JP2866230B2 - Gas concentration measurement device - Google Patents
Gas concentration measurement deviceInfo
- Publication number
- JP2866230B2 JP2866230B2 JP26911991A JP26911991A JP2866230B2 JP 2866230 B2 JP2866230 B2 JP 2866230B2 JP 26911991 A JP26911991 A JP 26911991A JP 26911991 A JP26911991 A JP 26911991A JP 2866230 B2 JP2866230 B2 JP 2866230B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- concentration
- gas
- detection signal
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体レーザ素子を用い
てガスの濃度を測定するガス濃度測定装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas concentration measuring device for measuring a gas concentration using a semiconductor laser device.
【0002】[0002]
【従来の技術】特定の波長のレーザ光がある種の気体に
吸収されやすいことを利用してガスの有無を検出できる
ことが知られており、この原理を応用したセンシング技
術が工業計測、公害監視などに広く用いられている。そ
の一例として、He−Neレーザより発生される波長
3.392μmの光がメタンに強く吸収されることを利
用してメタンの有無を感度良く検出することが可能であ
る。メタンは都市ガスの主成分であるためメタンの検出
によって都市ガスの漏洩が検知できる。またメタンは大
気中に約2ppmの濃度で含まれているが近年増加の傾
向にあり、炭酸ガスに次いで地球温暖化の主要原因であ
ると言われているので、大気中のメタンの濃度を精度良
く測定することは重要である。ここで、濃度とは注目す
るガスの分圧と大気の全圧との比と定義する。2. Description of the Related Art It is known that the presence or absence of gas can be detected by utilizing the fact that laser light of a specific wavelength is easily absorbed by a certain kind of gas. Sensing technology using this principle is used in industrial measurement and pollution monitoring. Widely used in such as. As an example, it is possible to detect the presence or absence of methane with high sensitivity by utilizing the fact that light having a wavelength of 3.392 μm generated from a He-Ne laser is strongly absorbed by methane. Since methane is the main component of city gas, leakage of city gas can be detected by detecting methane. Although methane is contained in the atmosphere at a concentration of about 2 ppm, it has been increasing in recent years and is said to be the leading cause of global warming after carbon dioxide gas. It is important to measure well. Here, the concentration is defined as the ratio between the partial pressure of the gas of interest and the total pressure of the atmosphere.
【0003】図8は従来のガス濃度測定装置の概略構成
図である。FIG. 8 is a schematic configuration diagram of a conventional gas concentration measuring device.
【0004】ガス濃度測定装置は、大気中に含まれる特
定のガスの濃度を測定する装置であって、両端に反射鏡
1、2を有し、大気が自由に流入かつ流出できる筒状の
多重反射長光路セル3と、セル3の外部から内部の大気
を照射するレーザ発振器4と、レーザ発振器4の発振波
長を所定の周波数で変調しかつ注目しているガスの吸収
線の中心に安定化制御するレーザ変調兼制御器5と、セ
ル3を通過したレーザ光を受光する受光器6と、受光器
6の出力を位相敏感検波して基本波位相敏感検波信号If
を出力する位相敏感検波器7と、2倍波位相敏感検波信
号I2f を出力する位相敏感検波器8と、基本波位相敏感
検波信号Ifで2倍波位相敏感検波信号I2f を割り算する
割算器9とを有している。[0004] A gas concentration measuring device is a device for measuring the concentration of a specific gas contained in the atmosphere. It has reflecting mirrors 1 and 2 at both ends, and has a cylindrical multiplex shape through which the air can freely flow in and out. A reflection long optical path cell 3, a laser oscillator 4 for irradiating the atmosphere from the outside to the inside of the cell 3, and an oscillation wavelength of the laser oscillator 4 modulated at a predetermined frequency and stabilized at the center of an absorption line of a gas of interest. A laser modulation / controller 5 for controlling, a photodetector 6 for receiving the laser light passing through the cell 3, and a phase sensitive detection signal If for detecting the output of the photodetector 6 by phase sensitive detection.
A phase sensitive detector 7 for outputting a phase-sensitive detector 8 for outputting a second harmonic wave phase-sensitive detection signal I 2f, dividing the second harmonic wave phase-sensitive detection signal I 2f the fundamental wave phase-sensitive detection signal I f And a divider 9.
【0005】このような装置を用いて大気中に含まれる
メタンの濃度を連続測定する場合、常にセル3の吸気口
10から大気を吸入し、排気口11から排出しながら測
定する。レーザ発振器4から照射されたレーザ光は、2
つの反射鏡1、2の間を複数回往復してから受光器6に
より受光されるため、セル3内の大気を通過する距離が
延長され測定感度が向上される。受光器6により受光さ
れたレーザ光は電気信号に変換され、位相敏感検波器
7、8に入力される。割算器9は、位相敏感検波器8か
ら出力される2倍波位相敏感検波信号I2f (レーザ光の
強度とメタンの濃度に比例する)を位相敏感検波器7か
ら出力される基本波位相敏感検波信号If(レーザ光の強
度に比例する)で割り算することによりメタンの濃度を
算出する。When such a device is used to continuously measure the concentration of methane contained in the atmosphere, the measurement is performed while the air is always sucked in from the inlet 10 of the cell 3 and discharged from the outlet 11. The laser light emitted from the laser oscillator 4 is 2
Since the light is received by the light receiver 6 after reciprocating between the two reflecting mirrors 1 and 2 a plurality of times, the distance passing through the atmosphere in the cell 3 is extended, and the measurement sensitivity is improved. The laser light received by the light receiver 6 is converted into an electric signal and input to the phase sensitive detectors 7 and 8. The divider 9 converts the second-harmonic phase-sensitive detection signal I 2f (proportional to the intensity of the laser beam and the methane concentration) output from the phase-sensitive detector 8 into a fundamental wave phase output from the phase-sensitive detector 7. The methane concentration is calculated by dividing by the sensitive detection signal If (which is proportional to the intensity of the laser beam).
【0006】[0006]
【発明が解決しようとする課題】上述のガス濃度測定で
は2倍波位相敏感検波信号I2f がガス濃度に比例するこ
とを利用している。しかし、後述の実施例の説明中に示
すように2倍波位相敏感検波信号I2f はガス濃度のほか
に大気の温度や圧力にも依存する。従来の技術ではこの
点が考慮されておらず、ガス濃度を正確に求めることが
できなかった。The above-mentioned gas concentration measurement utilizes the fact that the second-harmonic phase-sensitive detection signal I 2f is proportional to the gas concentration. However, as will be described later in the description of the embodiments, the second-harmonic phase-sensitive detection signal I 2f depends not only on the gas concentration but also on the temperature and pressure of the atmosphere. The prior art does not take this point into account and cannot accurately determine the gas concentration.
【0007】本発明は上記の点にかんがみてなされたも
のであり、その目的は、大気の温度や圧力によらずガス
の濃度を正確に測定することにある。The present invention has been made in view of the above points, and an object of the present invention is to accurately measure the concentration of a gas regardless of the temperature and pressure of the atmosphere.
【0008】[0008]
【課題を解決するための手段】前記目的は、本発明によ
ると、レーザ光を所定の周波数と振幅とを有する変調電
流により変調する変調手段と、濃度を測定すべきガスを
含む大気が流入しかつ流入した該大気中を前記レーザ光
が通過するように形成された測定用セルと、該測定用セ
ル内の温度を検知する温度センサと、前記測定用セル内
の大気を通過した後のレーザ光を受光する受光器と、該
受光器の出力から基本波位相敏感検波信号を出力する第
1の位相敏感検波器と、前記受光器の出力から2倍波位
相敏感検波信号を出力する第2の位相敏感検波器と、前
記2倍波位相敏感検波信号の値を前記基本波位相敏感検
波信号の値で割り算することにより前記ガスの濃度を算
出する割算器と、前記センサで測定した温度により前記
濃度に補正を施す信号処理器とを備え、前記変調手段の
変調電流の振幅を前記レーザ光の周波数に対する吸収量
の半値半幅のほぼ2.2倍に相当する値としたガス濃度
測定装置によって達成される。According to the present invention, there is provided, in accordance with the present invention, a modulating means for modulating a laser beam with a modulating current having a predetermined frequency and amplitude, and an atmosphere containing a gas whose concentration is to be measured. A measuring cell formed so that the laser beam passes through the air that has flowed in, a temperature sensor that detects the temperature in the measuring cell, and a laser that has passed through the air in the measuring cell. A photodetector for receiving light, a first phase-sensitive detector for outputting a fundamental phase-sensitive detection signal from the output of the photodetector, and a second phase-sensitive detector for outputting a second-harmonic phase-sensitive detection signal from the output of the photodetector A phase-sensitive detector, a divider that calculates the gas concentration by dividing the value of the second-harmonic phase-sensitive detection signal by the value of the fundamental-wave phase-sensitive detection signal, and a temperature measured by the sensor. To correct the density by And a No. processor, the modulation means
The amplitude of the modulation current is determined by the amount of absorption relative to the frequency of the laser light
Is achieved by a gas concentration measuring device having a value corresponding to approximately 2.2 times the half width at half maximum of
【0009】[0009]
【作用】本発明のガス濃度測定装置は、所定の周波数と
振幅とで変調された半導体レーザから出射されたレーザ
光を測定用セル内の大気中に通過させ、通過したレーザ
光を受光器によって受光し、受光器からの信号を2つの
位相敏感検波器に入力して得られる基本波位相敏感検波
信号と2倍波位相敏感検波信号とから濃度を求める際、
変調手段において、変調電流の振幅を前記レーザ光の周
波数に対する吸収量の半値半幅のほぼ2.2倍に相当す
る値とした結果、温度センサで測定した温度のみによっ
て信号処理器が濃度に補正を施すことができる。According to the gas concentration measuring apparatus of the present invention, laser light emitted from a semiconductor laser modulated at a predetermined frequency and amplitude is passed through the atmosphere in a measuring cell, and the passed laser light is received by a photodetector. When receiving the signal and inputting the signal from the photodetector to two phase-sensitive detectors, when obtaining the concentration from the fundamental phase-sensitive detection signal and the second harmonic phase-sensitive detection signal,
The modulating means adjusts the amplitude of the modulation current to the frequency of the laser light.
Equivalent to approximately 2.2 times the half width at half maximum of the absorption amount with respect to the wave number
As a result, the signal processor can correct the density only by the temperature measured by the temperature sensor.
【0010】[0010]
【実施例】以下本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.
【0011】図1は本発明によるガス濃度測定装置の一
実施例の概略構成図であり、図8に示した従来の装置と
同じ構成部分には同じ参照符号を用いた。ここではメタ
ンガスの濃度を測定する装置として説明するが、他のガ
スの濃度を測定する場合も原理は同じである。FIG. 1 is a schematic configuration diagram of an embodiment of a gas concentration measuring apparatus according to the present invention. The same reference numerals are used for the same components as those of the conventional apparatus shown in FIG. Here, an apparatus for measuring the concentration of methane gas will be described, but the principle is the same when measuring the concentration of another gas.
【0012】ガス濃度測定装置は、大気中に含まれるメ
タンの濃度を測定する装置であって、両端に反射鏡1、
2を有し、大気が流入かつ流出できる多重反射長光路セ
ル3と、この多重反射長光路セル3内の大気にレーザ光
を照射するレーザ発振器4と、レーザ発振器4の発振波
長を所定の周波数で変調するとともにメタンの吸収線の
中心に安定化制御するレーザ変調兼制御器5と、多重反
射長光路セル3を通過したレーザ光を受光する受光器6
と、この受光器6からの出力を位相敏感検波して基本波
位相敏感検波信号Ifを出力する位相敏感検波器7と、2
倍波位相敏感検波信号I2fを出力する位相敏感検波器8
と、2倍波位相敏感検信号I2fを基本波位相敏感検波信
号Ifで割り算してガスの濃度を算出する割算器9と、多
重反射長光路セル3の内部に設けられた温度センサ12
により測定した大気の温度に基づいてメタンの濃度に補
正を施す信号処理器13とを有している。The gas concentration measuring device is a device for measuring the concentration of methane contained in the atmosphere.
2, a multi-reflection long optical path cell 3 into which air can flow in and out, a laser oscillator 4 for irradiating the atmosphere in the multi-reflection long optical path cell 3 with laser light, and an oscillation wavelength of the laser And a laser modulator / controller 5 for stabilizing control at the center of the methane absorption line, and a photodetector 6 for receiving laser light passing through the multiple reflection long optical path cell 3
A phase-sensitive detector 7 for phase-sensitively detecting the output from the photodetector 6 and outputting a fundamental phase-sensitive detection signal If ;
Phase-sensitive detector 8 that outputs a harmonic phase-sensitive detection signal I 2f
A divider 9 for calculating the gas concentration by dividing the second-harmonic phase-sensitive detection signal I 2f by the fundamental-wave phase-sensitive detection signal If , and a temperature sensor provided inside the multiple reflection long optical path cell 3 12
And a signal processor 13 for correcting the concentration of methane based on the temperature of the atmosphere measured by the method.
【0013】多重反射長光路セル3は、ほぼ筒状の容器
であり、両端の2つの反射鏡1、2と、大気が流入する
吸気口10および大気が流出する排気口11とを有し、
排気口11の近傍には温度センサ12が取り付けられて
いる。反射鏡1、2は、レーザ発振器から入射したレー
ザ光を複数回反射して再び外部へ出射し、受光器6で受
光するように配置されている。なお、多重反射長光路セ
ル3はレーザ光を複数回往復させて大気中の光路長を長
くするためのセルであるが、これに限定されず、例えば
長いセルを用い、光を片道あるいは1往復だけ通過させ
てもよい。The multi-reflection long optical path cell 3 is a substantially cylindrical container, having two reflecting mirrors 1 and 2 at both ends, an intake port 10 into which air flows in, and an exhaust port 11 outflowing air.
A temperature sensor 12 is attached near the exhaust port 11. The reflecting mirrors 1 and 2 are arranged so that the laser light incident from the laser oscillator is reflected a plurality of times, emitted to the outside again, and received by the light receiver 6. The multi-reflection long optical path cell 3 is a cell for reciprocating the laser light a plurality of times to increase the optical path length in the atmosphere. However, the present invention is not limited to this. May be passed.
【0014】温度センサ12にはサーミスタや熱電対な
どが用いられる。As the temperature sensor 12, a thermistor, a thermocouple or the like is used.
【0015】信号処理器13は、本発明の本質的な部分
であり、後述の理論的検討に基づいて大気の温度からメ
タンの濃度を補正する機能を有する。信号処理器13に
は、好ましくはマイクロプロセッサが用いられる。The signal processor 13 is an essential part of the present invention, and has a function of correcting the concentration of methane from the temperature of the atmosphere on the basis of theoretical studies described later. For the signal processor 13, a microprocessor is preferably used.
【0016】レーザ変調兼制御器5は、半導体レーザの
駆動電流を所定の周波数と振幅とで変調するとともに、
レーザ光の発振波長をメタンの吸収線の中心に安定化制
御する。The laser modulation / controller 5 modulates the driving current of the semiconductor laser at a predetermined frequency and amplitude,
The oscillation wavelength of the laser light is controlled to be stabilized at the center of the methane absorption line.
【0017】図2はレーザ発振器4とレーザ変調兼制御
器5の構造を示す概略構成図である。FIG. 2 is a schematic configuration diagram showing the structure of the laser oscillator 4 and the laser modulation / controller 5.
【0018】レーザ発振器4は、前後両方向にレーザ光
を出射する半導体レーザ素子14と、電流の大きさや向
きに応じて発熱または吸熱してレーザ素子14の温度を
変え発振波長を変える役目をするペルチェ素子15と、
メタンが封入された参照用ガスセル16と、この参照用
ガスセル16を通過した後レーザ光を受光し電気信号に
変換する受光器17と、半導体レーザ素子14の前方レ
ーザ光を平行光にするコリメートレンズ18とを有して
いる。前方レーザ光は図1の多重反射長光路セル3に入
射される。The laser oscillator 4 includes a semiconductor laser element 14 that emits laser light in both front and rear directions, and a Peltier that functions to change the temperature of the laser element 14 to change the oscillation wavelength by generating or absorbing heat according to the magnitude and direction of the current. Element 15;
A reference gas cell 16 filled with methane, a light receiver 17 for receiving a laser beam after passing through the reference gas cell 16 and converting the laser beam into an electric signal, and a collimating lens for collimating a laser beam in front of the semiconductor laser element 14 18. The forward laser light is incident on the multiple reflection long optical path cell 3 of FIG.
【0019】レーザ変調兼制御器5は、レーザ素子14
に一定の直流電流を供給する定電流源23と、所定の周
波数と振幅の交流電流を発生してレーザ素子14の発振
周波数を変調するための発振器19と、これらの直流電
流と交流電流とを重ねるための電流ミキサ24と、受光
器17からの信号により基本波位相敏感検波信号を出力
する位相敏感検波器20と、位相敏感検波器20の出力
電圧を積分する積分器21と、積分の際に一定のバイア
ス電圧を加えるためのバイアス電圧発生器25と、積分
器21の出力に応じてペルチェ素子15に供給する電流
を調節する電流源22と、発振器19の周波数を2倍に
して出力する倍周器26とを有している。The laser modulation / controller 5 includes a laser element 14
A constant current source 23 for supplying a constant DC current to the oscillator, an oscillator 19 for generating an AC current having a predetermined frequency and amplitude to modulate the oscillation frequency of the laser element 14, and a DC current and an AC current. A current mixer 24 for superposition, a phase sensitive detector 20 for outputting a fundamental phase sensitive detection signal based on a signal from the light receiver 17, an integrator 21 for integrating the output voltage of the phase sensitive detector 20, , A current source 22 for adjusting the current supplied to the Peltier element 15 according to the output of the integrator 21, and a frequency of the oscillator 19 which is doubled and output. And a frequency multiplier 26.
【0020】位相敏感検波器20は、レーザの中心発振
周波数がメタンの吸収線の中心周波数に比べてどれだけ
高いかあるいは低いかを判定し、それに応じた大きさと
符号を持った電圧を出力し、次にそれに応じてペルチェ
素子15の温度が変化し、レーザの中心発振周波数がメ
タンの吸収線の中心に自動的に合わされる。The phase-sensitive detector 20 determines whether the center oscillation frequency of the laser is higher or lower than the center frequency of the methane absorption line, and outputs a voltage having a magnitude and a sign corresponding to that. Then, the temperature of the Peltier element 15 changes accordingly, and the center oscillation frequency of the laser is automatically adjusted to the center of the absorption line of methane.
【0021】このようにしてメタンの吸収線の中心に一
致した周波数をもち、かつ一定の振幅で周波数変調され
たレーザ光がレーザ素子14の前方にも出射され、この
光が図1の多重反射長光路セル3に入射され大気中のメ
タンの濃度が測定される。A laser beam having a frequency coincident with the center of the methane absorption line and frequency-modulated with a constant amplitude is also emitted in front of the laser element 14, and this light is subjected to the multiple reflection shown in FIG. The concentration of methane in the atmosphere after being incident on the long optical path cell 3 is measured.
【0022】そこで次に、図1の2つの位相敏感検波器
7、8の出力信号について考察する。Next, the output signals of the two phase-sensitive detectors 7 and 8 shown in FIG. 1 will be considered.
【0023】図3は位相敏感検波信号を図式的に求める
ための説明図である。曲線Aは、ω0 に中心をもつメタ
ンの吸収線付近での、レーザの発振周波数ω(横軸)と
受光器6の出力電圧V(縦軸)の関係を示している。吸
収がない時の出力電圧をV0とすると、この曲線Aは数
1で表わされる。FIG. 3 is an explanatory diagram for schematically obtaining a phase-sensitive detection signal. Curve A shows the relationship between the laser oscillation frequency ω (horizontal axis) and the output voltage V of the light receiver 6 (vertical axis) near the absorption line of methane centered at ω 0 . Assuming that the output voltage when there is no absorption is V 0 , this curve A is expressed by Equation 1.
【0024】[0024]
【数1】V=V0 (1−αL) ここでαは吸収係数と呼ばれ、周波数ωの関数であり、
数2で表わされる。Lは光路長で、レーザ光が大気中を
通過する距離の全長である。V = V 0 (1−αL) where α is called an absorption coefficient and is a function of frequency ω.
It is represented by Equation 2. L is the optical path length, which is the total length of the distance that the laser light passes through the atmosphere.
【0025】[0025]
【数2】α=α0 γ2 /[(ω−ω0 )2 +γ2 ] 数2中のγは吸収線の半値半幅と呼ばれ、曲線AでV0
からの減少量が中心ω0での減少量の半分になる周波数
(2つある)とω0 との差で、図3に書き入れてある。
α0 は吸収の中心すなわちω=ω0 でのαの値であり、
メタンの濃度に依存する。The [number 2] α = α 0 γ 2 / [ (ω-ω 0) 2 + γ 2] γ in equation (2) is referred to as a half width at half maximum of the absorption line, V in the curve A 0
The difference between ω 0 and the frequency (there are two) at which the amount of decrease from ω is half the amount of decrease at the center ω 0 is plotted in FIG.
α 0 is the absorption center, that is, the value of α at ω = ω 0 ,
Depends on methane concentration.
【0026】いま、上述のようにしてレーザの発振周波
数ωの中心が吸収線の中心ω0 に安定化され、かつ所定
の周波数fと振幅Mとで変調されたとすると、ωは時間
tの関数として数3のように表わされる。Now, assuming that the center of the laser oscillation frequency ω is stabilized at the center ω 0 of the absorption line and modulated at a predetermined frequency f and amplitude M as described above, ω is a function of time t. As shown in Equation 3.
【0027】[0027]
【数3】ω=ω0 +Mcosft 数3のωを時間tの関数として図3中に描くと、曲線B
となる。ここで縦軸は時間tである。ωはω0 を中心に
左右にMの幅で振動するので、曲線A上の対応する位置
は点aと点bの間を曲線Aに沿って振動する。その結
果、受光器の出力電圧は曲線Cのように変化する。ここ
では横軸が時間tである。注意すべきことは、ωが1回
振動する間にVは2回振動することである。したがっ
て、出力電圧Vは周波数2fで振動する成分をもつが、
周波数fで振動する成分をもたない。さらに、曲線Cは
単純な正弦波ではなく、2fのほかに4f、6fなどの
周波数成分の重ね合わせになる。位相敏感検波器8は、
この中から2f成分を抽出しその振幅I2f を求める役割
をもつ。図3から分かるように、この振幅I2f は変調振
幅Mに依存する。変調振幅Mが増大するにつれて、振幅
I2f は初めは増大するが、ある点で極大値をとった後に
徐々に減少する。詳しい解析(H.Wahlquis
t,J.Chem.Phys.35(1961)170
8)の結果を利用すると、変調振幅Mと振幅I2f との関
係は数4となる。Ω = ω 0 + Mcosft When ω in Equation 3 is drawn as a function of time t in FIG.
Becomes Here, the vertical axis is time t. Since ω oscillates with a width of M right and left around ω 0 , the corresponding position on the curve A oscillates along the curve A between the points a and b. As a result, the output voltage of the light receiver changes as shown by the curve C. Here, the horizontal axis is time t. Note that V oscillates twice while ω oscillates once. Therefore, although the output voltage V has a component oscillating at the frequency 2f,
There is no component oscillating at the frequency f. Further, the curve C is not a simple sine wave but a superposition of frequency components such as 4f and 6f in addition to 2f. The phase sensitive detector 8 is
It has the role of extracting the 2f component from this and determining its amplitude I 2f . As can be seen from FIG. 3, this amplitude I 2f depends on the modulation amplitude M. As the modulation amplitude M increases, the amplitude
I 2f initially increases, but gradually decreases after reaching a local maximum at some point. Detailed analysis (H. Wahlquis
t, J. Chem. Phys. 35 (1961) 170
Using the result of 8), the relationship between the modulation amplitude M and the amplitude I 2f is as shown in Expression 4.
【0028】[0028]
【数4】I2f ∝V0 α0 Lx2 /(1+x2 )1/2 (1
+(1+x2 )1/2 )2 ここで、xは変調振幅Mと半値半幅γとの比であり数5
で定義される。## EQU4 ## I 2f ∝V 0 α 0 Lx 2 / (1 + x 2 ) 1/2 (1
+ (1 + x 2 ) 1/2 ) 2 where x is the ratio between the modulation amplitude M and the half width at half maximum γ.
Is defined by
【0029】[0029]
【数5】x=M/γ 特にx《1のときは数4は数6で近似される。X = M / γ In particular, when x << 1, Equation 4 is approximated by Equation 6.
【0030】[0030]
【数6】I2f ∝V0 α0 Lx2 図4は、数4で表わされる振幅I2f とxとの関係を示す
グラフである。これより、I2f はx=2.2付近で極大
値をとることが分かる。## EQU6 ## I 2f ∝V 0 α 0 Lx 2 FIG. 4 is a graph showing the relationship between the amplitude I 2f and x represented by the equation (4). From this, it can be seen that I 2f takes a maximum value near x = 2.2.
【0031】さて、数4によると振幅I2f はα0 に比例
し、α0 はメタン濃度に依存するので、予め既知の濃度
のメタンガスの信号強度を測っておけば、振幅I2f から
メタンの濃度が測定できる。これが濃度測定の原理であ
る。[0031] Now, in proportion to the amplitude I 2f is alpha 0 According to Equation 4, since alpha 0 is dependent on the methane concentration, if measure the signal strength of the methane gas in advance known concentration, the amplitude I 2f methane The concentration can be measured. This is the principle of concentration measurement.
【0032】しかし、受光器6で受光されるレーザ光強
度が、メタンの吸収以外の原因、たとえば大気中のほこ
り、反射鏡1、2の汚れ、光学系の変形などで変動する
ような場合には、振幅I2f の大きさから直ちにメタンの
濃度を求めることができない。そこで、受光器6で受光
されるレーザ光強度を何らかの方法で測りたい。位相敏
感検波器7はその役目をする。これまでの議論では、受
光器6の出力電圧Vには周波数fで振動する成分はない
ので、振幅Ifは常にゼロとなるはずであるが、実は振幅
Ifを生じる別の原因がある。すなわち、半導体レーザの
駆動電流を周波数fで変調すると、レーザの発振周波数
が数3のように変調されると同時に、レーザ出力も周波
数fで変調を受ける。その結果、受光器6の出力電圧は
数7で表わされる周波数fの成分をもつ。However, when the intensity of the laser beam received by the light receiver 6 fluctuates due to causes other than the absorption of methane, for example, dust in the air, dirt on the reflecting mirrors 1 and 2 and deformation of the optical system. Cannot immediately determine the concentration of methane from the magnitude of the amplitude I 2f . Therefore, it is desired to measure the intensity of the laser beam received by the light receiver 6 by some method. The phase sensitive detector 7 performs that function. In the discussion so far, the output voltage V of the photodetector 6 has no component oscillating at the frequency f, so that the amplitude If should always be zero.
There is another cause for the I f. That is, when the drive current of the semiconductor laser is modulated at the frequency f, the oscillation frequency of the laser is modulated as shown in Expression 3, and the laser output is also modulated at the frequency f. As a result, the output voltage of the light receiver 6 has a component of the frequency f represented by the equation (7).
【0033】[0033]
【数7】V′=V1 cos(ft+φ) ここで、振幅V1 は駆動電流の変調振幅に依存する。ま
た、φは位相のずれを表わす。したがって、位相敏感検
波器7の出力Ifは数8で与えられる。V ′ = V 1 cos (ft + φ) where the amplitude V 1 depends on the modulation amplitude of the drive current. Φ represents a phase shift. Therefore, the output If of the phase sensitive detector 7 is given by Expression 8.
【0034】[0034]
【数8】If∝V1 そこでI2f とIfとの比を求めると数9となる。Equation 8] determining the ratio of I f alpha] V 1 where I 2f and I f becomes several 9.
【0035】[0035]
【数9】I2f /If∝(V0 /V1 )α0 Lx2 /(1+
x2 )1/2 (1+(1+x2 )1/2 )2 そして、この比は受光器6に入る光強度に依存しない。
なぜなら、V0 とV1 とは共に光強度に比例するからで
ある。したがって、受光器6に入る光強度が変動しても
I2f /Ifからα0 を求め、メタンの濃度が測定できる。
割算器9はこの比を計算する機能を有する。## EQU9 ## I 2f / I f ∝ (V 0 / V 1 ) α 0 Lx 2 / (1+
x 2 ) 1/2 (1+ (1 + x 2 ) 1/2 ) 2 and this ratio does not depend on the light intensity entering the receiver 6.
This is because both V 0 and V 1 are proportional to the light intensity. Therefore, even if the light intensity entering the light receiver 6 varies,
Α 0 is determined from I 2f / If , and the concentration of methane can be measured.
The divider 9 has a function of calculating this ratio.
【0036】しかしながら、この比だけでは、まだ正確
にメタン濃度を求めることができない。なぜならα0 は
メタン濃度だけでなく、大気の温度や圧力にも依存す
る。また、数9中のxは数5のように吸収線の半値半幅
γに反比例するが、γも温度や圧力に依存する。したが
って、メタン濃度を正確に決めるには、大気の温度と圧
力との影響を考慮する必要がある。そこで、α0 とγと
が大気の温度Tと圧力Pとにどのように依存するかを考
える。However, it is still not possible to accurately determine the methane concentration using only this ratio. Because α 0 depends not only on the methane concentration but also on the temperature and pressure of the atmosphere. Further, x in Equation 9 is inversely proportional to the half width γ of the absorption line as in Equation 5, and γ also depends on temperature and pressure. Therefore, in order to determine the methane concentration accurately, it is necessary to consider the effects of atmospheric temperature and pressure. Therefore, it is considered how α 0 and γ depend on the temperature T and the pressure P of the atmosphere.
【0037】まず、数2で与えられるαをωの全領域に
わたって積分した値、すなわち積分強度は積α0 γに比
例するが、これは一方では、吸収を担う分子の数密度に
比例することが分かっている。したがって、メタンの全
分子数密度をn、そのうち注目する吸収遷移の下準位の
分布率をgとすると、数10が成り立つ。First, the value obtained by integrating α given by Equation 2 over the entire region of ω, that is, the integrated intensity is proportional to the product α 0 γ. On the other hand, this is proportional to the number density of the molecule responsible for absorption. I know. Therefore, when the total molecular number density of methane is n and the distribution rate of the lower level of the absorption transition of interest is g, Equation 10 holds.
【0038】[0038]
【数10】α0 γ∝gn これより、数11が得られる。Α 0 γ∝gn From this, Expression 11 is obtained.
【0039】[0039]
【数11】α0 ∝gn/γ そこで、n、g、γのTおよびP依存性を調べる。Α 0 ∝gn / γ Then, the T and P dependencies of n, g, and γ are examined.
【0040】まず、nは気体の状態方程式から直ちに数
12のように求められる。First, n is immediately obtained from the equation of state of gas as shown in Expression 12.
【0041】[0041]
【数12】n=ρP/kT ここでρは求めようとするメタン濃度であり、大気の全
圧に対するメタンの分圧の比を表わす。kはボルツマン
定数である。Where ρ is the methane concentration to be determined and represents the ratio of the partial pressure of methane to the total pressure of the atmosphere. k is Boltzmann's constant.
【0042】次に、吸収線の半値半幅γは、その主な原
因が分子どうしの衝突である場合は、最も単純なモデル
を使うと全分子の密度と分子の平均速度に比例するの
で、数13が得られる。Next, when the main cause is the collision between molecules, the half-width at half maximum γ of the absorption line is proportional to the density of all molecules and the average velocity of molecules when the simplest model is used. 13 is obtained.
【0043】[0043]
【数13】γ∝P/T1/2 最後に、分布率gのT依存性を調べる。一般に、ある準
位iのエネルギーをEi 、縮退度をwi とすると、熱平
衡状態での準位iの分布数はwi exp(−Ei /k
T)に比例する。したがって、準位iの分布率gi は数
14で与えられる。[Number 13] γαP / T 1/2 Finally, examine the T dependence of the distribution rate g. In general, when the energy of a certain level i is E i and the degree of degeneracy is w i , the distribution number of the level i in the thermal equilibrium state is w i exp (−E i / k
T). Therefore, the distribution ratio g i of the level i is given by Expression 14.
【0044】[0044]
【数14】gi =wi exp(−Ei /kT)/Σwj
exp(−Ej /kT) ここで、Σはすべてのjについての和を意味する。メタ
ン型の分子に対して知られているEi とwi との表式を
使い和を実行すると、数14は数15のようになる。G i = w i exp (−E i / kT) / Σw j
exp (−E j / kT) Here, Σ means the sum of all j. When the sum is executed using the known expression of E i and w i for the methane-type molecule, Expression 14 becomes Expression 15.
【0045】[0045]
【数15】gJ ∝exp[−BJ(J+1)/kT]/
T3/2 ここで、Jは分子の注目する回転準位の量子数、Bは分
子の回転定数である。G J ∝exp [−BJ (J + 1) / kT] /
T 3/2 Here, J is the quantum number of the rotational level of interest of the molecule, and B is the rotational constant of the molecule.
【0046】数11、数12、数13、数15の結果を
使うと、数4からI2f のTおよびP依存性として数16
を得る。Using the results of equations (11), (12), (13) and (15), it can be seen from equation (4) that the dependence of I 2f on T and P is
Get.
【0047】[0047]
【数16】I2f ∝V0 ρLx2 exp[−BJ(J+
1)/kT]/T2 (1+x2)1/2 (1+(1+x
2 )1/2 )2 ここで、x=M/γ∝MT1/2 /Pで,Mは数3で用い
た変調振幅である。## EQU16 ## I 2f ∝V 0 ρLx 2 exp [-BJ (J +
1) / kT] / T 2 (1 + x 2 ) 1/2 (1+ (1 + x
2 ) 1/2 ) 2 where x = M / γ∝MT 1/2 / P, where M is the modulation amplitude used in equation (3).
【0048】数16によると、I2f は濃度ρに比例する
が、同時に、温度Tと全圧Pにも依存する(xはT、
P、Mの関数であることに注意)。そこで、I2f がTと
Pとによってどのように変化するかが分かっていれば、
補正によりガス濃度を正確に求めることができる。According to equation (16), I 2f is proportional to the concentration ρ, but also depends on the temperature T and the total pressure P (x is T,
Note that it is a function of P, M). So, if we know how I 2f changes with T and P,
The gas concentration can be accurately obtained by the correction.
【0049】メタンに対しては、B=5.24cm-1で
あり、さらに波長1.66μmの2ν3 吸収バンドのQ
(6)線に注目すると、J=6であるから、数16は数
17となる。For methane, B = 5.24 cm -1 and the Q of the 2ν 3 absorption band at a wavelength of 1.66 μm.
Looking at the line (6), since J = 6, Equation 16 becomes Equation 17.
【0050】[0050]
【数17】I2f ∝V0 ρLx2 exp(−317/T)
/T2 (1+x2 )1/2 (1+(1+x2 )1/2 )2 ここで、Tの単位はKである。## EQU17 ## I 2f ∝V 0 ρLx 2 exp (−317 / T)
/ T 2 (1 + x 2 ) 1/2 (1+ (1 + x 2 ) 1/2 ) 2 Here, the unit of T is K.
【0051】図5と図6とは、数17によって計算した
I2f のTおよびP依存性を示すグラフである。T=29
8K、P=1013mbarの状態を基準状態として、
その付近でI2f がTとPとによってどのように変化する
かを示している。両図で基準状態は点P0 で示してあ
る。FIG. 5 and FIG. 6 are calculated according to equation (17).
It is a graph which shows T and P dependence of I2f . T = 29
8K, P = 1013 mbar as a reference state,
It shows how I 2f changes depending on T and P in the vicinity. Reference state in both figures is indicated by the point P 0.
【0052】まず、図5は、変調振幅Mが吸収線の半値
半幅γ(基準状態での値)の1.5倍に等しい場合の図
であり、4通りの温度に対しI2f とPとの関係が実線で
示してある。この場合は、TとPとのいずれが変化して
もI2f が変化する。したがって、濃度を補正するには温
度と圧力の両方の測定が必要である。そして、測定した
温度と圧力とが仮に図中の点P1(T=288K、P=
1000mbar)とすると、P1 に対応する縦軸上の
点の読みは1.035であるから、割算器9の出力を
1.035で割った値が正しい濃度を与える。[0052] First, FIG. 5 is a view when the modulation amplitude M is equal to 1.5 times the half width at half maximum of the absorption line gamma (under standard conditions), and I 2f and P to the temperature of the four types Is shown by a solid line. In this case, I 2f changes regardless of which of T and P changes. Therefore, both temperature and pressure measurements are needed to correct the concentration. Then, the measured temperature and pressure are supposed to be the point P 1 (T = 288K, P =
When 1000 mbar), reading point on the vertical axis corresponding to P 1 is because it is 1.035, divided by 1.035 to the output of the divider 9 gives the correct concentration.
【0053】一方、図6はM=2.2γの場合と同様の
図である。この場合の特徴は、実線がいずれもほぼ水平
になっていることであり、I2f が圧力Pにほとんど依存
しないことを示している。これは、図4でx=2.2の
ときにI2f が極大になり曲線の勾配がゼロになることに
対応している。したがって、M=2.2γとなるように
変調振幅を選んでおけば、濃度の補正は温度の測定だけ
で行なえることになる。そして、測定した温度が仮に点
P2 (T=288K)であれば、点P2 に対応する縦軸
上の値1.032で割算器9の出力を割ることにより濃
度が補正される。信号処理器13は、温度センサ12で
測定した温度によりこの補正を施す役目をもち、例えば
マイクロプロセッサにより実現できる。On the other hand, FIG. 6 is a view similar to the case where M = 2.2γ. The feature in this case is that all the solid lines are substantially horizontal, indicating that I 2f hardly depends on the pressure P. This corresponds to the fact that when x = 2.2 in FIG. 4, I 2f reaches a maximum and the slope of the curve becomes zero. Therefore, if the modulation amplitude is selected so that M = 2.2γ, the concentration can be corrected only by measuring the temperature. If the measured temperature is point P 2 (T = 288 K), the density is corrected by dividing the output of the divider 9 by the value 1.032 on the vertical axis corresponding to the point P 2 . The signal processor 13 has a role of performing this correction based on the temperature measured by the temperature sensor 12, and can be realized by, for example, a microprocessor.
【0054】このように、温度の測定だけで濃度を補正
できる信号処理器を有することが、本発明の重要な特徴
である。As described above, it is an important feature of the present invention to have a signal processor which can correct the density only by measuring the temperature.
【0055】図7は、本実施例のガス濃度測定装置によ
るメタン濃度の時刻変化(a)およびガス温度の時刻変
化(b)の測定例を示す(1991年1月14日〜15
日測定)。図(a)は横軸が時刻(時:分)、縦軸がメ
タンの濃度(ppm)を示す。24時間の間に25%程
度の濃度の変動が見られる。図中で曲線が太くなってい
る部分は風により沼地その他のメタン発生源からメタン
が運ばれ濃度の変化が速くかつ大きいことを表わす。図
(b)の縦軸は温度(K)を示しているが、測定セル内
の温度変化は3K以内であった。FIG. 7 shows a measurement example of the time change (a) of the methane concentration and the time change (b) of the gas temperature by the gas concentration measuring apparatus of the present embodiment (January 14 to 15, 1991).
Day measurement). In FIG. 7A, the horizontal axis represents time (hour: minute), and the vertical axis represents methane concentration (ppm). A concentration fluctuation of about 25% is observed in 24 hours. In the figure, the thicker part of the curve indicates that methane is carried from the swamp and other methane sources by the wind, and the concentration changes quickly and greatly. The vertical axis in FIG. 6B indicates the temperature (K), but the temperature change in the measurement cell was within 3K.
【0056】このように、本実施例によれば、所定の周
波数fで変調された半導体レーザ素子14から出射した
レーザ光が、多重反射長光路セル3内のメタンガスを含
む大気を通過したのち受光器6で受光されてその強さが
電気信号に変換され、位相敏感検波器7により得られる
基本波位相敏感検波信号Ifで、位相敏感検波器8により
得られる2倍波位相敏感検波信号I2f を割算器9を使っ
て割り算することによってメタンの濃度を求める際に、
変調振幅を半値半幅γの約2.2倍に設定することによ
りI2f が極大になり、その結果、大気の圧力には依存せ
ず温度がセンサ12による温度の測定だけから信号処理
器13により濃度が補正される。As described above, according to the present embodiment, the laser beam emitted from the semiconductor laser device 14 modulated at the predetermined frequency f passes through the atmosphere containing methane gas in the multiple reflection long optical path cell 3 and then receives light. The signal is received by the detector 6 and its intensity is converted into an electric signal. The fundamental wave phase-sensitive detection signal If obtained by the phase-sensitive detector 7 is used as the second harmonic phase-sensitive detection signal If obtained by the phase-sensitive detector 8. When calculating the methane concentration by dividing 2f using the divider 9,
By setting the modulation amplitude to about 2.2 times the half width at half maximum γ, I 2f is maximized. As a result, the temperature is independent of the pressure of the atmosphere and the temperature is measured by the signal processor 13 only from the temperature measurement by the sensor 12 The density is corrected.
【0057】[0057]
【発明の効果】以上説明したように本発明においては、
所定の周波数で変調された半導体レーザ素子から出射し
たレーザ光が測定用セル内のガスを通過したのち、その
強度が受光器により電気信号に変換され、2つの位相敏
感検波器により得られる基本波位相敏感検波信号と2倍
波位相敏感検波信号とから濃度を求める際に、変調振幅
が最適値に設定されているので、ガスの圧力によらずガ
スの温度だけによって、信号処理器がガスの濃度を正確
に補正することが可能である。As described above, in the present invention,
After the laser light emitted from the semiconductor laser element modulated at a predetermined frequency passes through the gas in the measuring cell, the intensity is converted into an electric signal by a light receiver, and the fundamental wave obtained by the two phase-sensitive detectors When obtaining the concentration from the phase-sensitive detection signal and the second-harmonic phase-sensitive detection signal, the modulation amplitude is set to the optimum value, so that the signal processor determines the gas temperature only by the gas temperature regardless of the gas pressure. It is possible to correct the density accurately.
【図1】本発明によるガス濃度測定装置の一実施例の概
略構成図である。FIG. 1 is a schematic configuration diagram of an embodiment of a gas concentration measuring device according to the present invention.
【図2】図1に示したレーザ発振器およびレーザ変調兼
制御器の概略構成図である。FIG. 2 is a schematic configuration diagram of a laser oscillator and a laser modulation / controller shown in FIG. 1;
【図3】レーザ光の発振周波数と受光器の出力との関
係、および、両者の変調の関係を示す図である。FIG. 3 is a diagram illustrating a relationship between an oscillation frequency of a laser beam and an output of a light receiver, and a relationship between modulation of the two.
【図4】変調振幅と2倍波位相敏感検波信号との関係を
示すグラフである。FIG. 4 is a graph showing a relationship between a modulation amplitude and a second-harmonic phase-sensitive detection signal.
【図5】2倍波位相敏感検波信号の温度および圧力依存
性を示す図である。FIG. 5 is a diagram illustrating temperature and pressure dependence of a second-harmonic phase-sensitive detection signal.
【図6】2倍波位相敏感検波信号の温度および圧力依存
性を示す図である。FIG. 6 is a diagram illustrating temperature and pressure dependence of a second-harmonic phase-sensitive detection signal.
【図7】本実施例のガス濃度測定装置による大気中のメ
タンの濃度の時刻変化(a)および温度の時刻変化
(b)の測定例を示すグラフである。FIG. 7 is a graph showing a measurement example of the time change (a) of the concentration of methane in the atmosphere and the time change (b) of the temperature by the gas concentration measurement device of the present embodiment.
【図8】従来のガス濃度測定装置の概略構成図である。FIG. 8 is a schematic configuration diagram of a conventional gas concentration measurement device.
1、2 反射鏡 3 測定用セル 4 レーザ発振器 5 レーザ変調兼制御器 6、17 受光器 7、8、20 位相敏感検波器 9 割算器 12 温度センサ 13 信号処理器 14 半導体レーザ素子 15 ペルチェ素子 16 参照用ガスセル 18 コリメータレンズ 19 発振器 21 積分器 23 定電流源 24 電流ミキサ 25 バイアス電圧発生器 26 倍周器 REFERENCE NUMERALS 1, 2 Reflecting mirror 3 Measurement cell 4 Laser oscillator 5 Laser modulation and controller 6, 17 Photodetector 7, 8, 20 Phase-sensitive detector 9 Divider 12 Temperature sensor 13 Signal processor 14 Semiconductor laser device 15 Peltier device 16 Gas Cell for Reference 18 Collimator Lens 19 Oscillator 21 Integrator 23 Constant Current Source 24 Current Mixer 25 Bias Voltage Generator 26 Multiplier
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 21/00 - 21/01,21/17 - 21/6 1 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) G01N 21/00-21/01, 21/17-21/6 1 JICST file (JOIS)
Claims (2)
る変調電流により変調する変調手段と、濃度を測定すべ
きガスを含む大気が流入しかつ流入した該大気中を前記
レーザ光が通過するように形成された測定用セルと、該
測定用セル内の温度を検知する温度センサと、前記測定
用セル内の大気を通過した後のレーザ光を受光する受光
器と、該受光器の出力から基本波位相敏感検波信号を出
力する第1の位相敏感検波器と、前記受光器の出力から
2倍波位相敏感検波信号を出力する第2の位相敏感検波
器と、前記2倍波位相敏感検波信号の値を前記基本波位
相敏感検波信号の値で割り算することにより前記ガスの
濃度を算出する割算器と、前記温度センサで測定した温
度により前記濃度に補正を施す信号処理器とを備え、前
記変調手段の変調電流の振幅を前記レーザ光の周波数に
対する吸収量の半値半幅のほぼ2.2倍に相当する値と
することを特徴とするガス濃度測定装置。1. A modulating means for modulating a laser beam with a modulation current having a predetermined frequency and amplitude, and an atmosphere containing a gas whose concentration is to be measured flows in, and the laser beam passes through the atmosphere. Measurement cell formed as described above, a temperature sensor for detecting the temperature in the measurement cell, a light receiver for receiving laser light after passing through the atmosphere in the measurement cell, and an output of the light receiver A first phase-sensitive detector that outputs a fundamental phase-sensitive detection signal from a second phase-sensitive detector, a second phase-sensitive detector that outputs a second-order phase-sensitive detection signal from the output of the photodetector, and a second phase-sensitive detector. A divider that calculates the concentration of the gas by dividing the value of the detection signal by the value of the fundamental phase-sensitive detection signal, and a signal processor that corrects the concentration based on the temperature measured by the temperature sensor. Prepared, front
The amplitude of the modulation current of the modulation means to the frequency of the laser light.
A value equivalent to approximately 2.2 times the half width at half maximum of the absorption amount
A gas concentration measuring device.
濃度ρと光路長Lとの積である濃度光路長積ρLを下記
式 I2f∝Vo ρLexp (−317/T)/T2 I 2f は前記2倍波位相敏感検波信号の値 V o は前記レーザ光の吸収がないときの受光器の出力電
圧 Tは温度(K) を満足するように設定して補正することにより濃度光路
長積を求める こと特徴とする請求項1に記載のガス濃度
測定装置。(2)The gas is methane gas;
The density optical path length product ρL, which is the product of the density ρ and the optical path length L, is
formula I2f∝Vo ρLexp (-317 / T) / T2 I 2f Is the value of the second harmonic phase sensitive detection signal V o Is the output power of the receiver when there is no absorption of the laser light.
Pressure T is temperature (K) The density optical path is set and corrected to satisfy
Find long product The gas concentration according to claim 1, wherein
measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26911991A JP2866230B2 (en) | 1991-09-20 | 1991-09-20 | Gas concentration measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26911991A JP2866230B2 (en) | 1991-09-20 | 1991-09-20 | Gas concentration measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0579976A JPH0579976A (en) | 1993-03-30 |
JP2866230B2 true JP2866230B2 (en) | 1999-03-08 |
Family
ID=17467948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26911991A Expired - Lifetime JP2866230B2 (en) | 1991-09-20 | 1991-09-20 | Gas concentration measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2866230B2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5963336A (en) | 1995-10-10 | 1999-10-05 | American Air Liquide Inc. | Chamber effluent monitoring system and semiconductor processing system comprising absorption spectroscopy measurement system, and methods of use |
JP4905106B2 (en) * | 2006-12-13 | 2012-03-28 | 富士電機株式会社 | Laser wavelength control device, gas concentration measurement device, laser wavelength control method, and gas concentration measurement method |
US7969576B1 (en) * | 2007-03-23 | 2011-06-28 | The Regents Of The University Of California | Optical sensing based on wavelength modulation spectroscopy |
JP5286911B2 (en) * | 2008-04-23 | 2013-09-11 | 富士電機株式会社 | Multi-component laser gas analyzer |
US8625098B2 (en) * | 2010-12-17 | 2014-01-07 | General Electric Company | System and method for real-time measurement of equivalence ratio of gas fuel mixture |
EP2520925B1 (en) * | 2011-05-03 | 2013-05-01 | Axetris AG | Method and apparatus for detecting a gas concentration with reduced pressure dependency |
US8896835B2 (en) * | 2011-12-27 | 2014-11-25 | Horiba, Ltd. | Gas measurement apparatus and the setting method of width of wavelength modulation in gas measurement apparatus |
JP5933972B2 (en) * | 2011-12-27 | 2016-06-15 | 株式会社堀場製作所 | Gas measuring device and wavelength modulation width setting method in gas measuring device. |
CN103163090B (en) * | 2013-02-02 | 2014-12-17 | 中国科学院合肥物质科学研究院 | Concentration detection system used for polonium aerosol inside reactor workshop |
EP2985592B1 (en) * | 2014-08-13 | 2017-09-27 | Siemens Aktiengesellschaft | Absorption spectrometer and method for measuring the concentration of an interesting gas component of a measuring gas |
JP6624505B2 (en) * | 2015-12-07 | 2019-12-25 | 富士電機株式会社 | Laser gas analyzer |
FR3063543B1 (en) * | 2017-03-03 | 2022-01-28 | Commissariat Energie Atomique | PROCEDURE FOR CALIBRATION OF AN ELECTRONIC NOSE. |
PL3724640T3 (en) * | 2017-12-15 | 2022-06-20 | Neo Monitors As | Gas analyzer for measurement of hydrogen |
JPWO2023095881A1 (en) * | 2021-11-25 | 2023-06-01 |
-
1991
- 1991-09-20 JP JP26911991A patent/JP2866230B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0579976A (en) | 1993-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2866230B2 (en) | Gas concentration measurement device | |
US7365352B2 (en) | Gas concentration flux measuring device | |
US9678003B2 (en) | Cavity enhanced laser based isotopic gas analyzer | |
CN105067564B (en) | A kind of optical fiber gas concentration detection method with temperature compensation capability | |
US20170038354A1 (en) | Temperature compensation of gas sensors | |
CN110160989A (en) | A kind of detection method and detection device of trace gas | |
Pan et al. | Improvement of concentration inversion model based on second harmonic valley spacing in wavelength modulation spectroscopy | |
JP2744728B2 (en) | Gas concentration measuring method and its measuring device | |
JPH05142146A (en) | Gas measuring instrument | |
JP5170034B2 (en) | Gas analyzer | |
Van Helden et al. | Phase-shift cavity ring-down spectroscopy to determine absolute line intensities | |
JPS63182550A (en) | Gas sensor | |
JP4217109B2 (en) | Multipoint gas concentration detection method and system | |
JPH03277945A (en) | Gas detecting apparatus | |
US11796468B2 (en) | Gas measurement device and gas measurement method | |
JP3588982B2 (en) | Infrared detector and gas analyzer | |
JP2792782B2 (en) | Gas concentration measuring method and its measuring device | |
JPH1183665A (en) | Steam detector | |
JP2796651B2 (en) | Gas detector | |
JPH04326041A (en) | Gas concentration measuring method and device | |
US11650155B2 (en) | Gas analysis system and gas analysis method | |
JP2796649B2 (en) | Gas detector | |
JP2020016472A (en) | Gas concentration measuring device | |
EP0495874A1 (en) | Apparatus for stabilizing the wavelength of a signal-modulated light beam | |
JPS63113346A (en) | Gas sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19981208 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071218 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081218 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081218 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091218 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101218 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101218 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111218 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111218 Year of fee payment: 13 |