[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2861787B2 - Non-oriented electrical steel sheet with low iron loss and method of manufacturing the same - Google Patents

Non-oriented electrical steel sheet with low iron loss and method of manufacturing the same

Info

Publication number
JP2861787B2
JP2861787B2 JP6019410A JP1941094A JP2861787B2 JP 2861787 B2 JP2861787 B2 JP 2861787B2 JP 6019410 A JP6019410 A JP 6019410A JP 1941094 A JP1941094 A JP 1941094A JP 2861787 B2 JP2861787 B2 JP 2861787B2
Authority
JP
Japan
Prior art keywords
iron loss
annealing
steel
grain size
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6019410A
Other languages
Japanese (ja)
Other versions
JPH07228953A (en
Inventor
隆 田中
裕義 屋鋪
光代 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6019410A priority Critical patent/JP2861787B2/en
Publication of JPH07228953A publication Critical patent/JPH07228953A/en
Application granted granted Critical
Publication of JP2861787B2 publication Critical patent/JP2861787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電気機器の鉄心として
広く用いられる鉄損の低い無方向性電磁鋼板に関し、と
りわけ高周波域で使用される回転機用および小型変圧器
用の鉄心に好適な無方向性電磁鋼板とその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet having a low iron loss widely used as an iron core of electric equipment, and more particularly to a non-oriented electrical steel sheet suitable for a rotating machine and a small transformer used in a high frequency range. The present invention relates to a grain-oriented electrical steel sheet and a method for manufacturing the same.

【0002】[0002]

【従来の技術】最近の電気機器では、高効率化や小型化
を目的に高周波域で使用されるものが増加する傾向にあ
り、高周波域での鉄損の低い電磁鋼板への要望が高まっ
てきている。
2. Description of the Related Art In recent years, there has been an increase in the use of high-frequency electrical equipment for high efficiency and miniaturization, and there has been an increasing demand for electrical steel sheets having low iron loss in high-frequency areas. ing.

【0003】鉄損は一般に、周波数の一乗に比例するヒ
ステリシス損と周波数の二乗に比例する渦電流損の和と
して表すことができる。従って、高周波域では周波数の
二乗に比例する渦電流損の鉄損に占める割合が高くな
り、渦電流の低減が低鉄損化にとって極めて重要とな
る。渦電流を低減するためには、板厚を薄くすることと
電気抵抗を増加することが有効であることが知られてい
る。つまり、薄肉化と合金元素の添加による鋼板の電磁
抵抗増加が、高周波用の電磁鋼板の開発の大きな指針と
なる。
[0003] In general, iron loss can be expressed as the sum of a hysteresis loss proportional to the first power of frequency and an eddy current loss proportional to the square of frequency. Therefore, in the high frequency range, the ratio of the eddy current loss, which is proportional to the square of the frequency, to the iron loss increases, and reduction of the eddy current is extremely important for reducing the iron loss. It is known that in order to reduce the eddy current, it is effective to reduce the plate thickness and increase the electric resistance. In other words, the increase in the electromagnetic resistance of the steel sheet due to the reduction in thickness and the addition of alloy elements is a great guideline for the development of high-frequency electromagnetic steel sheets.

【0004】特開昭62−103321号公報には、6.5 %前後
のSiを含有した高珪素鋼板の製造方法が示されている。
鉄にSiを添加して行くと6.5 %前後の添加量で磁歪がほ
ぼ0になるため、ヒステリシス損が著しく低くなる。ま
た、高Si添加では電気抵抗が高くなるため渦電流損を下
げるのにも有利である。従って、6.5 %Si前後の高珪素
鋼板では、ヒステリシス損と渦電流損の両方の鉄損要因
を同時に下げることができるため、同等の電気抵抗を有
するそのほかの高合金鋼に比べ、良好な鉄損が得られる
と考えられている。
Japanese Patent Application Laid-Open No. 62-103321 discloses a method for producing a high silicon steel sheet containing about 6.5% of Si.
When Si is added to iron, the magnetostriction becomes almost zero at an addition amount of about 6.5%, so that the hysteresis loss is significantly reduced. Also, high Si addition is advantageous in reducing eddy current loss since the electrical resistance increases. Therefore, the high-silicon steel sheet of about 6.5% Si can reduce both the iron loss factors of hysteresis loss and eddy current loss at the same time, and has a better iron loss than other high alloy steels having the same electric resistance. Is believed to be obtained.

【0005】しかし、この発明に示されているような高
珪素鋼板は極めて脆く、たとえ製造できても鋼板の使用
者側で鉄心に加工するには特殊な設備や条件が必要とな
るため、用途が非常に限られたものになる。
However, the high silicon steel sheet as shown in the present invention is extremely brittle, and even if it can be manufactured, special equipment and conditions are required to process the iron core on the user side of the steel sheet. Will be very limited.

【0006】特開昭62−196354号公報および特開昭62−
196358号公報には、Siを 2.5〜7.0%含有し、かつW:
0.05〜3.0 %、Mo:0.05〜3.0 %、Ti:0.05〜3.0 %、
Mn:0.1〜11.5%、Ni: 0.1〜20.0%、Co: 0.5〜20.0
%、Cr: 0.1〜10.0%およびAl: 0.5〜13.0%のうちか
ら選んだ1種または2種以上を、20.0%を超えない範囲
で含有した高合金軟磁性鋼板が示されている。
[0006] JP-A-62-196354 and JP-A-62-196354
Japanese Patent Publication No. 196358 discloses that Si contains 2.5 to 7.0% and W:
0.05-3.0%, Mo: 0.05-3.0%, Ti: 0.05-3.0%,
Mn: 0.1-11.5%, Ni: 0.1-20.0%, Co: 0.5-20.0
%, Cr: 0.1 to 10.0%, and Al: 0.5 to 13.0%, a high-alloy soft magnetic steel sheet containing not less than 20.0% contains one or more selected from two or more.

【0007】これらの発明の鋼板においても、6.5 %前
後のSiを含有させた場合には鉄損は良好になるが、打ち
抜き性は当然悪くなる。一方、Siを他の合金成分で置換
した場合には良好な鉄損が得られない。また、これらの
発明では溶湯急冷法が主要な製造方法であると考えら
れ、板厚が0.30mm以下の極めて薄い板厚のものに限定さ
れている。このため、やはり用途は限定されたものとな
らざるを得ない。
[0007] In the steel sheets of these inventions as well, when about 6.5% of Si is contained, the iron loss becomes good, but the punching property naturally becomes poor. On the other hand, when Si is replaced with another alloy component, good iron loss cannot be obtained. In these inventions, the molten metal quenching method is considered to be the main production method, and the thickness is limited to a very thin plate having a thickness of 0.30 mm or less. For this reason, the use is inevitably limited.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記のよう
な従来の製造方法における板厚の制約やそれによる用途
の限定を解消し、さらに製品鋼板の冷間加工性、打ち抜
き加工性および磁気特性を改善するためになされたもの
である。
SUMMARY OF THE INVENTION The present invention eliminates the limitations on the thickness of the conventional manufacturing method as described above and the limitations on the use thereof, and furthermore, the cold workability, punching workability and magnetic properties of the product steel sheet. This was done to improve the characteristics.

【0009】本発明の目的は、高周波域における鉄損が
低く、かつ板厚全周方向の平均磁気特性または圧延方向
とその直角方向の平均磁気特性に優れ、さらに打ち抜き
切断のような鉄心への加工が容易な無方向性電磁鋼板
と、種々の板厚の製品が容易に造り分けられる一般的な
熱間圧延、冷間圧延を経るプロセスを用いて、それらを
製造する方法を提供することにある。
An object of the present invention is to reduce iron loss in a high-frequency range and to have excellent average magnetic properties in the entire circumferential direction of the sheet thickness or average magnetic properties in a direction perpendicular to the rolling direction, and furthermore, to a core such as punching and cutting. To provide a non-oriented electrical steel sheet that is easy to process, and a method of manufacturing them using a general hot rolling and cold rolling process that can easily produce products of various thicknesses. is there.

【0010】[0010]

【課題を解決するための手段】本発明の要旨は、下記
(1)の無方向性電磁鋼板と (2)、(3) のその製造方法に
ある。
The gist of the present invention is as follows.
(1) Non-oriented electrical steel sheets and (2) and (3).

【0011】(1)重量%で、Si:1.5 %未満、Al: 2.5
〜6.0 %およびMn: 1.0〜3.0 %を含み、かつ下記式
を満足し、残部は実質的にFeおよび不可避的不純物から
なり、結晶粒径R (μm) が下記式を満足する鉄損の
低い無方向性電磁鋼板。
(1) By weight%, Si: less than 1.5%, Al: 2.5%
-6.0% and Mn: 1.0-3.0%, and satisfy the following formula, and the balance substantially consists of Fe and unavoidable impurities, and the crystal grain size R (μm) has a low iron loss satisfying the following formula. Non-oriented electrical steel sheet.

【0012】 〔Si(%) + Al(%)+ 1/2・Mn(%) 〕≧ 5.5%・・・・・ ( 500×f-1/3−20 )≦R≦ ( 500×f-1/3+20 )・・ ただし、fは励磁周波数(Hz)を表す。[Si (%) + Al (%) + 1/2 · Mn (%)] ≧ 5.5% (500 × f −1/3 −20) ≦ R ≦ (500 × f − 1/3 +20) where f represents the excitation frequency (Hz).

【0013】(2)上記(1) 記載の化学成分と式を満足
し、残部は実質的にFeおよび不可避的不純物からなる鋼
スラブを熱間圧延した後、中間焼鈍を挟む2回の冷間圧
延で1回目、2回目の圧下率を共に40〜80%として製品
板厚に仕上げた後焼鈍を行い、結晶粒径R (μm) を上
記式を満たす範囲とする鉄損の低い無方向性電磁鋼板
の製造方法。
(2) After hot rolling a steel slab which substantially satisfies the chemical composition and formula described in the above (1), and the remainder substantially consists of Fe and unavoidable impurities, two cold working steps including intermediate annealing are performed. The first and second rollings are finished to a product thickness with both the rolling reductions of 40 to 80%, and then annealed to make the crystal grain size R (μm) satisfy the above formula. Manufacturing method of electrical steel sheet.

【0014】(3)上記(1) 記載の化学成分と式を満足
し、残部は実質的にFeおよび不可避的不純物からなる鋼
スラブを熱間圧延した後、 650〜1000℃で熱延板焼鈍を
施してから、中間焼鈍を挟む2回の冷間圧延で1回目、
2回目の圧下率を共に40〜80%として製品板厚に仕上げ
た後焼鈍を行い、結晶粒径R (μm) を上記式を満た
す範囲とする鉄損の低い無方向性電磁鋼板の製造方法。
(3) After hot rolling a steel slab which satisfies the chemical composition and formula described in the above (1) and the remainder substantially consists of Fe and unavoidable impurities, it is annealed at 650 to 1000 ° C. , And the first time of two cold rollings sandwiching intermediate annealing,
A method for producing a non-oriented electrical steel sheet having a low iron loss and a crystal grain size R (μm) in a range satisfying the above formula, after finishing the product sheet thickness with both reduction ratios being both 40 to 80%. .

【0015】上記(2) の製造方法は、回転機鉄心用の無
方向性電磁鋼板を対象とするものであり、板厚全周方向
の平均磁気特性に優れることが重要であるため、製品の
磁気特性の評価はリング試験片を用いて行う。上記(3)
の製造方法は、小型変圧器鉄心(EIコア)用のそれを
対象とするものであり、圧延方向とその直角方向の平均
磁気特性に優れることが重要であるため、同じく評価は
エプスタイン試験片を用いて行う。
The method (2) is intended for a non-oriented electrical steel sheet for a rotating machine iron core, and it is important that the average magnetic properties in all thickness directions are excellent. The evaluation of the magnetic properties is performed using a ring test piece. (3) above
Is intended for small transformer cores (EI cores), and it is important that the average magnetic properties in the rolling direction and the direction perpendicular to the rolling direction are important. Perform using

【0016】[0016]

【作用】前述のように6.5 %Si前後の高珪素含有鋼は、
高周波域における鉄損に対し有利であるが、極めて脆く
冷間圧延時に割れが生じ易い。また、たとえ割れずに冷
間圧延ができたとしても、ユーザーで打ち抜き加工のよ
うな鉄心への加工作業を行う際には、極めて特殊な条件
が要求される。
[Function] As described above, the high silicon content steel of about 6.5% Si
Although advantageous for iron loss in the high frequency range, it is extremely brittle and easily cracks during cold rolling. Even if cold rolling can be performed without cracking, extremely special conditions are required when a user performs a working operation on an iron core such as a punching process.

【0017】本発明者らは、冷間圧延時の延性が良好で
高珪素鋼と同等の良好な鉄損を有し、かつ鉄心加工が容
易な無方向性電磁鋼板の製造方法を詳細に検討した。そ
の結果、下記〜の知見を見いだした。
The present inventors have studied in detail a method for producing a non-oriented electrical steel sheet which has good ductility during cold rolling, has good iron loss equivalent to that of high silicon steel, and is easy to work with iron cores. did. As a result, the following findings were found.

【0018】適正量のSi、Mn、Alの複合添加で電気抵
抗を増加させた鋼板では、6.5 %前後のSiを単独添加し
て電気抵抗を増加した鋼板と同等の良好な鉄損が得られ
る。
In a steel sheet whose electric resistance has been increased by adding a proper amount of Si, Mn, and Al, a good iron loss equivalent to that of a steel sheet whose electric resistance has been increased by adding about 6.5% of Si alone can be obtained. .

【0019】しかも、打ち抜き加工性はSi単独添加の場
合に比べ優れている。
Furthermore, the punching workability is superior to the case where only Si is added.

【0020】使用される励磁周波数に応じた最適な結
晶粒径に制御することにより、良好な鉄損が得られる。
By controlling the crystal grain size to be optimal according to the excitation frequency used, good iron loss can be obtained.

【0021】熱延板焼鈍で鋼板を再結晶させることに
より、圧延方向とその直角方向の平均の鉄損の改善が得
られる。この場合は、小型変圧器鉄心用に好適な無方向
性電磁鋼板となる。
By recrystallizing the steel sheet by hot-rolled sheet annealing, it is possible to improve the average iron loss in the direction perpendicular to the rolling direction. In this case, the non-oriented electrical steel sheet is suitable for a small transformer core.

【0022】冷間圧延は中間焼鈍を挟んで2回施し、
いずれの圧延においても圧下率を40〜80%とすること
が、鉄損の改善に有効である。
Cold rolling is performed twice with intermediate annealing therebetween.
In any rolling, setting the rolling reduction to 40 to 80% is effective for improving iron loss.

【0023】次に、本発明の電磁鋼板またはその素材鋼
の化学組成、製品電磁鋼板の結晶粒径および製造方法を
前記のように限定した理由を説明する。%は重量%を意
味する。
Next, the reasons why the chemical composition of the magnetic steel sheet of the present invention or its material steel, the crystal grain size of the product magnetic steel sheet and the manufacturing method are limited as described above will be described. % Means% by weight.

【0024】(1)製品電磁鋼板またはその素材鋼の化
学組成 Si:1.5 %未満 Siは、含有量が増加するほど鋼板の電気抵抗が上昇して
渦電流損を低下させ、結果として鉄損を低減させる効果
を有する。しかし、Si含有量が1.5 %以上になると、冷
間圧延や打ち抜き加工時に割れが生じやすくなる。よっ
て、Si含有量は1.5 %未満とした。望ましい下限は0.1
%である。
(1) Chemical composition of the product electrical steel sheet or its material steel: Si: less than 1.5% As the content of Si increases, the electrical resistance of the steel sheet increases and the eddy current loss decreases, resulting in a reduction in iron loss. It has the effect of reducing. However, when the Si content is 1.5% or more, cracks tend to occur during cold rolling and punching. Therefore, the Si content is set to less than 1.5%. Desirable lower limit is 0.1
%.

【0025】Mn: 1.0〜3.0 % MnはSiと同様に鋼板の電気抵抗を上昇させるのに有効で
あり、鉄損低減の観点から積極的な添加が有効である。
また、適正量のAlとともに複合添加することにより、高
周波域において極めて良好な鉄損を得ることができる。
これらの効果を得るためには、1.0 %以上含有させる必
要がある。一方、3.0 %を超えると強度が上昇しすぎて
冷間圧延を困難にすることから、その上限を3.0 %とし
た。
Mn: 1.0 to 3.0% Mn is effective in increasing the electric resistance of the steel sheet, similarly to Si, and aggressive addition is effective from the viewpoint of reducing iron loss.
In addition, by adding the Al together with an appropriate amount of Al, extremely good iron loss can be obtained in a high frequency range.
In order to obtain these effects, it is necessary to contain 1.0% or more. On the other hand, if the content exceeds 3.0%, the strength becomes too high to make cold rolling difficult. Therefore, the upper limit is set to 3.0%.

【0026】Al: 2.5〜6.0 % 上記のようにAlを適正量のMnとともに複合添加すること
により、高周波域において板厚全周方向の平均特性に優
れた電磁鋼板を得ることができる。
Al: 2.5 to 6.0% By adding Al together with an appropriate amount of Mn as described above, it is possible to obtain an electrical steel sheet having excellent average properties in the entire thickness direction in the high frequency range.

【0027】Al添加により板厚全周方向の平均鉄損が向
上する理由の一つとしては、{100}面が多く含まれ
た集合組織が形成されるためと考えられる。Al含有量が
2.5%未満では上記の効果は小さい。他の理由として
は、Al添加が顕著な電気抵抗の増加効果を持つからであ
り、2.5 %未満では電気抵抗が低すぎて高周波域での鉄
損を低下させることができない。
One of the reasons why the addition of Al improves the average iron loss in the entire thickness direction is considered to be due to the formation of a texture containing a large number of {100} planes. Al content
If it is less than 2.5%, the above effect is small. Another reason is that the addition of Al has a remarkable effect of increasing the electric resistance. If it is less than 2.5%, the electric resistance is too low and the iron loss in a high frequency range cannot be reduced.

【0028】しかし、MnとAlの複合添加が鉄損改善に極
めて有効であることは、以上のふたつの理由からだけで
は説明できず、渦電流損に対する磁区構造の影響を考慮
しなければならない。すなわち、これら二つの元素の適
量添加が、高周波域での渦電流損に対し有利な磁区構造
を生じさせるためではないかと考えられる。
However, the fact that the combined addition of Mn and Al is extremely effective in improving iron loss cannot be explained solely from the above two reasons, and it is necessary to consider the influence of the magnetic domain structure on the eddy current loss. That is, it is considered that the addition of these two elements in appropriate amounts may cause a magnetic domain structure advantageous for eddy current loss in a high frequency range.

【0029】一方、Al含有量が6.0 %を超えると、冷間
圧延や打ち抜き加工時に割れが発生し易いため、その上
限値は6.0 %とした。
On the other hand, if the Al content exceeds 6.0%, cracks are likely to occur during cold rolling or punching, so the upper limit was set to 6.0%.

【0030】Si+Al+ 1/2・Mn:5.5 %以上 Si、Al、Mnを添加すると、前述のようにいずれも鋼板の
電気抵抗を増加させるため、高周波域において極めて良
好な鉄損を得ることができる。このような鉄損改善の効
果は、Si+Al+ 1/2・Mnが5.5 %未満では得ることがで
きない。すなわち、5.5 %未満では電気抵抗が低すぎて
高周波域での鉄損を下げることができないからである。
なお、Mnの係数が 1/2であるのは、Mnの電気抵抗増加に
及ぼす影響がSi、Alの半分であるからである。
Si + Al + 1/2 · Mn: 5.5% or more When Si, Al and Mn are added, the electric resistance of the steel sheet is increased as described above, so that an extremely good iron loss can be obtained in a high frequency range. . Such an effect of improving iron loss cannot be obtained when Si + Al + 1 / 2.Mn is less than 5.5%. That is, if it is less than 5.5%, the electric resistance is too low to reduce the iron loss in a high frequency range.
The reason why the coefficient of Mn is 1/2 is that the effect of Mn on the increase in electric resistance is half that of Si and Al.

【0031】上記三元素以外は鋼スラブでなるべく低く
抑えることが望ましい。例えば、Cは鉄損に悪影響を与
えるので、0.010 %以下、更に言えば0.005 %以下が望
ましい。製品段階で残存したCは炭化物を生成し、これ
が磁壁移動の障害となり鉄損が増加するからである。
Except for the above three elements, it is desirable to keep the steel slab as low as possible. For example, C has an adverse effect on iron loss, so is preferably not more than 0.010%, more preferably not more than 0.005%. This is because C remaining in the product stage generates carbides, which hinders domain wall movement and increases iron loss.

【0032】SはMnと結合してMnSを形成し、炭化物と
同様に磁壁移動の障害となり鉄損の劣化をもたらす。従
って、S含有量が低いほど鉄損は改善されるので、0.00
6 %以下、更に言えば0.003 %以下が望ましい。
[0032] S combines with Mn to form MnS, which, like carbides, hinders domain wall movement and causes iron loss. Therefore, the iron loss is improved as the S content is lower,
It is desirable that the content be 6% or less, more specifically 0.003% or less.

【0033】Pは鋼板を脆化させるので、0.020 %以下
が望ましい。
Since P makes the steel sheet brittle, it is desirable that the content be 0.020% or less.

【0034】NはAlと結合してAlNを形成し磁壁移動の
障害となるため、低くすることが必要であり、0.0060%
以下にすることが望ましい。
Since N combines with Al to form AlN and hinders the movement of the domain wall, it is necessary to lower N.
It is desirable to make the following.

【0035】なお、割れ防止の観点から、Bを0.0020%
以下の範囲で含有させることは妨げない。
From the viewpoint of preventing cracking, B is 0.0020%
It does not prevent inclusion in the following ranges.

【0036】(2)結晶粒径 前述のように、製品鋼板においては、鉄損に最適な結晶
粒径R(μm)が存在し、その関係は次式で示される
ことがわかった。但し、fは励磁周波数(Hz)である。
(2) Grain Size As described above, it is found that the product steel sheet has an optimum crystal grain size R (μm) for iron loss, and the relationship is expressed by the following equation. Here, f is the excitation frequency (Hz).

【0037】 ( 500×f-1/3−20 )≦R≦ ( 500×f-1/3+20 )・・ すなわち、最適な結晶粒径Rは基本的に励磁周波数fの
立方根に反比例する。
(500 × f −1/3 −20) ≦ R ≦ (500 × f −1/3 +20) That is, the optimum crystal grain size R is basically inversely proportional to the cubic root of the excitation frequency f.

【0038】式中のfの係数500 および−20と+20
は、実験結果から求めたものである。
The coefficient of f in the expression 500 and -20 and +20
Is obtained from the experimental results.

【0039】結晶粒径Rを上記式を満たすように制御
することにより、最適な鉄損を得ることができる。この
理由については以下のように考えられる。
An optimal iron loss can be obtained by controlling the crystal grain size R so as to satisfy the above equation. The reason is considered as follows.

【0040】一般に最適結晶粒径は、渦電流損とヒステ
リシス損との兼ね合いで決まる。すなわち、結晶粒径が
大きくなると磁壁移動の障害となる結晶粒界の面積が減
少するため、ヒステリシス損が低減する。励磁周波数が
大きくなるにつれて最適粒径が小さくなるのは、周波数
の増大に伴い、磁壁の移動速度が大きくなり、渦電流損
の鉄損に占める割合が高くなるためであると考えられ
る。
In general, the optimum crystal grain size is determined by a balance between eddy current loss and hysteresis loss. That is, as the crystal grain size increases, the area of the crystal grain boundary that hinders the domain wall movement decreases, so that the hysteresis loss decreases. It is considered that the reason why the optimum grain size decreases as the excitation frequency increases is that the moving speed of the domain wall increases with an increase in the frequency, and the ratio of eddy current loss to iron loss increases.

【0041】しかし、結晶粒径が ( 500×f-1/3+20 )
を超えて大きくなると磁区幅が大きくなり、磁壁の移動
速度も大きくなることによって渦電流損が増加し、ヒス
テリシス損の低減分を上回るようになる。この結果、渦
電流損とヒステリシス損を合わせた全鉄損が増加する。
However, the crystal grain size is (500 × f −1/3 +20)
When the value exceeds 大 き く, the magnetic domain width increases, and the moving speed of the domain wall also increases, so that the eddy current loss increases and exceeds the reduction of the hysteresis loss. As a result, the total iron loss including the eddy current loss and the hysteresis loss increases.

【0042】一方、結晶粒径が ( 500×f-1/3−20 )未
満の細粒になると、渦電流損の低減よりもヒステリシス
損の増加が上回り、渦電流損とヒステリシス損を合わせ
た全鉄損が増加する。
On the other hand, when the crystal grain size is smaller than (500 × f −1/3 −20), the increase in the hysteresis loss exceeds the reduction in the eddy current loss, and the eddy current loss and the hysteresis loss are combined. Total iron loss increases.

【0043】(3)製造方法 次にこの発明の製造工程と条件について説明する。素材
の鋼スラブは前記の組成をもつものである。これは、転
炉、電気炉等で溶製し、必要があれば真空脱ガス等の処
理を施した溶鋼を、連続鋳造法でスラブにしたもの、あ
るいはインゴットにして分塊圧延したもののいずれでも
よい。
(3) Manufacturing Method Next, the manufacturing steps and conditions of the present invention will be described. The raw steel slab has the above composition. This can be done either by converting molten steel that has been melted in a converter or electric furnace and then subjected to treatment such as vacuum degassing, if necessary, to a slab by continuous casting, or to ingot and slab rolling. Good.

【0044】スラブは熱間圧延を行うことになるが、そ
の条件については特に制約はない。
The slab is subjected to hot rolling, but the conditions are not particularly limited.

【0045】しかし、望ましいのは、加熱温度で1100〜
1250℃、仕上温度で 700〜950 ℃である。
However, it is desirable that the heating temperature be 1100 to
1250 ° C, 700-950 ° C at finishing temperature.

【0046】(a) 熱延板焼鈍 熱延板焼鈍は、製品の磁気特性に応じて必要により行
う。熱延板焼鈍で熱延板を再結晶させることにより、特
に、圧延方向とその直角方向の鉄損を改善することがで
きる。これは、熱延板が再結晶・粒成長することによ
り、冷間圧延後の焼鈍において{110}<001>に
配向した集合組織となるためである。
(A) Annealing of hot rolled sheet Annealing of hot rolled sheet is performed as necessary according to the magnetic properties of the product. By recrystallizing the hot-rolled sheet by hot-rolled sheet annealing, it is possible to particularly improve iron loss in the direction perpendicular to the rolling direction. This is because the hot-rolled sheet undergoes recrystallization and grain growth to have a {110} <001> -oriented texture during annealing after cold rolling.

【0047】焼鈍は箱焼鈍方式でも連続焼鈍方式でも可
能であるが、焼鈍温度は 650〜1000℃の範囲とする。焼
鈍温度が650 ℃未満では熱延板の再結晶が十分に進行せ
ず、焼鈍の効果が得られない。一方、1000℃を超えると
結晶粒が粗大化し過ぎ、冷間圧延時に割れが生じ易くな
る。
Annealing can be performed by a box annealing method or a continuous annealing method, but the annealing temperature is in the range of 650 to 1000 ° C. If the annealing temperature is lower than 650 ° C., recrystallization of the hot-rolled sheet does not sufficiently proceed, and the effect of annealing cannot be obtained. On the other hand, if the temperature exceeds 1000 ° C., the crystal grains become too coarse, and cracks tend to occur during cold rolling.

【0048】箱焼鈍の場合には、 650〜900 ℃が、連続
焼鈍の場合には 750〜1000℃が、それぞれ望ましい。
In the case of box annealing, 650 to 900 ° C. is preferable, and in the case of continuous annealing, 750 to 1000 ° C. is preferable.

【0049】(b) 冷間圧延 冷間圧延条件は本発明において極めて重要な要件であ
る。良好な鉄損を得るために、中間焼鈍を挟む2回の冷
間圧延の圧下率を共に40〜80%とすることが必要であ
る。
(B) Cold rolling Cold rolling conditions are a very important requirement in the present invention. In order to obtain a good iron loss, it is necessary to set both the rolling reductions of the two cold rollings including the intermediate annealing to 40 to 80%.

【0050】熱延板のままで、またはその後熱延板焼鈍
を施した後、中間焼鈍を挟む2回の冷間圧延を行い、こ
のときの圧下率を共に40〜80%の範囲で適正化しておか
ないと、2回目の冷間圧延後に後述する適正な焼鈍を施
しても、鉄損に有利な集合組織とならない。
The hot-rolled sheet as it is or after the hot-rolled sheet annealing is performed, the cold rolling is performed twice with the intermediate annealing therebetween, and the rolling reduction at this time is optimized within the range of 40 to 80%. If not, even after performing the appropriate annealing described later after the second cold rolling, a texture advantageous to iron loss will not be obtained.

【0051】冷間圧延は室温でもよいが、割れ防止の観
点から温間圧延を行ってもよい。温間圧延する場合の温
度は300 ℃以下が望ましい。300 ℃を超えると圧延の形
状制御が困難になると共に、圧延油も特殊なものとなる
からである。
The cold rolling may be performed at room temperature, but may be performed from the viewpoint of preventing cracking. The temperature for warm rolling is preferably 300 ° C. or less. If the temperature exceeds 300 ° C., it is difficult to control the shape of the rolling, and the rolling oil becomes special.

【0052】中間焼鈍の方法と条件は特に限定しない
が、箱焼鈍方式と連続焼鈍方式のいずれでも可能であ
り、温度は 650〜1000℃の均熱とするのが望ましい。
The method and conditions of the intermediate annealing are not particularly limited, but any of a box annealing method and a continuous annealing method can be used, and the temperature is desirably soaked at 650 to 1000 ° C.

【0053】(c) 冷間圧延後の焼鈍 製品鋼板で所望の良好な鉄損を得るために、2回の冷間
圧延により所定の板厚に仕上げられた鋼板に、焼鈍を施
し、再結晶と粒成長を行わせる。この場合の焼鈍方法も
箱焼鈍、連続焼鈍のいずれでもよいが、焼鈍条件は焼鈍
した後の結晶粒径が前記の式を満たすように選定す
る。このときの条件として望ましいのは、箱焼鈍の場
合、温度で 650〜950 ℃、時間で10分〜48時間の範囲、
さらに望ましいのは、それぞれ、 700〜900 ℃、30分〜
24時間の範囲である。連続焼鈍の場合、温度で 700〜10
00℃、時間で10秒〜5分間の範囲、さらに望ましいの
は、それぞれ、 750〜950 ℃、30秒〜2分間の範囲であ
る。
(C) Annealing after Cold Rolling In order to obtain a desired good iron loss in the product steel sheet, the steel sheet finished to a predetermined thickness by two cold rollings is annealed and recrystallized. And grain growth. The annealing method in this case may be either box annealing or continuous annealing, but the annealing conditions are selected so that the crystal grain size after annealing satisfies the above equation. Desirable conditions at this time are, in the case of box annealing, a temperature range of 650 to 950 ° C., a time range of 10 minutes to 48 hours,
More preferably, respectively, 700-900 ℃, 30 minutes ~
24 hours range. For continuous annealing, the temperature is 700 to 10
The temperature is in the range of 10 seconds to 5 minutes at 00 ° C, more preferably in the range of 750 to 950 ° C and 30 seconds to 2 minutes, respectively.

【0054】[0054]

【実施例】以下に示す例のうち、実施例1〜4が小型変
圧器用を、実施例5〜8が回転機用を、それぞれ対象と
する無方向性電磁鋼板である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Among the examples shown below, Examples 1-4 are non-oriented electrical steel sheets for small transformers and Examples 5-8 are for rotary machines.

【0055】(実施例1)高周波炉で表1に示す組成の
7種類の供試鋼を真空溶製し、50kgインゴットとした。
これらの供試鋼は、Gを除き電気抵抗がほぼ等しい高合
金組成のものである。供試鋼の電気抵抗を表1に示す。
表1に示す三元素以外は、全ての鋼種においてC:0.00
30%以下、P: 0.015%以下、S:0.0020%以下、N:
0.0030%以下であり、その他の元素も不可避的不純物レ
ベルであった。
Example 1 Seven kinds of test steels having the compositions shown in Table 1 were vacuum-melted in a high-frequency furnace to obtain 50 kg ingots.
These test steels have a high alloy composition except for G and have almost the same electric resistance. Table 1 shows the electrical resistance of the test steels.
Except for the three elements shown in Table 1, in all steel types C: 0.00
30% or less, P: 0.015% or less, S: 0.0020% or less, N:
It was 0.0030% or less, and the other elements were also at unavoidable impurity levels.

【0056】各インゴットは1130℃に加熱した後、仕上
温度830 ℃の熱間圧延により2.3 mm厚の熱延板とした。
次に、800 ℃で1時間均熱の熱延板焼鈍を施してから、
1回目の冷間圧延を行い、0.80mm厚とした(圧下率:65
%)。鋼種C、D、E、F、Gは目標の板厚まで圧延で
きたものの、鋼種A、Bは割れが入り圧延できなかっ
た。そこで、鋼種A、Bは試験片を300 ℃まで加熱して
温間圧延を施し、目標の板厚とした。
After each ingot was heated to 1130 ° C., it was hot-rolled at a finishing temperature of 830 ° C. to form a 2.3 mm thick hot rolled sheet.
Next, after hot-rolled sheet annealing at 800 ° C for 1 hour,
The first cold rolling was performed to a thickness of 0.80 mm (rolling reduction: 65
%). Steel types C, D, E, F and G could be rolled to the target plate thickness, but steel types A and B could not be rolled due to cracking. Therefore, for the steel types A and B, the test pieces were heated to 300 ° C. and subjected to warm rolling to obtain the target sheet thickness.

【0057】1回目の冷間圧延板に880 ℃で1分間均熱
の中間焼鈍を施した後、鋼種A、Bについては 300℃
で、鋼種C、D、E、F、Gについては室温で、それぞ
れ2回目の冷間圧延を行い、0.35mm厚に仕上げた(圧下
率:56%)。
After the first cold-rolled plate was subjected to intermediate annealing at 880 ° C. for 1 minute, the steel types A and B were heated to 300 ° C.
Then, each of the steel types C, D, E, F and G was subjected to the second cold rolling at room temperature to finish to a thickness of 0.35 mm (reduction rate: 56%).

【0058】2回目の冷間圧延板に870 ℃で1分間均熱
の焼鈍を行ってから、打ち抜きによりエプスタイン磁気
測定試験片 (幅30mm、長さ 280mm:継目、横目半々) を
作製した。しかし、鋼種A、Bは端面から亀裂が入り割
れてしまった。そこで、鋼種A、Bについては放電加工
により上記の磁気測定試験片に加工した。
After the second cold-rolled sheet was annealed at 870 ° C. for 1 minute with uniform heat, a test piece (30 mm width, 280 mm length: seam, half width) was prepared by punching. However, steel types A and B were cracked from the end faces. Therefore, steel types A and B were processed into the above-described magnetic measurement test pieces by electric discharge machining.

【0059】これらの磁気測定試験片は750 ℃で2時間
の歪取り焼鈍を実施した。その後、励磁周波数1kHz で
JIS C2550 に定める可聴周波鉄損試験により鉄損を測定
し、表1に示す結果を得た。
These magnetic test pieces were subjected to strain relief annealing at 750 ° C. for 2 hours. Then, at an excitation frequency of 1 kHz
Iron loss was measured by an audio iron loss test specified in JIS C2550, and the results shown in Table 1 were obtained.

【0060】焼鈍後の結晶粒径は40〜60μmであり、励
磁周波数1kHz での最適結晶粒径の範囲 (30〜70μm)
内にあった。なお、表1には各鋼種の冷間圧延および打
ち抜きでの割れ発生有(×)無(○)も併せて示す。
The crystal grain size after annealing is 40 to 60 μm, and the range of the optimum crystal grain size at an excitation frequency of 1 kHz (30 to 70 μm)
Was within. Table 1 also shows whether or not cracking occurred (×) or not (○) in cold rolling and punching of each steel type.

【0061】[0061]

【表1】 [Table 1]

【0062】本発明鋼種であるC、Dは、冷間圧延や打
ち抜き加工で割れの発生がなく極めて良好な加工性を示
すと共に、鉄損も、従来から良好であることが知られて
いる高珪素鋼に相当する鋼種Aと同等の良好なものであ
ることがわかる。また、本発明鋼種よりもSiが高い鋼種
E、同じくMnが低い鋼種F、および同じく( Si+Al+1/
2 ・Mn )が低い鋼種Gでは、加工性は良好であるが、鉄
損が劣っている。
[0062] The steel types C and D of the present invention exhibit extremely good workability without cracking during cold rolling and punching, and have high iron loss, which is conventionally known to be good. It can be seen that it is as good as steel type A corresponding to silicon steel. Further, steel type E having a higher Si than the steel type of the present invention, steel type F having a lower Mn, and (Si + Al + 1 /
Steel type G with low 2 · Mn) has good workability but inferior iron loss.

【0063】(実施例2)高周波炉で表2に示す組成の
供試鋼を真空溶製し、50kgインゴットとした。表2に示
す三元素以外の含有量は、全ての鋼種において実施例1
と同様のレベルであった。
(Example 2) A test steel having the composition shown in Table 2 was vacuum-melted in a high-frequency furnace to obtain a 50 kg ingot. The contents other than the three elements shown in Table 2 are the same as those in Example 1 for all steel types.
Was at a similar level.

【0064】各インゴットは1100℃に加熱した後、仕上
温度810 ℃の熱間圧延により2.3 mm厚の熱延板とした。
次に、表2に示す温度で1分間均熱の熱延板焼鈍を行っ
た後、表2に示す圧下率と板厚条件で1回目の冷間圧延
を行った。ただし、試験No.1は熱延板焼鈍なしである。
次いで、770 ℃で1時間均熱の中間焼鈍を行った後、表
2に示す圧下率で2回目の冷間圧延により、0.23mm厚に
仕上げ、さらに880 ℃で1分間均熱の焼鈍を施した。
After each ingot was heated to 1100 ° C., it was hot-rolled at a finishing temperature of 810 ° C. to form a hot-rolled sheet having a thickness of 2.3 mm.
Next, after performing a hot-rolled sheet annealing at a temperature shown in Table 2 for 1 minute, a first cold rolling was performed under the conditions of the rolling reduction and the sheet thickness shown in Table 2. However, in test No. 1, no hot-rolled sheet annealing was performed.
Next, after performing an intermediate annealing at 770 ° C. for 1 hour, a second cold rolling was performed at a rolling reduction shown in Table 2 to obtain a thickness of 0.23 mm, and further annealing at 880 ° C. for 1 minute. did.

【0065】その後、打ち抜きにより実施例1と同様の
エプスタイン試験片を採取し、 770℃で5分間の歪取り
焼鈍を施してから実施例1と同様の方法で鉄損を測定し
た。
Thereafter, the same Epstein test piece as in Example 1 was sampled by punching, subjected to a strain relief annealing at 770 ° C. for 5 minutes, and then the iron loss was measured in the same manner as in Example 1.

【0066】表2にこの磁気測定結果も示す。焼鈍後の
結晶粒径は、いずれも、45〜65μmであり、励磁周波数
1kHz での最適結晶粒径の範囲 (30〜70μm) 内にあっ
た。
Table 2 also shows the results of the magnetic measurement. The crystal grain size after annealing is 45-65 μm,
It was within the range of the optimal crystal grain size at 1 kHz (30-70 μm).

【0067】[0067]

【表2】 [Table 2]

【0068】本発明方法である試験No.5、6では、冷間
圧延や打ち抜き加工で割れの発生がなく極めて良好な加
工性を示すと共に、鉄損も良好なものであることがわか
る。
In Tests Nos. 5 and 6, which are the methods of the present invention, it can be seen that there is no generation of cracks in cold rolling or punching, very good workability is exhibited, and iron loss is also good.

【0069】しかし、熱延板焼鈍を実施しなかった試験
No.1と、熱延板焼鈍温度が本発明範囲よりも低い試験N
o.2では、鉄損が劣っている。熱延板焼鈍温度が本発明
範囲より高い試験No.8では、冷間圧延時に割れが発生
し、以後の実験が行えなかった。
However, a test in which hot-rolled sheet annealing was not performed
No.1 and test N where the hot-rolled sheet annealing temperature was lower than the range of the present invention
In o.2, iron loss is inferior. In Test No. 8, in which the hot-rolled sheet annealing temperature was higher than the range of the present invention, cracks occurred during cold rolling, and subsequent experiments could not be performed.

【0070】1回目と2回目の冷間圧延圧下率が、本発
明範囲より高いか、または低い試験No.3、4、7では、
化学組成と熱延板焼鈍条件とが共に本発明範囲内であっ
ても鉄損が劣っている。
In Test Nos. 3, 4 and 7 in which the first and second cold rolling reductions were higher or lower than the range of the present invention,
The core loss is inferior even if both the chemical composition and the hot-rolled sheet annealing conditions are within the range of the present invention.

【0071】(実施例3)高周波炉でSi:1.44%、Mn:
1.84%、Al:4.04%の組成の供試鋼を真空溶製し、50kg
インゴットとした。Si、Mn、Al以外の含有量は、全ての
鋼種において実施例1と同様のレベルであった。
(Example 3) Si: 1.44%, Mn:
1.84%, Al: 4.04% composition steel, vacuum melted, 50kg
Ingot. The contents other than Si, Mn and Al were at the same level as in Example 1 in all steel types.

【0072】各インゴットは1130℃に加熱した後、仕上
温度800 ℃の熱間圧延により2.5 mm厚の熱延板とした。
次に、780 ℃で1時間均熱の熱延板焼鈍を施してから、
室温で1回目の冷間圧延を行い、0.80mm厚とした(圧下
率:68%)。
Each ingot was heated to 1130 ° C., and then hot-rolled at a finishing temperature of 800 ° C. to form a hot-rolled sheet having a thickness of 2.5 mm.
Next, after performing hot-rolled sheet annealing at 780 ° C. for 1 hour,
The first cold rolling was performed at room temperature to obtain a thickness of 0.80 mm (reduction rate: 68%).

【0073】次いで、750 ℃で1時間均熱の中間焼鈍を
施した後に、室温で2回目の冷間圧延を行い、0.35mm厚
に仕上げた(圧下率:56%)。その後、実施例1と同様
のエプスタイン試験片を採取してから 700〜900 ℃で30
分間均熱の焼鈍を行い、結晶粒径と励磁周波数1kHz で
の磁気の測定を実施した。
Then, after performing an intermediate annealing at 750 ° C. for 1 hour, a second cold rolling was performed at room temperature to finish to a thickness of 0.35 mm (reduction rate: 56%). After that, the same Epstein test piece as in Example 1 was collected, and then at 700 to 900 ° C. for 30 minutes.
The soaking was performed for 1 minute, and the crystal grain size and the magnetism at an excitation frequency of 1 kHz were measured.

【0074】図1は、焼鈍後の結晶粒径と鉄損(W
13/1k )との関係を示す図である。図示するように、結
晶粒径が励磁周波数1kHz での最適結晶粒径の範囲(30
〜70μm)内にあれば、良好な鉄損が得られることがわ
かる。
FIG. 1 shows the crystal grain size and the iron loss (W
13 / 1k ). As shown in the figure, the range of the optimum crystal grain size at the excitation frequency of 1 kHz (30
It can be seen that a good iron loss can be obtained if it is within the range of about 70 μm).

【0075】(実施例4)高周波炉でSi:1.07%、Mn:
1.28%、Al:4.47%の組成の供試鋼を真空溶製し、50kg
インゴットとした。Si、Mn、Al以外の含有量は、全ての
鋼種において実施例1と同様のレベルであった。
Example 4 In a high frequency furnace, Si: 1.07%, Mn:
1.28%, Al: 4.47% composition steel is vacuum melted and 50kg
Ingot. The contents other than Si, Mn and Al were at the same level as in Example 1 in all steel types.

【0076】各インゴットは1150℃に加熱した後、仕上
温度840 ℃の熱間圧延により2.3 mm厚の熱延板とした。
次に、880 ℃で1分間均熱の熱延板焼鈍を施してから、
室温で1回目の冷間圧延を行い、0.70mm厚とした(圧下
率:70%)。
After each ingot was heated to 1150 ° C., it was hot-rolled at a finishing temperature of 840 ° C. to form a 2.3 mm thick hot rolled sheet.
Next, after hot-rolled sheet annealing at 880 ° C for 1 minute,
The first cold rolling was performed at room temperature to reduce the thickness to 0.70 mm (reduction rate: 70%).

【0077】次いで、840 ℃で1分間均熱の中間焼鈍を
施した後に、室温で2回目の冷間圧延を行い、0.35mm厚
に仕上げた(圧下率:50%)。その後、実施例1と同様
のエプスタイン試験片を採取してから 750〜950 ℃で30
分間均熱の焼鈍を行い、結晶粒径と励磁周波数 400Hz
での磁気の測定を実施した。
Then, after performing an intermediate annealing at 840 ° C. for 1 minute soaking, a second cold rolling was performed at room temperature to finish to a thickness of 0.35 mm (rolling reduction: 50%). After that, the same Epstein test piece as in Example 1 was collected,
Annealing for 400 minutes, crystal grain size and excitation frequency 400Hz
Of the magnetism was measured.

【0078】図2は、焼鈍後の結晶粒径と鉄損(W
13/400)との関係を示す図である。図示するように、結
晶粒径が、励磁周波数 400Hz での最適結晶粒径の範囲
(48〜88μm)内にあれば、良好な鉄損が得られること
がわかる。
FIG. 2 shows the crystal grain size and the iron loss (W
13/400 ). As shown in the figure, when the crystal grain size is within the range of the optimum crystal grain size (48 to 88 μm) at the excitation frequency of 400 Hz, it is understood that good iron loss can be obtained.

【0079】(実施例5)高周波炉で表3に示す組成の
7種類の供試鋼を真空溶製し、50kgインゴットとした。
これらの供試鋼は、Nを除き電気抵抗がほぼ等しい高合
金組成のものである。供試鋼の電気抵抗を表3に示す。
表3に示す三元素以外の含有量は、全ての鋼種において
実施例1と同様のレベルであった。
Example 5 Seven kinds of test steels having the compositions shown in Table 3 were vacuum-melted in a high-frequency furnace to obtain 50 kg ingots.
These test steels have a high alloy composition having almost the same electric resistance except N. Table 3 shows the electrical resistance of the test steel.
The contents other than the three elements shown in Table 3 were at the same level as in Example 1 in all steel types.

【0080】各インゴットは1170℃に加熱した後、仕上
温度800 ℃の熱間圧延により2.3mm厚の熱延板とした。
次に、1回目の冷間圧延を行い、0.80mm厚とした(圧下
率:65%)。
After each ingot was heated to 1170 ° C., it was hot-rolled at a finishing temperature of 800 ° C. to form a 2.3 mm thick hot rolled sheet.
Next, the first cold rolling was performed to reduce the thickness to 0.80 mm (reduction ratio: 65%).

【0081】鋼種J、K、L、M、Nは目標の板厚まで
圧延できたものの、鋼種H、Iは割れが入り圧延できな
かった。そこで、鋼種H、Iは試験片を300 ℃まで加熱
して温間圧延を施し、目標の板厚とした(圧下率:65
%)。
Steel types J, K, L, M and N could be rolled to the target thickness, but steel types H and I were cracked and could not be rolled. Therefore, for the steel types H and I, the test pieces were heated to 300 ° C. and subjected to warm rolling to obtain the target sheet thickness (reduction ratio: 65%).
%).

【0082】1回目の冷間圧延板に900 ℃で1分間均熱
の中間焼鈍を施した後、鋼種H、Iについては300 ℃
で、鋼種J、K、L、M、Nについては室温で、それぞ
れ2回目の冷間圧延を行い、0.35mm厚に仕上げた(圧下
率:56%)。
After the first cold-rolled sheet was subjected to soaking at 900 ° C. for 1 minute, the steel types H and I were heated to 300 ° C.
Then, the steel types J, K, L, M, and N were each subjected to the second cold rolling at room temperature to finish to a thickness of 0.35 mm (a reduction ratio: 56%).

【0083】2回目の冷間圧延板に850 ℃で1分間均熱
の焼鈍を行ってから、打ち抜きによりリング状磁気測定
試験片 (内径33mm、外径45mm) を作製した。しかし、鋼
種H、Iは端面から亀裂が入り割れてしまった。そこ
で、鋼種H、Iについては放電加工により上記の磁気測
定試験片に加工した。
After the second cold-rolled sheet was annealed at 850 ° C. for 1 minute soak, a ring-shaped magnetic measurement specimen (inner diameter 33 mm, outer diameter 45 mm) was prepared by punching. However, steel types H and I were cracked from the end faces and cracked. Therefore, steel types H and I were processed into the above-described magnetic measurement test pieces by electric discharge machining.

【0084】これらの磁気測定試験片は750 ℃で2時間
の歪取り焼鈍を実施した。その後、励磁周波数1kHz で
鉄損を測定し、表3に示す結果を得た。
These magnetic test pieces were subjected to strain relief annealing at 750 ° C. for 2 hours. Thereafter, iron loss was measured at an excitation frequency of 1 kHz, and the results shown in Table 3 were obtained.

【0085】焼鈍後の結晶粒径は40〜60μmであり、励
磁周波数1kHz での最適結晶粒径の範囲 (30〜70μm)
内にあった。なお、表3には各鋼種の冷間圧延および打
ち抜きでの割れ発生有(×)無(○)も併せて示す。
The crystal grain size after annealing is 40 to 60 μm, and the range of the optimum crystal grain size at an excitation frequency of 1 kHz (30 to 70 μm)
Was within. Table 3 also shows the occurrence of cracks (×) and no (○) in each steel type during cold rolling and punching.

【0086】[0086]

【表3】 [Table 3]

【0087】本発明鋼種であるJ、Kは、冷間圧延や打
ち抜き加工で割れの発生がなく極めて良好な加工性を示
すと共に、鉄損も、従来から良好であることが知られて
いる高珪素鋼に相当する鋼種Hと同等の良好なものであ
ることがわかる。また、本発明鋼種よりもSiが高い鋼種
L、同じくMnが低い鋼種M、および同じく( Si+Al+1/
2 ・Mn )が低い鋼種Nでは、加工性は良好であるが、鉄
損が劣っている。
The steel grades J and K of the present invention exhibit extremely good workability without cracking during cold rolling and punching, and have high iron loss, which is conventionally known to be good. It can be seen that it is as good as steel type H corresponding to silicon steel. Further, steel type L having a higher Si than the steel type of the present invention, steel type M having a lower Mn, and (Si + Al + 1 /
Steel type N with low 2 · Mn) has good workability but inferior iron loss.

【0088】(実施例6)高周波炉で表4に示す組成の
供試鋼を真空溶製し、50kgインゴットとした。表4に示
す三元素以外の含有量は、全ての鋼種において実施例1
と同様のレベルであった。
Example 6 A test steel having the composition shown in Table 4 was vacuum-melted in a high-frequency furnace to obtain a 50 kg ingot. The contents other than the three elements shown in Table 4 are the same as those in Example 1 for all steel types.
Was at a similar level.

【0089】各インゴットは1150℃に加熱した後、仕上
温度810 ℃の熱間圧延により2.3 mm厚の熱延板とした。
次に、表4に示す圧下率と板厚条件で1回目の冷間圧延
を行った。次いで、780 ℃で1時間均熱の中間焼鈍を行
った後、表4に示す圧下率で2回目の冷間圧延により、
0.23mm厚に仕上げ、さらに890 ℃で1分間均熱の焼鈍を
施した。
After each ingot was heated to 1150 ° C., a hot-rolled sheet having a thickness of 2.3 mm was formed by hot rolling at a finishing temperature of 810 ° C.
Next, the first cold rolling was performed under the conditions of the rolling reduction and the sheet thickness shown in Table 4. Next, after performing an intermediate annealing at 780 ° C. for 1 hour soaking, a second cold rolling was performed at a rolling reduction shown in Table 4.
It was finished to a thickness of 0.23 mm and further annealed at 890 ° C. for 1 minute.

【0090】その後、打ち抜きにより実施例5と同様の
リング状磁気測定試験片を採取し、750 ℃で10分間の歪
取り焼鈍を施してから、実施例5と同様の方法で鉄損を
測定した。表4にこの磁気測定結果も示す。
Thereafter, the same ring-shaped magnetic measurement test piece as in Example 5 was sampled by punching, subjected to strain relief annealing at 750 ° C. for 10 minutes, and then measured for iron loss in the same manner as in Example 5. . Table 4 also shows the results of the magnetic measurement.

【0091】焼鈍後の結晶粒径は、いずれも45〜65μm
であり、励磁周波数1kHz での最適結晶粒径の範囲 (30
〜70μm) 内にあった。
The crystal grain size after annealing was 45 to 65 μm.
And the optimal crystal grain size range at the excitation frequency of 1 kHz (30
7070 μm).

【0092】[0092]

【表4】 [Table 4]

【0093】本発明方法である試験No.11 、12では、冷
間圧延や打ち抜き加工で割れの発生がなく、極めて良好
な加工性を示すと共に、鉄損も良好なものであることが
わかる。しかし、1回目と2回目の冷間圧延圧下率が、
本発明範囲より高いか、または低い試験No.9、10、13で
は、鉄損が劣っている。
In Tests Nos. 11 and 12, which are the methods of the present invention, it can be seen that there is no occurrence of cracks in cold rolling or punching, extremely good workability, and good iron loss. However, the first and second cold rolling reduction rates are:
In Test Nos. 9, 10, and 13 higher or lower than the range of the present invention, iron loss is inferior.

【0094】(実施例7)高周波炉でSi:1.21%、Mn:
1.24%、Al:4.41%の組成の供試鋼を真空溶製し、50kg
インゴットとした。Si、Mn、Al以外の含有量は、全ての
鋼種において実施例1と同様の含有量レベルであった。
(Example 7) Si: 1.21%, Mn:
1.24%, Al: 4.41% of test steel is vacuum melted and 50kg
Ingot. The contents other than Si, Mn and Al were at the same content levels as in Example 1 in all steel types.

【0095】各インゴットは1150℃に加熱した後、仕上
温度 810℃の熱間圧延により2.5 mm厚の熱延板とした。
次に、室温で1回目の冷間圧延を行い、0.80mm厚とした
(圧下率:68%)。
After each ingot was heated to 1150 ° C., a hot-rolled sheet having a thickness of 2.5 mm was formed by hot rolling at a finishing temperature of 810 ° C.
Next, the first cold rolling was performed at room temperature to reduce the thickness to 0.80 mm (reduction rate: 68%).

【0096】次いで、700 ℃で5時間均熱の中間焼鈍を
施した後に、室温で2回目の冷間圧延を行い、0.35mm厚
に仕上げた(圧下率:56%)。その後、打ち抜きにより
実施例5と同様のリング状磁気測定試験片を採取してか
ら、 700〜1100℃で30秒間均熱の焼鈍を行い、結晶粒径
と励磁周波数1kHz での磁気の測定を実施した。
Next, after performing an intermediate annealing at 700 ° C. for 5 hours soaking, a second cold rolling was performed at room temperature to finish to a thickness of 0.35 mm (rolling reduction: 56%). Then, the same ring-shaped magnetism test specimen as in Example 5 was sampled by punching, and then annealed at 700-1100 ° C. for 30 seconds to measure the crystal grain size and magnetism at an excitation frequency of 1 kHz. did.

【0097】図3は、焼鈍後の結晶粒径と鉄損(W
13/1k )との関係を示す図である。図示するように、結
晶粒径が励磁周波数1kHz での最適結晶粒径の範囲(30
〜70μm)内にあれば、良好な鉄損が得られることがわ
かる。
FIG. 3 shows the crystal grain size and the iron loss (W
13 / 1k ). As shown in the figure, the range of the optimum crystal grain size at the excitation frequency of 1 kHz (30
It can be seen that good iron loss can be obtained if the thickness is within 70 μm).

【0098】(実施例8)高周波炉でSi:1.03%、Mn:
1.33%、Al:4.27%の組成の供試鋼を真空溶製し、50kg
インゴットとした。Si、Mn、Al以外の含有量は、全ての
鋼種において実施例1と同様のレベルであった。
Example 8 In a high frequency furnace, Si: 1.03%, Mn:
Sample steel of 1.33%, Al: 4.27% composition is vacuum melted and 50kg
Ingot. The contents other than Si, Mn and Al were at the same level as in Example 1 in all steel types.

【0099】各インゴットは1120℃に加熱した後、仕上
温度 820℃の熱間圧延により2.3 mm厚の熱延板とした。
次に、室温で1回目の冷間圧延を行い、0.70mm厚とした
(圧下率:70%)。
After each ingot was heated to 1120 ° C., it was hot-rolled at a finishing temperature of 820 ° C. to form a hot-rolled sheet having a thickness of 2.3 mm.
Next, the first cold rolling was performed at room temperature to reduce the thickness to 0.70 mm (reduction rate: 70%).

【0100】次いで 740℃で1時間均熱の中間焼鈍を施
した後に、室温で2回目の冷間圧延を行い、0.35mm厚に
仕上げた(圧下率:50%)。その後、打ち抜きにより実
施例5と同様のリング状磁気測定試験片を採取してか
ら、 700〜1100℃で30秒間均熱の焼鈍を行い、結晶粒径
と励磁周波数 400Hz での磁気の測定を実施した。
Next, after performing an intermediate annealing at 740 ° C. for 1 hour soaking, a second cold rolling was performed at room temperature to finish to a thickness of 0.35 mm (rolling reduction: 50%). Then, the same ring-shaped magnetism test specimen as in Example 5 was sampled by punching, and then annealed at 700-1100 ° C. for 30 seconds to measure the crystal grain size and magnetism at an excitation frequency of 400 Hz. did.

【0101】図4は、焼鈍後の結晶粒径と鉄損(W
13/400)との関係を示す図である。図示するように、結
晶粒径が、励磁周波数 400Hz での最適結晶粒径の範囲
(48〜88μm)内にあれば、良好な鉄損が得られること
がわかる。
FIG. 4 shows the crystal grain size and the iron loss (W
13/400 ). As shown in the figure, when the crystal grain size is within the range of the optimum crystal grain size (48 to 88 μm) at the excitation frequency of 400 Hz, it is understood that good iron loss can be obtained.

【0102】[0102]

【発明の効果】本発明の無方向性電磁鋼板は、冷間加工
性および高周波域における、圧延方向とその直角方向の
平均磁気特性または板厚全周方向の平均磁気特性に優れ
るものである。この鋼板を製造する方法および鋼板を打
ち抜き加工する方法には、特殊な設備と条件を要しな
い。
The non-oriented electrical steel sheet of the present invention is excellent in cold workability and average magnetic properties in the high frequency range in the direction perpendicular to the rolling direction and in the direction perpendicular to the rolling direction or in the entire thickness direction. No special equipment and conditions are required for the method of manufacturing the steel sheet and the method of punching the steel sheet.

【図面の簡単な説明】[Brief description of the drawings]

【図1】小型変圧器用の無方向性電磁鋼板における結晶
粒径と鉄損(W13/1k ) との関係の例を示す図である。
FIG. 1 is a diagram showing an example of the relationship between the crystal grain size and iron loss (W 13 / 1k ) in a non-oriented electrical steel sheet for a small transformer.

【図2】同じく結晶粒径と鉄損(W13/400) との関係の
例を示す図である。
FIG. 2 is a graph showing an example of the relationship between the crystal grain size and iron loss (W 13/400 ).

【図3】回転機用の無方向性電磁鋼板における結晶粒径
と鉄損(W13/1k ) との関係の例を示す図である。
FIG. 3 is a diagram showing an example of the relationship between the crystal grain size and iron loss (W 13 / 1k ) in a non-oriented electrical steel sheet for a rotating machine.

【図4】同じく結晶粒径と鉄損(W13/400) との関係の
例を示す図である。
FIG. 4 is a diagram showing an example of the relationship between the crystal grain size and iron loss (W 13/400 ).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−223445(JP,A) 特開 平4−341539(JP,A) 特開 平4−224624(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 - 38/60 C21D 8/12,9/46 501 H01F 1/16────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-223445 (JP, A) JP-A-4-341539 (JP, A) JP-A-4-224624 (JP, A) (58) Field (Int.Cl. 6 , DB name) C22C 38/00-38/60 C21D 8 / 12,9 / 46 501 H01F 1/16

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、Si:1.5 %未満、Al: 2.5〜6.
0 %およびMn: 1.0〜3.0 %を含み、かつ下記式を満
足し、残部は実質的にFeおよび不可避的不純物からな
り、結晶粒径R (μm) が下記式を満足する鉄損の低
い無方向性電磁鋼板。 〔Si(%) + Al(%)+ 1/2・Mn(%) 〕≧ 5.5%・・・・・ ( 500×f-1/3−20 )≦R≦ ( 500×f-1/3+20 )・・ ただし、fは励磁周波数(Hz)を表す。
(1) By weight%, Si: less than 1.5%, Al: 2.5-6.
0% and Mn: 1.0 to 3.0%, satisfying the following formula, the balance being substantially composed of Fe and unavoidable impurities, and having a low iron loss having a crystal grain size R (μm) satisfying the following formula. Grain-oriented electrical steel sheets. [Si (%) + Al (%) + 1/2 · Mn (%)] ≧ 5.5% ・ ・ ・ (500 × f -1/3 −20) ≦ R ≦ (500 × f −1/3 +20) where f represents the excitation frequency (Hz).
【請求項2】重量%で、Si:1.5 %未満、Al: 2.5〜6.
0 %およびMn: 1.0〜3.0 %を含み、かつ下記式を満
足し、残部は実質的にFeおよび不可避的不純物からなる
鋼スラブを熱間圧延した後、中間焼鈍を挟む2回の冷間
圧延で1回目、2回目の圧下率を共に40〜80%として製
品板厚に仕上げた後焼鈍を行い、結晶粒径R (μm)を
下記式を満たす範囲とする鉄損の低い無方向性電磁鋼
板の製造方法。 〔Si(%) + Al(%)+ 1/2・Mn(%) 〕≧ 5.5%・・・・・ ( 500×f-1/3−20 )≦R≦ ( 500×f-1/3+20 )・・ ただし、fは励磁周波数(Hz)を表す。
(2) By weight%, Si: less than 1.5%, Al: 2.5-6.
0% and Mn: 1.0 to 3.0%, and the following formula is satisfied, and the rest is substantially cold-rolled twice by hot rolling a steel slab consisting essentially of Fe and unavoidable impurities, followed by intermediate annealing. In the first and second times, the reduction rate is 40 to 80% for both products, and the product is finished to a thickness, annealing is performed, and the crystal grain size R (μm) falls within a range satisfying the following formula. Steel plate manufacturing method. [Si (%) + Al (%) + 1/2 · Mn (%)] ≧ 5.5% ・ ・ ・ (500 × f -1/3 −20) ≦ R ≦ (500 × f −1/3 +20) where f represents the excitation frequency (Hz).
【請求項3】重量%で、Si:1.5 %未満、Al: 2.5〜6.
0 %およびMn: 1.0〜3.0 %を含み、かつ下記式を満
足し、残部は実質的にFeおよび不可避的不純物からなる
鋼スラブを熱間圧延した後、 650〜1000℃で熱延板焼鈍
を施してから、中間焼鈍を挟む2回の冷間圧延で1回
目、2回目の圧下率を共に40〜80%として製品板厚に仕
上げた後焼鈍を行い、結晶粒径R (μm) を下記式を
満たす範囲とする鉄損の低い無方向性電磁鋼板の製造方
法。 〔Si(%) + Al(%)+ 1/2・Mn(%) 〕≧ 5.5%・・・・・ ( 500×f-1/3−20 )≦R≦ ( 500×f-1/3+20 )・・ ただし、fは励磁周波数(Hz)を表す。
(3) By weight%, Si: less than 1.5%, Al: 2.5-6.
0% and Mn: 1.0 to 3.0%, and the following formula is satisfied. The remainder is substantially hot-rolled from a steel slab substantially composed of Fe and unavoidable impurities. After the first and second cold rolling with intermediate annealing, the first and second rolling reductions are both 40-80% and finished to product thickness, and then annealing is performed. The crystal grain size R (μm) is as follows: A method for producing a non-oriented electrical steel sheet having a low iron loss within a range satisfying the formula. [Si (%) + Al (%) + 1/2 · Mn (%)] ≧ 5.5% ・ ・ ・ (500 × f -1/3 −20) ≦ R ≦ (500 × f −1/3 +20) where f represents the excitation frequency (Hz).
JP6019410A 1994-02-16 1994-02-16 Non-oriented electrical steel sheet with low iron loss and method of manufacturing the same Expired - Fee Related JP2861787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6019410A JP2861787B2 (en) 1994-02-16 1994-02-16 Non-oriented electrical steel sheet with low iron loss and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6019410A JP2861787B2 (en) 1994-02-16 1994-02-16 Non-oriented electrical steel sheet with low iron loss and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07228953A JPH07228953A (en) 1995-08-29
JP2861787B2 true JP2861787B2 (en) 1999-02-24

Family

ID=11998490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6019410A Expired - Fee Related JP2861787B2 (en) 1994-02-16 1994-02-16 Non-oriented electrical steel sheet with low iron loss and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2861787B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2602335B1 (en) 2010-08-04 2020-03-18 Nippon Steel Corporation Manufacturing method of non-oriented electrical steel sheet
JP5671870B2 (en) * 2010-08-09 2015-02-18 新日鐵住金株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP5671872B2 (en) * 2010-08-09 2015-02-18 新日鐵住金株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP5671871B2 (en) * 2010-08-09 2015-02-18 新日鐵住金株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP6643279B2 (en) * 2016-08-10 2020-02-12 ポスコPosco High-grade steel continuous hot rolling method
DE102018201622A1 (en) * 2018-02-02 2019-08-08 Thyssenkrupp Ag Afterglow, but not nachglühpflichtiges electrical tape
CN115341083B (en) * 2022-09-13 2024-07-23 江苏省沙钢钢铁研究院有限公司 Non-oriented silicon steel for high-frequency motor and production method thereof

Also Published As

Publication number Publication date
JPH07228953A (en) 1995-08-29

Similar Documents

Publication Publication Date Title
JP4880467B2 (en) Improved manufacturing method of non-oriented electrical steel sheet
JP2861787B2 (en) Non-oriented electrical steel sheet with low iron loss and method of manufacturing the same
JP5839172B2 (en) Method for producing grain-oriented electrical steel sheet
JP2970423B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPH11310857A (en) Nonoriented silicon steel sheet and its manufacture
JP7465354B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP2000104144A (en) Silicon steel sheet excellent in magnetic property in l orientation and c orientation and its production
JP3931842B2 (en) Method for producing non-oriented electrical steel sheet
JPH0978129A (en) Production of nonortiented silicon steel sheet extremely excellent in magnetic property in all orientation
JP4568999B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP7245325B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP3379055B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2023554123A (en) Non-oriented electrical steel sheet and its manufacturing method
JP3352904B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP2874564B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP3252692B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same
JP3178270B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP3533655B2 (en) Method for producing low-grade electrical steel sheet with small magnetic anisotropy and low-grade electrical steel sheet with small magnetic anisotropy
JP2718340B2 (en) Manufacturing method of non-oriented electrical steel sheet with low iron loss
JP3937685B2 (en) Electrical steel sheet with excellent high-frequency magnetic properties and method for producing the same
JP2760262B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPH08283853A (en) Production of nonoriented cilicon steel sheet excellent in magnetic property
WO2023282072A1 (en) Non-oriented electrical steel plate and manufacturing method thereof
JP2666626B2 (en) Low iron loss non-oriented electrical steel sheet and its manufacturing method
JP7583814B2 (en) Non-oriented electrical steel sheet and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees