas selected from argon, helium and nitrogen.
【請求項7】前記シリコン層の表面の凹凸が半球状のグ
レインであることを特徴とする請求項1から請求項6の
いずれかに記載の半導体装置の製造方法。
7. The method for manufacturing a semiconductor device according to claim 1, wherein the irregularities on the surface of the silicon layer are hemispherical grains.
【請求項8】前記半球状のグレインの径が1000Å程度で
あることを特徴とする請求項7に記載の半導体装置の製
造方法。
8. The method according to claim 7, wherein said hemispherical grains have a diameter of about 1000 °.
JP2327069A 1990-03-20 1990-11-28 Method for manufacturing semiconductor device Expired - Lifetime JP2800408B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP2327069A JP2800408B2 (en) 1990-11-28 1990-11-28 Method for manufacturing semiconductor device
US07/672,073 US5366917A (en) 1990-03-20 1991-03-19 Method for fabricating polycrystalline silicon having micro roughness on the surface
DE69130263T DE69130263T2 (en) 1990-03-20 1991-03-20 Process for the production of polycrystalline silicon with a micro-rough surface
DE69132354T DE69132354T2 (en) 1990-03-20 1991-03-20 Semiconductor device
EP91302414A EP0448374B1 (en) 1990-03-20 1991-03-20 Method for fabricating a semiconductor device having a capacitor with polycrystalline silicon having micro roughness on the surface
DE69122796T DE69122796T2 (en) 1990-03-20 1991-03-20 Method for producing a semiconductor component with a capacitor, using polycrystalline silicon with a micro-rough surface
KR91004366A KR960012915B1 (en) 1990-03-20 1991-03-20 Semiconductor device fabrication process
EP94111698A EP0630055B1 (en) 1990-03-20 1991-03-20 Method for fabricating polycrystalline silicon having micro roughness on the surface
EP95110516A EP0689252B1 (en) 1990-03-20 1991-03-20 Semiconductor device
US08/177,995 US5723379A (en) 1990-03-20 1994-01-06 Method for fabricating polycrystalline silicon having micro roughness on the surface
US08/447,678 US5623243A (en) 1990-03-20 1995-05-23 Semiconductor device having polycrystalline silicon layer with uneven surface defined by hemispherical or mushroom like shape silicon grain
US08/447,561 US5691249A (en) 1990-03-20 1995-05-23 Method for fabricating polycrystalline silicon having micro roughness on the surface
KR95018393A KR960012248B1 (en) 1990-03-20 1995-06-26 Method for fabricating a semiconductor device
KR95018392A KR960012247B1 (en) 1990-03-20 1995-06-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2327069A JP2800408B2 (en) 1990-11-28 1990-11-28 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH04196435A JPH04196435A (en) 1992-07-16
JP2800408B2 true JP2800408B2 (en) 1998-09-21

Family

ID=18194947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2327069A Expired - Lifetime JP2800408B2 (en) 1990-03-20 1990-11-28 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2800408B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4504445B2 (en) * 1992-04-30 2010-07-14 株式会社東芝 Manufacturing method of semiconductor device
JP2682386B2 (en) * 1993-07-27 1997-11-26 日本電気株式会社 Method for manufacturing semiconductor device
KR100546265B1 (en) * 1997-08-27 2006-03-23 삼성전자주식회사 Fabrication method of polysilicon thin film transistor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132312A (en) * 1985-12-04 1987-06-15 Sanyo Electric Co Ltd Manufacture of semiconductor thin film
JPH02143415A (en) * 1988-11-24 1990-06-01 Nippon Sheet Glass Co Ltd Formation of single crystal silicon film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
第37回応用物理学関係連合講演会講演予稿集(1990−3−28)P.58329a−SB−4

Also Published As

Publication number Publication date
JPH04196435A (en) 1992-07-16

Similar Documents

Publication Publication Date Title
US5623243A (en) Semiconductor device having polycrystalline silicon layer with uneven surface defined by hemispherical or mushroom like shape silicon grain
JP2795313B2 (en) Capacitive element and method of manufacturing the same
US5366917A (en) Method for fabricating polycrystalline silicon having micro roughness on the surface
JPH05110014A (en) Manufacture of semiconductor device
US5858852A (en) Fabrication process of a stack type semiconductor capacitive element
JPH0817939A (en) Semiconductor device and manufacture thereof
JP2679433B2 (en) Method for forming polycrystalline silicon film
JP2692402B2 (en) Method for manufacturing semiconductor device
JP3071284B2 (en) Method for manufacturing semiconductor device
JP2800408B2 (en) Method for manufacturing semiconductor device
JPH10335607A (en) Manufacture of semiconductor device
JPH0613547A (en) Semiconductor device and manufacture thereof
JP2830705B2 (en) Method for manufacturing semiconductor device
JP3186077B2 (en) Method of forming polycrystalline silicon film
JP2861343B2 (en) Semiconductor device and manufacturing method thereof
US6146966A (en) Process for forming a capacitor incorporated in a semiconductor device
JP2882217B2 (en) Method for manufacturing semiconductor device
JP2910422B2 (en) Method for manufacturing semiconductor device
JP3173481B2 (en) Semiconductor device having stack electrode and method of manufacturing the same
JP3117320B2 (en) Capacitor and method of manufacturing the same
JPH03234051A (en) Manufacture of capacitive element
JP3149820B2 (en) Method for manufacturing semiconductor device
JP2000200883A (en) Manufacture of memory cell capacitor and substrate processing equipment
GB2313477A (en) Hemispherical grain formation on amorphous silicon
JP2677056B2 (en) Capacitor electrode and method for forming the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070710

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100710

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110710

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110710

Year of fee payment: 13