JP2875187B2 - Processing method of copper foil for printed circuit - Google Patents
Processing method of copper foil for printed circuitInfo
- Publication number
- JP2875187B2 JP2875187B2 JP7164548A JP16454895A JP2875187B2 JP 2875187 B2 JP2875187 B2 JP 2875187B2 JP 7164548 A JP7164548 A JP 7164548A JP 16454895 A JP16454895 A JP 16454895A JP 2875187 B2 JP2875187 B2 JP 2875187B2
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- nickel
- cobalt
- printed circuit
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
- Electroplating Methods And Accessories (AREA)
- Manufacturing Of Printed Wiring (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、印刷回路用銅箔の処理
方法に関するものであり、特には銅箔の表面に銅−コバ
ルト−ニッケルから成るめっきによる粗化処理後、コバ
ルトめっき層を形成することにより、アルカリエッチン
グ性を有し、しかも良好な耐熱剥離強度及び耐熱酸化性
等を具備すると共に黒色の表面色調を有する印刷回路用
銅箔を生成する処理方法において、耐熱酸化性を更に一
層改善する印刷回路用銅箔の処理方法関するものであ
る。本発明銅箔は、例えばファインパターン印刷回路及
び磁気ヘッド用FPC( Flexible Printed Circuit )
として特に適する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a copper foil for a printed circuit, and more particularly to a method for forming a cobalt plating layer on a surface of a copper foil after a roughening treatment by plating of copper-cobalt-nickel. By doing so, in a processing method for producing a copper foil for a printed circuit having a black surface tone while having alkali etching properties, and also having good heat-resistant peel strength and heat-resistant oxidation properties, the heat-resistant oxidation properties are further enhanced. The present invention relates to an improved method for treating a copper foil for a printed circuit. The copper foil of the present invention is, for example, a fine pattern printed circuit and an FPC (Flexible Printed Circuit) for a magnetic head.
Particularly suitable as.
【0002】[0002]
【従来の技術】銅及び銅合金箔(以下銅箔と称する)
は、電気・電子関連産業の発展に大きく寄与しており、
特に印刷回路材として不可欠の存在となっている。印刷
回路用銅箔は一般に、合成樹脂ボード、フィルム等の基
材に接着剤を介して或いは接着剤を使用せずに高温高圧
下で積層接着して銅張積層板を製造し、その後目的とす
る回路を形成するべくレジスト塗布及び露光工程を経て
必要な回路を印刷した後、不要部を除去するエッチング
処理が施される。最終的に、所要の素子が半田付けされ
て、エレクトロニクスデバイス用の種々の印刷回路板を
形成する。印刷回路板用銅箔に関する品質要求は、樹脂
基材と接着される面(粗化面)と非接触面(光沢面)と
で異なり、それぞれに多くの方法が提唱されている。2. Description of the Related Art Copper and copper alloy foil (hereinafter referred to as copper foil)
Has greatly contributed to the development of the electrical and electronic related industries,
In particular, it is indispensable as a printed circuit material. In general, copper foil for printed circuits is laminated and bonded to a base material such as a synthetic resin board and a film under a high temperature and a high pressure with an adhesive or without using an adhesive to produce a copper-clad laminate. After a necessary circuit is printed through a resist coating and exposure process to form a circuit to be formed, an etching process for removing an unnecessary portion is performed. Finally, the required elements are soldered to form various printed circuit boards for electronic devices. The quality requirements for the copper foil for printed circuit boards differ between the surface (roughened surface) bonded to the resin substrate and the non-contact surface (glossy surface), and many methods have been proposed for each.
【0003】例えば、粗化面に対する要求としては、主
として、 保存時における酸化変色のないこと、 基材との引き剥し強さが高温加熱、湿式処理、半田付
け、薬品処理等の後でも充分なこと、 基材との積層、エッチング後に生じる所謂積層汚点の
ないこと 等が挙げられる。[0003] For example, requirements for a roughened surface include mainly that there is no oxidative discoloration during storage and that the peeling strength with a substrate is sufficient even after high-temperature heating, wet processing, soldering, chemical processing, or the like. And that there is no so-called lamination stain generated after lamination with the base material and etching.
【0004】粗化処理は銅箔と基材との接着性を決定す
るものとして、大きな役割を担っている。粗化処理とし
ては、当初銅を電着する銅粗化処理が採用されていた
が、その後様々の技術が提唱され、特に耐熱剥離強度、
耐塩酸性及び耐酸化性の改善を目的として銅−ニッケル
粗化処理が一つの代表的処理方法として定着するように
なった。本件出願人は、特開昭52−145769号に
おいて銅−ニッケル粗化処理を提唱し、成果を納めてき
た。銅−ニッケル処理表面は黒色を呈し、特にフレキシ
ブル基板用圧延処理箔では、この銅−ニッケル処理の黒
色が商品としてのシンボルとして認められるに至ってい
る。[0004] Roughening plays a large role in determining the adhesion between the copper foil and the substrate. As the roughening treatment, copper roughening treatment for electrodepositing copper was initially adopted, but various techniques have been subsequently proposed, especially heat-resistant peel strength,
Copper-nickel roughening treatment has come to be established as one typical treatment method for the purpose of improving hydrochloric acid resistance and oxidation resistance. The present applicant has proposed copper-nickel roughening treatment in Japanese Patent Application Laid-Open No. 52-145768 and has achieved results. The copper-nickel-treated surface has a black color, and particularly in rolled foils for flexible substrates, the black color of the copper-nickel treatment has been recognized as a symbol as a commercial product.
【0005】しかしながら、銅−ニッケル粗化処理は、
耐熱剥離強度及び耐酸化性並びに耐塩酸性に優れる反面
で、近時ファインパターン用処理として重要となってき
たアルカリエッチング液でのエッチングが困難であり、
150μmピッチ回路巾以下のファインパターン形成時
に処理層がエッチング残となってしまう。However, the copper-nickel roughening treatment is
Although excellent in heat-resistant peeling strength, oxidation resistance and hydrochloric acid resistance, it is difficult to etch with an alkaline etchant that has recently become important as a fine pattern treatment.
When a fine pattern having a circuit width of 150 μm or less is formed, the processing layer is left unetched.
【0006】そこで、ファインパターン用処理として、
本件出願人は、先にCu−Co処理(特公昭63−21
58号及び特願平1−112227号)及びCu−Co
−Ni処理(特願平1−112226号)を開発した。
これら粗化処理は、エッチング性、アルカリエッチング
性及び耐塩酸性については良好であったが、アクリル系
接着剤を用いたときの耐熱剥離強度が低下することが改
めて判明し、また耐酸化性も所期程充分ではなくそして
色調も黒色までには至らず、茶〜こげ茶色であった。Therefore, as a process for fine patterns,
The applicant of the present application has previously conducted Cu-Co treatment (Japanese Patent Publication No. 63-21 / 1988)
No. 58 and Japanese Patent Application No. 1-112227) and Cu-Co
-Ni processing (Japanese Patent Application No. 1-112226) was developed.
These roughening treatments had good etching properties, alkali etching properties and hydrochloric acid resistance, but it was found again that the heat-resistant peel strength when using an acrylic adhesive was reduced, and oxidation resistance was also low. The color was not enough and the color did not reach black, but it was brown to dark brown.
【0007】最近の印刷回路のファインパターン化及び
多様化への趨勢にともない、 Cu−Ni処理の場合に匹敵する耐熱剥離強度(特に
アクリル系接着剤を用いたとき)及び耐塩酸性を有する
こと、 アルカリエッチング液で150μmピッチ回路巾以下
の印刷回路をエッチングできること、 Cu−Ni処理の場合と同様に、耐酸化性(180℃
×30分のオーブン中での耐酸化性)を向上すること、 Cu−Ni処理の場合と同様の黒化処理であること が更に要求されるようになった。即ち、回路が細くなる
と、塩酸エッチング液により回路が剥離し易くなる傾向
が強まり、その防止が必要である。回路が細くなると、
半田付け等の処理時の高温により回路がやはり剥離し易
くなり、その防止もまた必要である。ファインパターン
化が進む現在、例えばCuCl2 エッチング液で150
μmピッチ回路巾以下の印刷回路をエッチングできるこ
とはもはや必須の要件であり、レジスト等の多様化にと
もないアルカリエッチングも必要要件となりつつある。
黒色表面も、位置合わせ精度及び熱吸収を高めることの
点で銅箔の製作及びチップマウントの観点から重要とな
っている。[0007] With the recent trend toward fine patterning and diversification of printed circuits, the printed circuit boards have heat-resistant peel strength (especially when an acrylic adhesive is used) and hydrochloric acid resistance comparable to those of Cu-Ni treatment. A printed circuit having a circuit width of 150 μm or less can be etched with an alkaline etchant. Oxidation resistance (180 ° C.) as in the case of Cu-Ni treatment.
It has been further required to improve the oxidation resistance in an oven for 30 minutes, and to perform the same blackening treatment as in the case of Cu-Ni treatment. That is, as the circuit becomes thinner, the tendency of the circuit to be easily peeled off by the hydrochloric acid etching solution becomes stronger, and it is necessary to prevent such tendency. When the circuit becomes thin,
The high temperature during the processing such as soldering also makes the circuit easy to peel off, and its prevention is also necessary. Currently fine pattern progresses, for example in CuCl 2 etching solution 150
It is no longer an essential requirement that a printed circuit having a circuit width of μm pitch or less can be etched, and alkali etching is becoming a necessary requirement as resists and the like are diversified.
The black surface is also important from the standpoint of copper foil fabrication and chip mounting in terms of enhancing alignment accuracy and heat absorption.
【0008】こうした要望に答えて、本件出願人は、銅
箔の表面に銅−コバルト−ニッケルから成るめっきによ
る粗化処理後、コバルトめっき層或いはコバルト及びニ
ッケルから成るめっき層を形成することにより、印刷回
路銅箔として上述した多くの一般的特性を具備すること
はもちろんのこと、特にCu−Ni処理と匹敵する上述
した諸特性を具備し、しかもアクリル系接着剤を用いた
ときの耐熱剥離強度を低下せず、耐酸化性に優れそして
表面色調も黒色である銅箔処理方法を開発することに成
功した(特公平6−54831号)。好ましくは、前記
コバルトめっき層或いはコバルト及びニッケルから成る
めっき層を形成した後に、クロム酸化物の単独皮膜処理
或いはクロム酸化物と亜鉛及び(又は)亜鉛酸化物との
混合皮膜処理を代表とする防錆処理が施される。In response to such a demand, the present applicant has formed a copper plating layer or a plating layer composed of cobalt and nickel by forming a cobalt plating layer or a plating layer composed of cobalt and nickel on a surface of a copper foil after roughening treatment by plating composed of copper-cobalt-nickel. As well as having many of the general characteristics described above as a printed circuit copper foil, in particular, having the above-mentioned various characteristics comparable to Cu-Ni treatment, and furthermore, the heat-resistant peel strength when using an acrylic adhesive And a copper foil treatment method which is excellent in oxidation resistance and has a black surface color tone has been successfully developed (Japanese Patent Publication No. 6-54831). Preferably, after the formation of the cobalt plating layer or the plating layer composed of cobalt and nickel, a protection treatment represented by a single coating treatment of chromium oxide or a mixed coating treatment of chromium oxide and zinc and / or zinc oxide is preferred. Rust treatment is performed.
【0009】[0009]
【発明が解決しようとする課題】その後、電子機器の発
展が進む中で、半導体デバイスの小型化、高集積化が更
に進み、これらの印刷回路の製造工程で行われる処理が
一段と高温となりまた製品となった後の機器使用中の熱
発生により、銅箔と樹脂基材との間での接合力の低下が
あらためて問題となるようになった。本発明の課題は、
特公平6−54831号において確立された銅箔の表面
に銅−コバルト−ニッケルから成るめっきによる粗化処
理後、コバルトめっき層或いはコバルト及びニッケルか
ら成るめっき層を形成する印刷回路用銅箔の処理方法に
おいて耐熱剥離性を更に一層改善することである。Thereafter, as the development of electronic equipment has progressed, the miniaturization and high integration of semiconductor devices have further progressed, and the processing performed in the manufacturing process of these printed circuits has become even higher and products The heat generated during the use of the device after the occurrence of the above has caused a decrease in the bonding strength between the copper foil and the resin base material, which has become a problem. The object of the present invention is to
Treatment of copper foil for printed circuit forming a copper plating layer or a plating layer composed of cobalt and nickel after roughening treatment by copper-cobalt-nickel plating on the surface of copper foil established in Japanese Patent Publication No. 6-54831. It is an object of the present invention to further improve the heat-peelability.
【0010】[0010]
【課題を解決するための手段】本発明者らの研究の結
果、銅箔の表面に銅−コバルト−ニッケルから成るめっ
きによる粗化処理後、コバルトめっき層を形成し、更に
その上に亜鉛−ニッケル層を形成することにより、これ
までの利点を生かしたまま耐熱剥離性を一層改善しうる
ことが明らかとなった。この知見に基づいて、本発明
は、印刷回路用銅箔の処理方法において、銅箔の表面に
銅−コバルト−ニッケルから成るめっきによる粗化処理
後、コバルトめっき層を形成し、更に亜鉛−ニッケル層
を形成することを特徴とする印刷回路用銅箔の処理方法
を提供するものである。好ましくは、前記コバルトめっ
き層或いはコバルト及びニッケルから成るめっき層を形
成した後に、クロム酸化物の単独皮膜処理或いはクロム
酸化物と亜鉛及び(又は)亜鉛酸化物との混合皮膜処理
を代表とする防錆処理が施される。As a result of the research by the present inventors, after roughening treatment by plating of copper-cobalt-nickel on the surface of a copper foil, a cobalt plating layer is formed, and zinc-plating is further formed thereon. It has been clarified that the formation of the nickel layer can further improve the heat-resistant peeling property while keeping the advantages up to now. Based on this finding, the present invention relates to a method for treating a copper foil for a printed circuit, comprising forming a cobalt plating layer on a surface of the copper foil after roughening treatment by plating comprising copper-cobalt-nickel, and further forming zinc-nickel An object of the present invention is to provide a method for treating a copper foil for a printed circuit, which comprises forming a layer. Preferably, after the formation of the cobalt plating layer or the plating layer composed of cobalt and nickel, a protection treatment represented by a single coating treatment of chromium oxide or a mixed coating treatment of chromium oxide and zinc and / or zinc oxide is preferred. Rust treatment is performed.
【0011】特定的には、印刷回路用銅箔の処理方法に
おいて、銅箔の表面に付着量が15〜40mg/dm2
銅−100〜3000μg/dm2 、好ましくは200
0〜3000μg/dm2 コバルト−100〜500μ
g/dm2 、好ましくは200〜400μg/dm2 ニ
ッケルであるような銅−コバルト−ニッケルから成る合
金めっきによる粗化処理後、200〜3000μg/d
m2 、好ましくは500〜3000μg/dm2 の付着
量のコバルトめっき層を形成し、更に付着量が10〜1
000μg/dm2 、好ましくは30〜800μg/d
m2 亜鉛−10〜600μg/dm2 、好ましくは30
〜600μg/dm2 ニッケルの亜鉛−ニッケル層を形
成する。望ましくは、コバルトの合計付着量が300〜
5000μg/dm2 、好ましくは2500〜5000
μg/dm2 でありそしてニッケルの合計付着量が11
0〜900μg/dm2 、好ましくは230〜900μ
g/dm2 より好ましくは300〜800μg/dm2
とされる。Specifically, in the method for treating a copper foil for a printed circuit, the amount of adhesion on the surface of the copper foil is 15 to 40 mg / dm 2.
Copper—100 to 3000 μg / dm 2 , preferably 200
0-3000 μg / dm 2 cobalt-100-500 μ
g / dm 2 , preferably 200 to 3000 μg / dm 2 , after roughening treatment by copper-cobalt-nickel alloy plating such as nickel being 200 to 3000 μg / dm 2
m 2 , preferably a cobalt plating layer having an adhesion amount of 500 to 3000 μg / dm 2 , and further having an adhesion amount of 10 to 1
000 μg / dm 2 , preferably 30-800 μg / d
m 2 zinc—10 to 600 μg / dm 2 , preferably 30
A zinc-nickel layer of ~ 600 μg / dm 2 nickel is formed. Desirably, the total deposition amount of cobalt is 300 to
5000 μg / dm 2 , preferably 2500 to 5000
μg / dm 2 and the total nickel coverage is 11
0 to 900 μg / dm 2 , preferably 230 to 900 μ
g / dm 2, more preferably 300 to 800 μg / dm 2
It is said.
【0012】[0012]
【作用】本発明において使用する銅箔は、電解銅箔或い
は圧延銅箔いずれでも良い。通常、銅箔の、樹脂基材と
接着する面即ち粗化面には積層後の銅箔の引き剥し強さ
を向上させることを目的として、脱脂後の銅箔の表面に
ふしこぶ状の電着を行なう粗化処理が施される。電解銅
箔は製造時点で凹凸を有しているが、粗化処理により電
解銅箔の凸部を増強して凹凸を一層大きくする。本発明
においては、この粗化処理は銅−コバルト−ニッケル合
金めっきにより行なわれる。粗化前の前処理として通常
の銅めっき等がそして粗化後の仕上げ処理として電着物
の脱落を防止するために通常の銅めっき等が行なわれる
こともある。圧延銅箔と電解銅箔とでは処理の内容を幾
分異にすることもある。本発明においては、こうした前
処理及び仕上げ処理をも含め、銅箔粗化と関連する公知
の処理を必要に応じて含め、総称して粗化処理と云うも
のとする。The copper foil used in the present invention may be either an electrolytic copper foil or a rolled copper foil. Usually, the surface of the copper foil that adheres to the resin substrate, that is, the roughened surface, has a bumpy shape on the surface of the degreased copper foil for the purpose of improving the peel strength of the copper foil after lamination. A roughening process for performing the wearing is performed. Although the electrolytic copper foil has irregularities at the time of manufacture, the convexities of the electrolytic copper foil are enhanced by roughening treatment to further increase the irregularities. In the present invention, this roughening treatment is performed by copper-cobalt-nickel alloy plating. Normal copper plating or the like may be performed as a pre-treatment before roughening, and normal copper plating or the like may be performed as a finishing treatment after the roughening to prevent the electrodeposits from falling off. The content of the treatment may be somewhat different between the rolled copper foil and the electrolytic copper foil. In the present invention, known treatments related to copper foil roughening, including such a pretreatment and a finishing treatment, are included as necessary, and are generally referred to as a roughening treatment.
【0013】本発明に従えば、粗化処理としての銅−コ
バルト−ニッケル合金めっきは、電解めっきにより、付
着量が15〜40mg/dm2 銅−100〜3000μ
g/dm2 コバルト−100〜500μg/dm2 ニッ
ケルであるような3元系合金層を形成するように実施さ
れる。Co付着量が100μg/dm2 未満では、耐熱
性が悪化し、エッチング性が悪くなる。Co付着量が3
000μg/dm2 を超えると、磁性の影響を考慮せね
ばならない場合には好ましくなく、エッチングシミが生
じ、また、耐酸性及び耐薬品性の悪化が考慮されうる。
Ni付着量が100μg/dm2 未満であると、耐熱性
が悪くなる。他方、Ni付着量が500μg/dm2 を
超えると、エッチング性が低下する。すなわち、エッチ
ング残ができたり、エッチングできないというレベルで
はないが、ファインパターン化が難しくなる。好ましい
Co付着量は2000〜3000μg/dm2 でありそ
して好ましいニッケル付着量は200〜400μg/d
m2 である。ここで、エッチングシミとは、塩化銅でエ
ッチングした場合、Coが溶解せずに残ってしまうこと
を意味しそしてエッチング残とは塩化アンモニウムでア
ルカリエッチングした場合、Niが溶解せずに残ってし
まうことを意味するものである。According to the present invention, the copper-cobalt-nickel alloy plating as a roughening treatment has an adhesion amount of 15 to 40 mg / dm 2 copper-100 to 3000 μm by electrolytic plating.
g / dm 2 cobalt—implemented to form a ternary alloy layer such as 100-500 μg / dm 2 nickel. If the amount of Co adhesion is less than 100 μg / dm 2 , the heat resistance deteriorates and the etching property deteriorates. Co deposition amount is 3
If it exceeds 000 μg / dm 2 , it is not preferable when the influence of magnetism must be taken into consideration, etching stains may occur, and deterioration of acid resistance and chemical resistance may be considered.
If the amount of Ni attached is less than 100 μg / dm 2 , the heat resistance becomes poor. On the other hand, when the Ni adhesion amount exceeds 500 μg / dm 2 , the etching property is reduced. That is, it is not at a level that an etching residue can be formed or cannot be etched, but it is difficult to form a fine pattern. The preferred Co coverage is 2000-3000 μg / dm 2 and the preferred nickel coverage is 200-400 μg / d
m 2 . Here, the etching stain means that when etched with copper chloride, Co remains without dissolving, and when the etching residue is alkali-etched with ammonium chloride, Ni remains without dissolving. It means that.
【0014】こうした3元系合金めっきを形成するため
の一般的浴及びめっき条件は次の通りである: (Cu−Co−Ni3元合金めっき条件) Cu:10〜20g/リットル Co:1〜10g/リットル Ni:1〜10g/リットル pH:1〜4 温度:40〜50℃ 電流密度Dk :20〜30A/dm2 時間:1〜5秒The general bath and plating conditions for forming such a ternary alloy plating are as follows: (Cu-Co-Ni ternary alloy plating conditions) Cu: 10 to 20 g / liter Co: 1 to 10 g Per liter Ni: 1 to 10 g / liter pH: 1 to 4 Temperature: 40 to 50 ° C. Current density D k : 20 to 30 A / dm 2 hours: 1 to 5 seconds
【0015】本発明は、粗化処理後、粗化面上に200
〜3000μg/dm2 の付着量のコバルトめっき層を
形成する。このコバルトめっきは、銅箔と基板の接着強
度を実質的に低下させない程度に行なう必要がある。コ
バルト付着量が200μg/dm2 未満では、耐熱剥離
強度が低下し、耐酸化性及び耐薬品性が悪化する。ま
た、もう一つの理由として、Co量が少ないと処理表面
が赤っぽくなってしまうので好ましくない。コバルト付
着量が3000μg/dm2 を超えると、磁性の影響を
考慮せねばならない場合には好ましくなく、エッチング
シミが生じ、また、耐酸性及び耐薬品性の悪化が考慮さ
れる。好ましいコバルト付着量は500〜3000μg
/dm2 である。According to the present invention, after the roughening treatment, 200
A cobalt plating layer having an adhesion amount of 33000 μg / dm 2 is formed. This cobalt plating needs to be performed to such an extent that the adhesive strength between the copper foil and the substrate is not substantially reduced. If the amount of cobalt deposited is less than 200 μg / dm 2 , the heat-resistant peel strength decreases, and the oxidation resistance and chemical resistance deteriorate. Another reason is that if the amount of Co is small, the treated surface becomes reddish, which is not preferable. If the amount of deposited cobalt exceeds 3000 μg / dm 2 , it is not preferable when the influence of magnetism must be taken into consideration, and etching stains occur, and deterioration in acid resistance and chemical resistance is taken into consideration. The preferred cobalt deposition amount is 500-3000 μg
/ Dm 2 .
【0016】コバルトめっきの条件は次の通りである: (コバルトめっき) Co:1〜30g/リットル pH:1.5〜3.5 温度:30〜80℃ Dk :1.0〜20.0A/dm2 時間:0.5〜4秒The conditions of the cobalt plating are as follows: (Cobalt plating) Co: 1 to 30 g / liter pH: 1.5 to 3.5 Temperature: 30 to 80 ° C. D k : 1.0 to 20.0 A / Dm 2 hours: 0.5-4 seconds
【0017】本発明に従えば、コバルトめっき上に更
に、付着量が10〜1000μg/dm2 亜鉛−10〜
600μg/dm2 ニッケルの亜鉛−ニッケル合金めっ
き層を形成する。亜鉛付着量が10μg/dm2 未満で
は耐熱劣化率改善効果がない(耐熱劣化率が40%以上
となる)。他方、亜鉛付着量が1000μg/dm2 を
超えると耐塩酸劣化率が極端に悪くなる(50%以上と
なる)。ニッケル付着量が10μg/dm2 未満では耐
熱劣化率改善効果がなく、また亜鉛−ニッケル被膜中の
Ni比率が低くなると、耐薬品性が低下する。他方、ニ
ッケル付着量が600μg/dm2 を超えると、エッチ
ング残が生じる。好ましくは、亜鉛付着量は30〜80
0μg/dm2 とされそしてニッケル付着量は30〜6
00μg/dm2 とされる。According to the present invention, the amount of deposit on the cobalt plating is 10 to 1000 μg / dm 2 zinc.
A zinc-nickel alloy plating layer of 600 μg / dm 2 nickel is formed. When the zinc deposition amount is less than 10 μg / dm 2 , there is no effect of improving the heat deterioration rate (heat deterioration rate becomes 40% or more). On the other hand, when the zinc deposition amount exceeds 1000 μg / dm 2 , the rate of deterioration of hydrochloric acid resistance becomes extremely poor (50% or more). When the nickel adhesion amount is less than 10 μg / dm 2 , there is no effect of improving the heat deterioration rate, and when the Ni ratio in the zinc-nickel coating is low, the chemical resistance is lowered. On the other hand, if the nickel deposition amount exceeds 600 μg / dm 2 , etching residue is generated. Preferably, the zinc coverage is 30-80.
0 μg / dm 2 and the nickel coverage is 30-6
00 μg / dm 2 .
【0018】Zn−Niめっき条件は次の通りである: (Zn−Niめっき条件) Zn:10〜30g/l Ni:1〜10g/l pH:3〜4 温度:40〜50℃ Dk:0.5〜5A/dm2 時間:1〜3秒The Zn-Ni plating conditions are as follows: (Zn-Ni plating conditions) Zn: 10 to 30 g / l Ni: 1 to 10 g / l pH: 3 to 4 Temperature: 40 to 50 ° C. Dk: 0 0.5-5 A / dm 2 hours: 1-3 seconds
【0019】本発明に従えば、粗化処理としての銅−コ
バルト−ニッケル合金めっき層、コバルトめっき層そし
て亜鉛−ニッケル合金めっき層が順次形成されるが、こ
れら層における合計量のコバルト付着量及びニッケル付
着量が重要であることが見いだされた。理由は定かでな
いが、3層が一体的に挙動する。コバルトの合計付着量
が300〜5000μg/dm2 でありそしてニッケル
の合計付着量が110〜900μg/dm2 とされるこ
とが望ましい。コバルトの合計付着量が300μg/d
m2 未満では、耐熱性及び耐薬品性が低下する。他方コ
バルトの合計付着量が5000μg/dm2 を超える
と、エッチングシミが生じる。ニッケルの合計付着量が
110μg/dm2 未満では、耐熱性及び耐薬品性が低
下する。ニッケルの合計付着量が900μg/dm2 を
超えると、エッチング残が生じる。好ましくは、コバル
トの合計付着量は2500〜5000μg/dm2 であ
りそしてニッケルの合計付着量は230〜900μg/
dm2 、より好ましくは300〜800μg/dm2 と
される。According to the present invention, a copper-cobalt-nickel alloy plating layer, a cobalt plating layer, and a zinc-nickel alloy plating layer are sequentially formed as a roughening treatment. It has been found that nickel loading is important. For unknown reasons, the three layers behave together. Desirably, the total coating weight of cobalt is 300-5000 μg / dm 2 and the total coating weight of nickel is 110-900 μg / dm 2 . 300 µg / d of total deposited cobalt
If it is less than m 2 , heat resistance and chemical resistance will decrease. On the other hand, if the total amount of deposited cobalt exceeds 5000 μg / dm 2 , etching stains occur. If the total amount of nickel deposited is less than 110 μg / dm 2 , heat resistance and chemical resistance will be reduced. If the total amount of deposited nickel exceeds 900 μg / dm 2 , an etching residue occurs. Preferably, the total weight of cobalt is 2500-5000 μg / dm 2 and the total weight of nickel is 230-900 μg / dm 2.
dm 2 , more preferably 300 to 800 μg / dm 2 .
【0020】この後、必要に応じ防錆処理が実施され
る。本発明において好ましい防錆処理は、クロム酸化物
単独の皮膜処理或いはクロム酸化物と亜鉛/亜鉛酸化物
との混合物皮膜処理である。クロム酸化物と亜鉛/亜鉛
酸化物との混合物皮膜処理とは、亜鉛塩または酸化亜鉛
とクロム酸塩とを含むめっき浴を用いて電気めっきによ
り亜鉛または酸化亜鉛とクロム酸化物とより成る亜鉛−
クロム基混合物の防錆層を被覆する処理である。めっき
浴としては、代表的には、K2Cr2O7 、Na2Cr2O7等の重ク
ロム酸塩やCrO3等の少なくとも一種と、水溶性亜鉛塩、
例えばZnO 、ZnSO4 ・7H2O等少なくとも一種と、水酸化
アルカリとの混合水溶液が用いられる。代表的なめっき
浴組成と電解条件例は次の通りである: (クロム防錆処理) K2Cr2O7 (Na2Cr2O7或いはCrO3):2〜10g/リットル NaOH或いはKOH :10〜50g/リットル ZnO 或いはZnSO4 ・7H2O:0.05〜10g/リットル pH:7〜13 浴温:20〜80℃ 電流密度:0.05〜5A/dm2 時間:5〜30秒 アノード:Pt-Ti 板、ステンレス鋼板等 クロム酸化物はクロム量として15μg/dm2 以上そ
して亜鉛は30μg/dm2 以上の被覆量が要求され
る。Thereafter, rust prevention treatment is performed as required. In the present invention, a preferable rust preventive treatment is a film treatment of chromium oxide alone or a mixture of chromium oxide and zinc / zinc oxide. The coating treatment of a mixture of chromium oxide and zinc / zinc oxide refers to zinc-containing zinc or zinc oxide and chromium oxide by electroplating using a plating bath containing zinc salt or zinc oxide and chromate.
This treatment covers the rust-preventive layer of the chromium-based mixture. As a plating bath, typically, at least one of dichromates such as K 2 Cr 2 O 7 and Na 2 Cr 2 O 7 and CrO 3 and a water-soluble zinc salt,
For example ZnO, and at least one ZnSO 4 · 7H 2 O, etc., a mixed aqueous solution of alkali hydroxide is used. Typical plating bath compositions and examples of electrolysis conditions are as follows: (Chromium rust preventive treatment) K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / liter NaOH or KOH: 10 to 50 g / liter ZnO or ZnSO 4 · 7H 2 O: 0.05~10g / l pH: 7 to 13 bath temperature: 20 to 80 ° C. current density: 0.05~5A / dm 2 Time: 5-30 seconds Anode: Pt-Ti plate, stainless steel plate, etc. Chromium oxide is required to have a coating amount of 15 μg / dm 2 or more in terms of chromium, and zinc is required to have a coating amount of 30 μg / dm 2 or more.
【0021】こうして得られた銅箔は、優れた耐熱性剥
離強度、耐酸化性及び耐塩酸性を有し、しかもCuCl
2 エッチング液で150μmピッチ回路巾以下の印刷回
路をエッチングでき、しかもアルカリエッチングも可能
とする。アルカリエッチング液としては、例えば、NH4O
H:6モル/l; NH4Cl:5モル/l;CuCl2:2モル/l
(温度50℃)等の液が知られている。The copper foil thus obtained has excellent heat-resistant peeling strength, oxidation resistance and hydrochloric acid resistance, and has CuCl
(2) A printed circuit having a pitch of 150 μm or less can be etched with an etching solution, and alkali etching is also possible. Examples of the alkaline etching solution include NH 4 O
H: 6 mol / l; NH 4 Cl: 5 mol / l; CuCl 2 : 2 mol / l
(Temperature 50 ° C.) and the like are known.
【0022】更に重要なことは、得られた銅箔は、Cu
−Ni処理の場合と同じく黒色を有していることであ
る。こうした黒色は、位置合わせ精度及び熱吸収率の高
いことの点から重要である。詳しくは、リジッド基板及
びフレキシブル基板を含め印刷回路基板は、ICや抵
抗、コンデンサ等の部品を自動工程で搭載していくが、
その際センサーにより回路を読み取りながらチップマウ
ントを行なっている。このとき、カプトンなどのフィル
ムを通して銅箔処理面での位置合わせを行なうことがあ
る。また、スルーホール形成時の位置決めも同様であ
る。このとき処理面が黒に近い程、光の吸収が良いた
め、位置決めの精度が高くなる。更には、基板を作製す
る際、銅箔とフィルムとを熱を加えながらキュワリング
して接着させることが多い。このとき、遠赤外線、赤外
線等の長波長波を用いることにより加熱する場合、処理
面の色調が黒い方が加熱効率が良くなる。More importantly, the obtained copper foil is made of Cu
-Has black color as in the case of the Ni treatment. Such black color is important in terms of high alignment accuracy and high heat absorption. Specifically, printed circuit boards, including rigid boards and flexible boards, are equipped with components such as ICs, resistors, and capacitors in an automated process.
At that time, the chip is mounted while reading the circuit with the sensor. At this time, the alignment on the copper foil treated surface may be performed through a film such as Kapton. The same applies to the positioning at the time of forming the through hole. At this time, the closer the processing surface is to black, the better the light absorption, and thus the higher the positioning accuracy. Further, when producing a substrate, the copper foil and the film are often subjected to curing while being heated and adhered. In this case, when heating is performed by using long-wavelength waves such as far-infrared rays and infrared rays, the black surface tone of the treated surface improves the heating efficiency.
【0023】最後に、必要に応じ、銅箔と樹脂基板との
接着力の改善を主目的として、防錆層上の少なくとも粗
化面にシランカップリング剤を塗布するシラン処理が施
される。塗布方法は、シランカップリング剤溶液のスプ
レーによる吹付け、コーターでの塗布、浸漬、流しかけ
等いずれでもよい。例えば、特公昭60−15654号
は、銅箔の粗面側にクロメート処理を施した後シランカ
ップリング剤処理を行なうことによって銅箔と樹脂基板
との接着力を改善することを記載している。詳細はこれ
を参照されたい。この後、必要なら、銅箔の延性を改善
する目的で焼鈍処理を施すこともある。Finally, if necessary, a silane treatment for applying a silane coupling agent to at least the roughened surface on the rust-preventive layer is performed mainly for the purpose of improving the adhesive strength between the copper foil and the resin substrate. The application method may be any of spraying of a silane coupling agent solution, application with a coater, immersion, and pouring. For example, Japanese Patent Publication No. 60-15654 describes that the adhesive strength between a copper foil and a resin substrate is improved by performing a silane coupling agent treatment after performing a chromate treatment on a rough surface side of the copper foil. . Please refer to this for details. Thereafter, if necessary, an annealing treatment may be performed for the purpose of improving ductility of the copper foil.
【0024】[0024]
【実施例】以下に、実施例及び比較例を呈示する。圧延
銅箔に前述した条件範囲で銅−コバルト−ニッケルめっ
き粗化処理を施して、銅を17mg/dm2 、コバルト
を2200μg/dm2 そしてニッケルを300μg/
dm2 付着した後に、水洗し、その上にコバルトめっき
層を形成した。コバルト付着量は700μg/dm2 と
した。従って、コバルトの合計付着量は2900μg/
dm2 であった。サンプルNo.2については、コバル
ト付着量を増加させた例(サンプルNo.2A、2B及
び2C)及びニッケル付着量を増加させた例(サンプル
No.2D及び2E)を追加した。水洗後、付着量を変
化させて亜鉛−ニッケルを付着し、最後に防錆処理を行
ないそして乾燥した。亜鉛−ニッケルを付着しない比較
例サンプルをサンプルNo.10として用意した。EXAMPLES Examples and comparative examples will be described below. Copper range of conditions previously described rolled copper foil - cobalt - is subjected to nickel plating roughening treatment, copper 17 mg / dm 2, the cobalt 2200μg / dm 2 and nickel 300 [mu] g /
After adhering to dm 2, it was washed with water and a cobalt plating layer was formed thereon. The amount of cobalt deposited was 700 μg / dm 2 . Therefore, the total amount of deposited cobalt was 2900 μg /
dm 2 . Sample No. As for No. 2, examples in which the amount of deposited cobalt was increased (samples Nos. 2A, 2B and 2C) and examples in which the amount of deposited nickel was increased (samples Nos. 2D and 2E) were added. After washing with water, zinc-nickel was deposited with varying amounts of deposition, and finally rustproofing was performed and dried. A sample of Comparative Example to which no zinc-nickel was attached was designated as Sample No. 10 was prepared.
【0025】サンプルをガラスクロス基材エポキシ樹脂
板に積層接着し、常態(室温)剥離強度(kg/cm)
を測定し耐熱劣化は180℃×48時間加熱後の剥離強
度の劣化率(%)として示し、そして耐塩酸劣化は18
%塩酸に1時間浸漬した後の剥離強度を0.2mm幅×
10本回路で測定した場合の劣化率(%)として示し
た。アルカリエッチングは下記の液を使用してエッチン
グ状態の目視による観察をした。 (アルカリエッチング液) NH4 OH:6mol/l NH4 Cl:5mol/l CuCl2 ・2H2 O:2mol/l 温度:50℃ エッチングシミは下記の塩化銅−塩酸液を使用してエッ
チング状態の目視による観察をした。 (塩化銅エッチング液) CuCl2 ・2H2 O:200g/l HCl:150g/l 温度:40℃The sample was laminated and adhered to a glass cloth base epoxy resin plate, and peeled in normal state (room temperature) (kg / cm)
Was measured, and the heat resistance deterioration was shown as a deterioration rate (%) of the peel strength after heating at 180 ° C. for 48 hours.
% Immersion in 1% hydrochloric acid for 1 hour
It is shown as a deterioration rate (%) when measured with 10 circuits. In the alkaline etching, the following liquids were used to visually observe the etching state. (Alkaline etching solution) NH 4 OH: 6mol / l NH 4 Cl: 5mol / l CuCl 2 · 2H 2 O: 2mol / l Temperature: 50 ° C. etching stain following copper chloride - etching conditions using hydrochloric acid solution It was observed visually. (Copper chloride etching solution) CuCl 2 .2H 2 O: 200 g / l HCl: 150 g / l Temperature: 40 ° C.
【0026】使用した浴組成及びめっき条件は次の通り
であった: [浴組成及びめっき条件] (A)粗化処理(Cu−Co−Ni) Cu:15g/l Co:8.5g/l Ni:8.6g/l pH:2.5 温度:38℃ Dk:20A/dm2 時間:2秒 銅付着量:17mg/dm2 コバルト付着量:2200μg/dm2 ニッケル付着量:300μg/dm2 (B)防錆処理(Co) Co:10g/l pH 2.5 温度:50℃ Dk:5.6−16.7A/dm2 時間:0.5秒 コバルト付着量:700〜3400μg/dm2 (C)耐熱剥離性改善処理(Zn−Ni) Zn:20g/l Ni:5g/l pH:3.5 温度:40℃ Dk:0.3〜1.5A/dm2 時間:1秒 Zn付着量:30〜1100μg/dm2 Ni付着量:40〜700μg/dm2 (D)防錆処理(クロメート) K2 Cr2 O7 (Na2 Cr2 O7 あるいはCrO
3 ):5g/l NaOHあるいはKOH:30g/l ZnOあるいはZnSO4 ・7H2 O:5g/l pH:10 温度:40℃ Dk:2A/dm2 時間10秒 アノード:Pt−Ti板The bath composition and plating conditions used were as follows: [Bath composition and plating conditions] (A) Roughening treatment (Cu-Co-Ni) Cu: 15 g / l Co: 8.5 g / l Ni: 8.6g / l pH: 2.5 temperature: 38 ℃ Dk: 20A / dm 2 Time: 2 seconds copper deposition amount: 17 mg / dm 2 of cobalt deposition amount: 2200μg / dm 2 of nickel adhesion amount: 300 [mu] g / dm 2 (B) Rust prevention treatment (Co) Co: 10 g / l pH 2.5 Temperature: 50 ° C. Dk: 5.6-16.7 A / dm 2 hours: 0.5 seconds Cobalt adhesion amount: 700-3400 μg / dm 2 (C) Heat-peeling resistance improving treatment (Zn-Ni) Zn: 20 g / l Ni: 5 g / l pH: 3.5 Temperature: 40 ° C. Dk: 0.3 to 1.5 A / dm 2 hours: 1 second Zn adhesion amount: 30~1100μg / dm 2 Ni deposition amount: 40 00μg / dm 2 (D) rust (chromate) K 2 Cr 2 O 7 ( Na 2 Cr 2 O 7 or CrO
3): 5g / l NaOH or KOH: 30g / l ZnO or ZnSO 4 · 7H 2 O: 5g / l pH: 10 Temperature: 40 ℃ Dk: 2A / dm 2 hours 10 seconds anode: Pt-Ti plate
【0027】[0027]
【表1】 [Table 1]
【0028】表1のコバルト付着量の数値は粗化処理の
コバルト付着量と防錆処理のコバルト付着量の合計であ
り、ニッケル付着量の数値は粗化処理のニッケル付着量
と耐熱剥離性改善処理のニッケル付着量の合計である。
アルカリエッチング性はすべてのサンプルについて良好
であった。表1から耐熱劣化率が比較例の44%と大き
く比較して改善されていることがわかる。Zn付着量が
10μg/dm2 未満では、耐熱劣化率が40%以上と
なり好ましくなく、他方Zn付着量が1000μg/d
m2 を超えると、耐塩酸劣化率50%以上となり好まし
くない。両者を勘案して、Zn付着量は10〜1000
μg/dm2 、好ましくは100〜800μg/dm2
である。Co合計付着量が5000μg/dm2 を超え
ると、エッチングシミが発生し、好ましくない。Ni合
計付着量が110μg/dm2 未満であると、耐熱劣化
率40%以上となり、好ましくない。Ni合計付着量が
900μg/dm2 を超えると、エッチングシミが発生
し、好ましくない。The value of the amount of cobalt deposited in Table 1 is the sum of the amount of cobalt deposited in the roughening treatment and the amount of cobalt deposited in the rust preventive treatment. This is the total amount of nickel deposited in the treatment.
Alkali etchability was good for all samples. From Table 1, it can be seen that the heat deterioration rate is significantly improved compared to 44% of the comparative example. If the Zn deposition amount is less than 10 μg / dm 2 , the heat deterioration rate is 40% or more, which is not preferable.
If it exceeds m 2 , the rate of deterioration due to hydrochloric acid is not less than 50%, which is not preferable. In consideration of both, the Zn deposition amount is 10 to 1000
μg / dm 2 , preferably 100 to 800 μg / dm 2
It is. If the total amount of Co deposited exceeds 5000 μg / dm 2 , etching stains occur, which is not preferable. If the total amount of Ni adhered is less than 110 μg / dm 2 , the heat deterioration rate becomes 40% or more, which is not preferable. If the total amount of Ni deposited exceeds 900 μg / dm 2 , etching stains occur, which is not preferable.
【0029】[0029]
【発明の効果】本発明は、銅箔の表面に銅−コバルト−
ニッケルから成るめっきによる粗化処理後、コバルトめ
っき層を形成する印刷回路用銅箔の処理方法において、
その有益な利点を生かしたまま、耐熱剥離性を更に一層
改善することに成功し、近時の半導体デバイスの急激な
発展に伴なう処理の高温化並びに印刷回路用の高密度及
び高多層化に対応し得る銅箔の処理方法を提供する。According to the present invention, copper-cobalt-
In a method for treating a copper foil for a printed circuit, which forms a cobalt plating layer after a roughening treatment by plating comprising nickel,
While taking advantage of its beneficial advantages, it succeeded in further improving the heat-resistant peeling property, and in recent years, the processing temperature has been increased due to the rapid development of semiconductor devices, and the density and multilayer structure of printed circuits have been increased. The present invention provides a method for treating a copper foil that can cope with the above.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H05K 3/38 H05K 1/09 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H05K 3/38 H05K 1/09
Claims (8)
箔の表面に銅−コバルト−ニッケルから成るめっきによ
る粗化処理後、コバルトめっき層を形成し、更に亜鉛−
ニッケル層を形成することを特徴とする印刷回路用銅箔
の処理方法。In a method of treating a copper foil for a printed circuit, a surface of the copper foil is roughened by plating of copper-cobalt-nickel, and then a cobalt plating layer is formed.
A method for treating a copper foil for a printed circuit, comprising forming a nickel layer.
すことを特徴とする請求項1の印刷回路用銅箔の処理方
法。2. The method for treating a copper foil for a printed circuit according to claim 1, wherein a rust preventive treatment is performed after the formation of the zinc layer.
或いはクロム酸化物と亜鉛及び(又は)亜鉛酸化物との
混合皮膜処理であることを特徴とする請求項2の印刷回
路用銅箔の処理方法。3. The copper foil for a printed circuit according to claim 2, wherein the rust preventive treatment is a single film treatment of chromium oxide or a mixed film treatment of chromium oxide and zinc and / or zinc oxide. Processing method.
箔の表面に付着量が15〜40mg/dm2 銅−100
〜3000μg/dm2 コバルト−100〜500μg
/dm2 ニッケルであるような銅−コバルト−ニッケル
から成る合金めっきによる粗化処理後、200〜300
0μg/dm2 の付着量のコバルトめっき層を形成し、
更に付着量が10〜1000μg/dm2 亜鉛−10〜
600μg/dm2 ニッケルの亜鉛−ニッケル層を形成
することを特徴とする請求項1〜3いずれか1項の印刷
回路用銅箔の処理方法。4. A method for treating a copper foil for a printed circuit, wherein the amount of adhesion on the surface of the copper foil is 15 to 40 mg / dm 2 copper-100.
33000 μg / dm 2 cobalt-100-500 μg
/ Dm 2 after roughening treatment by alloy plating of copper-cobalt-nickel such as nickel
Forming a cobalt plating layer having an adhesion amount of 0 μg / dm 2 ,
Furthermore, the adhesion amount is 10 to 1000 μg / dm 2 zinc-10.
600 [mu] g / dm 2 of nickel zinc - claims 1-3 any one treatment method of the printed circuit copper foil, which comprises forming a nickel layer.
0μg/dm2 でありそしてニッケルの合計付着量が1
10〜900μg/dm2 である請求項4の印刷回路用
銅箔の処理方法。5. The method according to claim 1, wherein the total amount of deposited cobalt is 300 to 500.
0 μg / dm 2 and a total nickel coverage of 1
10~900μg / dm 2 a processing method of a copper foil for printed circuit according to claim 4.
箔の表面に付着量が15〜40mg/dm2 銅−200
0〜3000μg/dm2 コバルト−200〜400μ
g/dm2 ニッケルであるような銅−コバルト−ニッケ
ルから成る合金めっきによる粗化処理後、500〜30
00μg/dm2 の付着量のコバルトめっき層を形成
し、更に付着量が30〜800μg/dm2 亜鉛−30
〜600μg/dm2 ニッケルの亜鉛−ニッケル層を形
成することを特徴とする請求項1〜3いずれか1項の印
刷回路用銅箔の処理方法。6. A method for treating a copper foil for a printed circuit, wherein the amount of adhesion on the surface of the copper foil is 15 to 40 mg / dm 2 copper-200.
0-3000 μg / dm 2 cobalt -200-400 μ
g / dm 2 after roughening treatment by alloy plating of copper-cobalt-nickel such as nickel,
Forming a cobalt plating layer adhesion amount of 00μg / dm 2, further adhesion amount 30~800μg / dm 2 zinc -30
~600μg / dm 2 of nickel zinc - claims 1-3 any one treatment method of the printed circuit copper foil, which comprises forming a nickel layer.
00μg/dm2 でありそしてニッケルの合計付着量が
230〜900μg/dm2 である請求項6の印刷回路
用銅箔の処理方法。7. The total deposited amount of cobalt is 2500 to 50.
00μg / dm is 2 and processing method of a printed circuit copper foil according to claim 6 total deposition amount of nickel is 230~900μg / dm 2.
μg/dm2 である請求項7の印刷回路用銅箔の処理方
法。8. The total amount of nickel deposited is 300 to 800.
The method for treating a copper foil for a printed circuit according to claim 7, wherein the amount is μg / dm 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7164548A JP2875187B2 (en) | 1995-06-08 | 1995-06-08 | Processing method of copper foil for printed circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7164548A JP2875187B2 (en) | 1995-06-08 | 1995-06-08 | Processing method of copper foil for printed circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08335776A JPH08335776A (en) | 1996-12-17 |
JP2875187B2 true JP2875187B2 (en) | 1999-03-24 |
Family
ID=15795257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7164548A Expired - Lifetime JP2875187B2 (en) | 1995-06-08 | 1995-06-08 | Processing method of copper foil for printed circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2875187B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003051673A (en) * | 2001-08-06 | 2003-02-21 | Mitsui Mining & Smelting Co Ltd | Printed wiring board copper foil and copper-plated laminated board using the same |
JP4115293B2 (en) | 2003-02-17 | 2008-07-09 | 古河サーキットフォイル株式会社 | Copper foil for chip-on-film |
US8642893B2 (en) * | 2007-09-28 | 2014-02-04 | Jx Nippon Mining & Metals Corporation | Copper foil for printed circuit and copper-clad laminate |
JP4978456B2 (en) * | 2007-12-19 | 2012-07-18 | 日立電線株式会社 | Copper foil for printed circuit |
CN107245735A (en) * | 2017-05-26 | 2017-10-13 | 东强(连州)铜箔有限公司 | The plating solution and preparation method of a kind of high drug-resistance and heat resistance alloy copper foil |
-
1995
- 1995-06-08 JP JP7164548A patent/JP2875187B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08335776A (en) | 1996-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2849059B2 (en) | Processing method of copper foil for printed circuit | |
JP6023848B2 (en) | Copper foil and copper clad laminate for printed circuit | |
US5861076A (en) | Method for making multi-layer circuit boards | |
JP5932705B2 (en) | Copper foil for printed circuit | |
EP0396056B1 (en) | Treatment of copper foil for printed circuits | |
JPH0787270B2 (en) | Copper foil for printed circuit and manufacturing method thereof | |
TWI540226B (en) | Surface treatment of copper foil | |
JP3295308B2 (en) | Electrolytic copper foil | |
JP5913356B2 (en) | Copper foil for printed circuit | |
JP6205269B2 (en) | Copper foil for printed circuit, copper-clad laminate, printed wiring board, printed circuit board, and electronic equipment | |
JPH0654831B2 (en) | Method of treating copper foil for printed circuits | |
JPH0650794B2 (en) | Method of treating copper foil for printed circuits | |
JP2011174132A (en) | Copper foil for printed circuit board | |
JP4941204B2 (en) | Copper foil for printed wiring board and surface treatment method thereof | |
JP2875187B2 (en) | Processing method of copper foil for printed circuit | |
JP2875186B2 (en) | Processing method of copper foil for printed circuit | |
JP3367805B2 (en) | Processing method of copper foil for printed circuit | |
JPH05140765A (en) | Treatment for surface of copper foil for printed circuit | |
JP5151761B2 (en) | Method for producing rolled copper foil for printed wiring board | |
JPH0654829B2 (en) | Method of treating copper foil for printed circuits | |
TWI805902B (en) | Surface treated copper foil, copper clad laminate and printed circuit board | |
JP3113445B2 (en) | Copper foil for printed circuit and manufacturing method thereof | |
JPH0654830B2 (en) | Method of treating copper foil for printed circuits | |
JP4034586B2 (en) | Copper foil for printed wiring board and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19981222 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090114 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090114 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100114 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100114 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110114 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110114 Year of fee payment: 12 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110114 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120114 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120114 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130114 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130114 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140114 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term |