[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2892270B2 - Method for producing alloy having fine crystal structure and fine crystalline alloy - Google Patents

Method for producing alloy having fine crystal structure and fine crystalline alloy

Info

Publication number
JP2892270B2
JP2892270B2 JP33628793A JP33628793A JP2892270B2 JP 2892270 B2 JP2892270 B2 JP 2892270B2 JP 33628793 A JP33628793 A JP 33628793A JP 33628793 A JP33628793 A JP 33628793A JP 2892270 B2 JP2892270 B2 JP 2892270B2
Authority
JP
Japan
Prior art keywords
alloy
crystal structure
elements
producing
fine crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33628793A
Other languages
Japanese (ja)
Other versions
JPH07188878A (en
Inventor
健 増本
明久 井上
英夫 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WAI KEI KEI KK
Original Assignee
WAI KEI KEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAI KEI KEI KK filed Critical WAI KEI KEI KK
Priority to JP33628793A priority Critical patent/JP2892270B2/en
Publication of JPH07188878A publication Critical patent/JPH07188878A/en
Application granted granted Critical
Publication of JP2892270B2 publication Critical patent/JP2892270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非晶質合金を用いて、
サブナノメートルから数十ナノメートルの超微細な結晶
粒よりなる微細結晶組織を有する合金の製造方法及び微
細結晶質合金に関する。
BACKGROUND OF THE INVENTION The present invention relates to an amorphous alloy,
The present invention relates to a method for producing an alloy having a fine crystal structure composed of ultrafine crystal grains of sub-nanometers to tens of nanometers, and a microcrystalline alloy.

【0002】[0002]

【従来の技術】従来、非晶質合金を熱処理することによ
り数十ナノメートルから数ミクロンからなる微細結晶組
織を作製することについては、例えば特開平5−134
6号公報に記載されいるように知られている。
2. Description of the Related Art Conventionally, a method of producing a fine crystalline structure of several tens of nanometers to several microns by heat-treating an amorphous alloy is disclosed in, for example, Japanese Patent Application Laid-Open No. 5-134.
No. 6 is known.

【0003】特開平5−1346号公報には、平均結晶
粒径0.01(μm)〜80(μm)の合金について開
示されているとともに、その製造方法としては、急冷凝
固条件を適位設定して直接作製すること、急冷凝固法に
より、非晶質組織からなる合金を作製し、これを加熱分
解することにより、上記の平均結晶粒径に制御すること
により作製することが開示されている。
[0003] Japanese Patent Application Laid-Open No. 5-1346 discloses an alloy having an average crystal grain size of 0.01 (μm) to 80 (μm). It is disclosed that an alloy having an amorphous structure is manufactured by a rapid solidification method, and the alloy is heated and decomposed to control the average crystal grain size as described above. .

【0004】[0004]

【発明が解決しようとする課題】上記のように、熱処理
することにより数十ナノメートル〜数ミクロンの微細結
晶組織が得られることは最近知れてきており、これらを
利用した強度材の研究が進められ、成果を挙げている。
それにより、結晶粒をさらに細かくすることによりさら
なる機械的性能の向上、化学的特性の向上などが期待で
きるが、現状の技術では、更に細かい結晶組織を安定に
得るのは困難であった。
As described above, it has recently been known that a fine crystal structure of several tens of nanometers to several microns can be obtained by heat treatment, and research on a strength material utilizing these has been advanced. Has been successful.
Thereby, further improvement in mechanical performance and chemical characteristics can be expected by making the crystal grains finer, but it is difficult to stably obtain a finer crystal structure with the current technology.

【0005】本発明は、Al基合金における微細結晶組
織をさらに細かくし、かつ安定に存在させることによっ
て、機械的性質、化学的性質などを向上した微細結晶質
合金及び前記の優れた特性を有する合金を容易に製造す
ることができる微細結晶組織を有する合金の製造方法を
提供することを目的とする。
The present invention provides a fine crystalline alloy having improved mechanical properties, chemical properties, and the like by further refining the fine crystal structure of an Al-based alloy and stably presenting the same, and having the above-mentioned excellent properties. It is an object of the present invention to provide a method for producing an alloy having a fine crystal structure that can easily produce an alloy.

【0006】[0006]

【課題を解決するための手段】本発明は、少なくとも2
種以上の元素で非晶質相を含む合金が作製できる合金組
成に、その合金を構成する元素のうちの1種以上に0.
01at%以上固溶する添加元素を加えて、非晶質合金
を作製し、これを結晶化温度(Tx)−100(K)か
ら結晶化温度(Tx)+100(K)までの温度で熱処
理を施すことにより、微細な結晶粒よりなる結晶組織を
有する合金を製造することを特徴とする微細結晶組織を
有する合金の製造方法である。
SUMMARY OF THE INVENTION The present invention provides at least two
An alloy composition that can produce an alloy containing an amorphous phase with at least one kind of element has a content of 0.1% or more at least one of the elements constituting the alloy.
An amorphous alloy is prepared by adding an additive element which forms a solid solution of at least 01 at%, and is subjected to a heat treatment at a temperature from the crystallization temperature (Tx) -100 (K) to the crystallization temperature (Tx) +100 (K). A method for producing an alloy having a fine crystal structure, characterized by producing an alloy having a crystal structure composed of fine crystal grains by applying.

【0007】そして、上記非晶質合金の主金属元素がA
lで、上記添加元素がAlに固溶するGa、Ge、L
i、Mg、Mn、Sc、V、Ag、Cuから選ばれる少
なくとも1種以上の元素であるものが適当である。
The main metal element of the amorphous alloy is A
l, Ga, Ge, L in which the above-mentioned additional element is dissolved in Al
Suitable is at least one element selected from i, Mg, Mn, Sc, V, Ag, and Cu.

【0008】本発明は、従来明らかにされていなかった
非晶質合金の結晶化による微細結晶組織を得る方法を提
供するものであり、添加元素の種類や量を変えることに
よる結晶粒径制御を可能にしたものである。
The present invention provides a method of obtaining a fine crystal structure by crystallization of an amorphous alloy, which has not been clarified, and provides a method of controlling the crystal grain size by changing the type and amount of an additive element. It is made possible.

【0009】非晶質相を含む非晶質合金に、その合金を
構成する元素の1つ以上に0.01at%以上固溶する
元素、好ましくは全率固溶する元素を0.1〜15at
%加え、それを(Tx−100)K〜(Tx+100)
Kの温度(Tx=結晶化温度)で熱処理をすることによ
り、サブナノメートル〜数十ナノメートルの微細結晶組
織が得られる。このように、非晶質合金にそれに固溶す
る元素を添加することによって微細な結晶組織が得られ
るのは添加元素が加わることによって母相中に添加した
溶質元素濃度の異なる部分ができ、濃度にゆらぎが生じ
る。こういった濃度のゆらぎにより、母相中に結晶化温
度の異なった部分が多数でき、熱処理時に核が多数発生
し、結晶粒が微細化するのである。したがって、添加量
は熱処理温度での固溶量に相当する程度が適当である、
全率固溶する元素は100%まで置換しても、微細化効
果はあるが、15%以上置換すると、母相そのものの性
質が著しく変化するため、置換量は0.01〜15%ま
でとした。この様な法則に基づき結晶粒は微細化され大
きく機械的強度が向上する結果となった。
In an amorphous alloy containing an amorphous phase, an element which forms a solid solution with one or more of the elements constituting the alloy in an amount of 0.01 at% or more, preferably an element which forms a solid solution with 0.1 to 15 at% is used.
% (Tx-100) K to (Tx + 100)
By performing the heat treatment at the temperature of K (Tx = crystallization temperature), a fine crystal structure of sub-nanometers to several tens of nanometers can be obtained. As described above, a fine crystal structure can be obtained by adding an element that forms a solid solution to the amorphous alloy because the addition of the additional element forms a portion having a different solute element concentration in the matrix, Fluctuations occur. Due to such concentration fluctuations, a large number of portions having different crystallization temperatures are formed in the parent phase, a large number of nuclei are generated during the heat treatment, and the crystal grains are refined. Therefore, it is appropriate that the amount added corresponds to the amount of solid solution at the heat treatment temperature.
Even if the elements which are solid-solubilized completely are replaced up to 100%, there is an effect of miniaturization, but if replaced by 15% or more, the properties of the mother phase itself change remarkably, so the replacement amount is up to 0.01 to 15%. did. Based on such a rule, the crystal grains were refined and the mechanical strength was greatly improved.

【0010】添加元素(Ga、Ge、Li、Mg、M
n、Sc、V、Ag、Cu)のより好ましい範囲は、G
a:0.01〜10at%、Ge:0.01〜3at
%。、Li:0.01〜10at%、Mg:0.01〜
15at%、Mn:0.01〜1at%、Sc:0.0
1〜0.5at%、V:0.01〜1at%、Ag:
0.01〜15at%、Cu:0.01〜〜15at%
である。
[0010] Additional elements (Ga, Ge, Li, Mg, M
More preferred ranges of n, Sc, V, Ag, and Cu) are G
a: 0.01 to 10 at%, Ge: 0.01 to 3 at%
%. , Li: 0.01 to 10 at%, Mg: 0.01 to
15 at%, Mn: 0.01 to 1 at%, Sc: 0.0
1 to 0.5 at%, V: 0.01 to 1 at%, Ag:
0.01 to 15 at%, Cu: 0.01 to 15 at%
It is.

【0011】非晶質合金を作製できる組成は、希土類元
素が含まれるものがより好ましい。その具体的な例とし
ては特開平1−275732号の記載が挙げられる。
The composition from which an amorphous alloy can be produced is more preferably a composition containing a rare earth element. A specific example thereof is described in JP-A-1-275732.

【0012】即ち、一般式Alabc[ただし、M:
V、Cr、Mn、Fe、Co、Ni、Cu、Zr、T
i、Mo、W、Ca、Li、Mg、Siから選ばれる一
種もしくは二種以上の金属元素、X:Y、La、Ce、
Sm、Nd、Hf、Nb、Ta、Mm[ミッシュメタ
ル]から選ばれる一種もしくは二種以上の元素、a、
b、cは原子パーセントで 50≦a≦95 0.5≦b≦35 0.5≦c≦25] などがある。
That is, the general formula Al a M b X c [where M:
V, Cr, Mn, Fe, Co, Ni, Cu, Zr, T
i, Mo, W, Ca, Li, Mg, one or more metal elements selected from Si, X: Y, La, Ce,
One or more elements selected from the group consisting of Sm, Nd, Hf, Nb, Ta, and Mm [Misch metal];
b and c are atomic percentages, such as 50 ≦ a ≦ 95 0.5 ≦ b ≦ 35 0.5 ≦ c ≦ 25].

【0013】熱処理温度は、結晶化温度(Tx)−10
0(K)から結晶化温度(Tx)+100(K)である
ことが必要であり、結晶化温度(Tx)−100(K)
未満の温度で行った場合、長時間加熱を行っても、本発
明の目的の微細な結晶組織が得難く、結晶化温度(T
x)+100(K)を超える温度で行った場合、短時間
で結晶化及び結晶の成長が進み、本発明の目的の微細な
結晶組織を得難いためである。
The heat treatment temperature is a crystallization temperature (Tx) -10.
It is necessary that the temperature be from 0 (K) to the crystallization temperature (Tx) +100 (K), and the crystallization temperature (Tx) −100 (K)
When the heating is performed at a temperature lower than the above, it is difficult to obtain a fine crystal structure intended for the present invention even if heating is performed for a long time, and the crystallization temperature (T
x) When the temperature is higher than +100 (K), crystallization and crystal growth progress in a short time, and it is difficult to obtain a fine crystal structure intended for the present invention.

【0014】熱処理時間は、10秒から6時間が好まし
く、10秒未満の場合、Tx+100Kの温度で加熱し
ても、またはTx+100Kを超える温度で加熱しても
本発明の目的の微細な結晶組織を有する合金が得られな
いためであり、6時間を超えた場合、Tx−100Kの
温度で加熱することにより、微細な結晶組織は得られる
ものの、工業的に行なう場合、不経済であるためであ
る。
The heat treatment time is preferably from 10 seconds to 6 hours. If the heat treatment time is less than 10 seconds, the fine crystal structure of the present invention can be obtained by heating at a temperature of Tx + 100K or at a temperature exceeding Tx + 100K. This is because an alloy having a fine crystal structure can be obtained by heating at a temperature of Tx-100K for more than 6 hours, but it is uneconomical when industrially performed. .

【0015】また、平均結晶粒径10m以下の微細な
結晶粒からなる合金を得ることにより、本発明の目的で
ある機械的特性、化学的特性に優れた合金を提供するこ
とができる。
Further, by obtaining an alloy consisting of average grain size 10 n m or less fine crystal grains can provide is the object mechanical properties, excellent alloy chemical properties of the present invention.

【0016】[0016]

【実施例】以下、実施例によって本発明を具体的に説明
する。
The present invention will be specifically described below with reference to examples.

【0017】高周波溶解炉により非晶質相を含む合金が
作製できる各種成分組成の溶融合金を作り、この溶融合
金の平衡状態時に前記成分組成を構成する元素の1つ以
上に対して、各種添加元素を所定量加える。
A molten alloy having various component compositions capable of producing an alloy containing an amorphous phase is produced by a high frequency melting furnace, and various additions are made to one or more of the elements constituting the component composition when the molten alloy is in an equilibrium state. Add a predetermined amount of element.

【0018】次に、これを先端に小孔を有する石英管に
装入し、加熱溶融した後、その石英管を銅製の直径20
0mmのロールの直上に設置し、回転数5000rpm
の高速回転下、石英管内の溶融合金をアルゴン加圧下
(0.7kg/cm2)により石英管の小孔から噴出
し、ロールの表面と接触させることにより、急冷凝固さ
せて薄帯を得る。すなわち、単ロール法により薄帯を作
製する。
Next, this is charged into a quartz tube having a small hole at the tip and heated and melted.
Installed just above a 0 mm roll, and rotate at 5000 rpm
Under high-speed rotation, the molten alloy in the quartz tube is ejected from the small holes of the quartz tube under argon pressure (0.7 kg / cm 2 ), and is brought into contact with the surface of the roll to rapidly solidify to obtain a ribbon. That is, a ribbon is produced by a single roll method.

【0019】上記製造条件により、表1及び表2に示す
ような組成の合金薄帯を得た。それぞれの供試薄帯につ
き、非晶質相を含む合金であることをX線回析等により
確認後、示差走査熱分析を行ない、得られた示差熱量分
析曲線をもとに結晶化温度(Tx)を求め、得られた結
晶化温度(Tx)をもとに熱処理温度を決定した。各供
試薄帯について、表1及び表2に示される温度及び時間
で熱処理を施した。熱処理後の試料をTEM観察を行な
い、さらに同試料について、引張り強度を測定した。こ
の結果を表1及び表2の右欄に示す。
Under the above manufacturing conditions, alloy ribbons having the compositions shown in Tables 1 and 2 were obtained. After confirming that each of the test ribbons is an alloy containing an amorphous phase by X-ray diffraction or the like, differential scanning calorimetry was performed, and the crystallization temperature (based on the obtained differential calorimetric analysis curve) was determined. Tx) was determined, and the heat treatment temperature was determined based on the obtained crystallization temperature (Tx). Each of the test ribbons was heat-treated at the temperatures and times shown in Tables 1 and 2. The sample after the heat treatment was observed by TEM, and the tensile strength of the sample was measured. The results are shown in the right columns of Tables 1 and 2.

【0020】また、表1において、比較のため、本発明
の添加元素を加えず、同様の熱処理を施した試料より得
られた結果を示す。
In addition, Table 1 shows, for comparison, the results obtained from the samples subjected to the same heat treatment without adding the additive element of the present invention.

【0021】表1及び表2によれば、本発明合金で微細
な結晶組織が得られているとともに、前記組織により優
れた強度が示す合金が得られていることが分かる。
According to Tables 1 and 2, it can be seen that a fine crystal structure is obtained with the alloy of the present invention, and an alloy having excellent strength is obtained by the structure.

【0022】なお表1は、Al87Ni10Ce3からなる
組成の一部を本発明各種添加元素で置き換えたものにつ
いて調べた結果であり、表2は、各種組成からなる合金
元素の一部を本発明各種添加元素で置き換えたものにつ
いて調べた結果である。
Table 1 shows the results obtained by examining the case where a part of the composition composed of Al 87 Ni 10 Ce 3 was replaced by the various additive elements of the present invention. Table 2 shows the part of the alloy element composed of the various compositions. Is a result obtained by examining the case where is replaced with various additional elements of the present invention.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【発明の効果】以上のように、本発明の製造方法によれ
ば、超微細な結晶組織が容易に得られるとともに、この
超微細な結晶は、安定に存在させることができる。
As described above, according to the production method of the present invention, an ultrafine crystal structure can be easily obtained, and the ultrafine crystals can be stably present.

【0026】また、本発明の合金によれば、超微細な結
晶組織を有するため、機械的性質、化学的性質などに優
れた特性を有する合金を提供することができる。
Further, according to the alloy of the present invention, since it has an ultrafine crystal structure, it is possible to provide an alloy having excellent properties such as mechanical properties and chemical properties.

フロントページの続き (72)発明者 井上 明久 宮城県仙台市青葉区川内無番地川内住宅 11−806 (72)発明者 福井 英夫 宮城県仙台市若林区若林3−15−15 B −102 (56)参考文献 特開 平5−320837(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22F 1/00 C22C 21/00 C22F 1/04 Continued on the front page (72) Inventor Akihisa Inoue 11-806 Kawauchi House, Kawauchi Muban, Aoba-ku, Sendai, Miyagi Prefecture Inventor Hideo Fukui 3-15-15, Wakabayashi, Wakabayashi-ku, Sendai, Miyagi B-102 (56) References JP-A-5-320837 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C22F 1/00 C22C 21/00 C22F 1/04

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Alを主金属元素とし、主金属元素以外
の元素が遷移元素、希土類元素(ただし下記添加元素を
除く)とし、これら少なくとも2種以上の元素で非晶質
相を含む合金が作製できる合金組成に、その合金を構成
する元素のうちの1種以上に0.01at%以上固溶す
Ga、Ge、Li、Mg、Mn、Sc、V、Ag、C
uから選ばれる少なくとも1種以上の添加元素を0.1
at%〜15at%加えて非晶質合金を作製し、これを
結晶化温度(Tx)−100(K)から結晶化温度(T
x)+100(K)までの温度で熱処理を施すことによ
平均粒径が10nm以下の微細な結晶粒よりなる結晶
組織を有する合金を製造することを特徴とする微細結晶
組織を有する合金の製造方法。
1. A method according to claim 1, wherein Al is the main metal element, and other than the main metal element.
Are transition elements and rare earth elements (however,
Excluding) at least 0.01 at% of Ga, Ge which forms a solid solution with at least one of the elements constituting the alloy in an alloy composition capable of producing an alloy containing an amorphous phase with at least two or more of these elements. , Li, Mg, Mn, Sc, V, Ag, C
0.1 at least one kind of additive elements selected from u
at% to 15 at%, to prepare an amorphous alloy, which is converted from the crystallization temperature (Tx) -100 (K) to the crystallization temperature (T
x) a method for producing an alloy having a fine crystal structure, characterized by producing an alloy having a crystal structure composed of fine crystal grains having an average particle diameter of 10 nm or less by performing a heat treatment at a temperature up to +100 (K). .
【請求項2】 上記熱処理を施す時間が10秒から6時
間までである請求項1記載の微細結晶組織を有する合金
の製造方法。
2. The method for producing an alloy having a fine crystal structure according to claim 1, wherein the time of the heat treatment is from 10 seconds to 6 hours.
【請求項3】 主金属元素がAl、従金属元素が遷移元
素、希土類元素(ただし下記添加元素を除く)から選ば
れる少なくとも1種以上の元素、さらに、これらに0.
1at%〜15at%添加される添加元素が、Ga、G
e、Li、Mg、Mn、Sc、V、Ag、Cuから選ば
れる少なくとも1種以上の元素とからなる組成を有し、
平均結晶粒径が10nm以下からなる微細結晶組織から
なることを特徴とする微細結晶合金。
3. The main metal element is Al, and the auxiliary metal element is at least one or more elements selected from transition elements and rare earth elements (excluding the following additional elements) .
The additive element added at 1 at% to 15 at% is Ga, G
e, having a composition comprising at least one or more elements selected from Li, Mg, Mn, Sc, V, Ag, and Cu;
A microcrystalline alloy having a fine crystal structure having an average crystal grain size of 10 nm or less.
JP33628793A 1993-12-28 1993-12-28 Method for producing alloy having fine crystal structure and fine crystalline alloy Expired - Fee Related JP2892270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33628793A JP2892270B2 (en) 1993-12-28 1993-12-28 Method for producing alloy having fine crystal structure and fine crystalline alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33628793A JP2892270B2 (en) 1993-12-28 1993-12-28 Method for producing alloy having fine crystal structure and fine crystalline alloy

Publications (2)

Publication Number Publication Date
JPH07188878A JPH07188878A (en) 1995-07-25
JP2892270B2 true JP2892270B2 (en) 1999-05-17

Family

ID=18297552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33628793A Expired - Fee Related JP2892270B2 (en) 1993-12-28 1993-12-28 Method for producing alloy having fine crystal structure and fine crystalline alloy

Country Status (1)

Country Link
JP (1) JP2892270B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875131B2 (en) * 2008-04-18 2011-01-25 United Technologies Corporation L12 strengthened amorphous aluminum alloys

Also Published As

Publication number Publication date
JPH07188878A (en) 1995-07-25

Similar Documents

Publication Publication Date Title
DE69620998T2 (en) OXIDATION RESISTANT MOLYBENE ALLOY
US3989517A (en) Titanium-beryllium base amorphous alloys
US7520944B2 (en) Method of making in-situ composites comprising amorphous alloys
JPH1171660A (en) High strength amorphous alloy and its production
JPH0693363A (en) High tensile strength and heat resistant aluminum base alloy
US4400208A (en) Process for the production of iron, phosphorus, carbon and chromium based amorphous metal alloys, and the alloys obtained
JPH07238336A (en) High strength aluminum-base alloy
Graves et al. Pathways for microstructural development in TiAl
JP3205362B2 (en) High strength, high toughness aluminum-based alloy
EP0573484B1 (en) Titanium-based alloy produced by vapour quenching
JP4515596B2 (en) Bulk amorphous alloy, method for producing bulk amorphous alloy, and high strength member
DE3301831A1 (en) IRIDIUM-RHENIUM POT, METHOD FOR THE PRODUCTION THEREOF AND METHOD FOR GROWING A CRYSTAL IN THE POT
JP2000265252A (en) High strength amorphous alloy and its production
JP4515548B2 (en) Bulk amorphous alloy and high strength member using the same
JP2865499B2 (en) Superplastic aluminum-based alloy material and method for producing superplastic alloy material
JPH05171331A (en) High strength magnesium-base alloy
JP2892270B2 (en) Method for producing alloy having fine crystal structure and fine crystalline alloy
JP3229500B2 (en) High-strength metal material and method for manufacturing the same
JP3093461B2 (en) Magnetic material and its manufacturing method
JP2002332532A (en) HIGH YIELD STRESS Zr BASED AMORPHOUS ALLOY
Croat et al. Crystallization in Al88RE8Ni4 glass-forming alloys
EP0540054B1 (en) High-strength and high-toughness aluminum-based alloy
US4118222A (en) Glassy hafnium-beryllium alloys
USRE30080E (en) Titanium-beryllium base amorphous alloys
WO2021132272A1 (en) Alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080226

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090226

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100226

LAPS Cancellation because of no payment of annual fees