JP2859304B2 - Manufacturing method of nonlinear resistance element - Google Patents
Manufacturing method of nonlinear resistance elementInfo
- Publication number
- JP2859304B2 JP2859304B2 JP18220589A JP18220589A JP2859304B2 JP 2859304 B2 JP2859304 B2 JP 2859304B2 JP 18220589 A JP18220589 A JP 18220589A JP 18220589 A JP18220589 A JP 18220589A JP 2859304 B2 JP2859304 B2 JP 2859304B2
- Authority
- JP
- Japan
- Prior art keywords
- tantalum
- manufacturing
- wiring
- forming
- metal layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 229910052715 tantalum Inorganic materials 0.000 claims description 13
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 12
- 239000012212 insulator Substances 0.000 claims description 10
- 239000004973 liquid crystal related substance Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 239000011521 glass Substances 0.000 claims description 4
- 238000000059 patterning Methods 0.000 claims description 4
- 238000000206 photolithography Methods 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 2
- 238000009740 moulding (composite fabrication) Methods 0.000 claims 1
- 239000004020 conductor Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001259 photo etching Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000007743 anodising Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアクティブマトリクス方式液晶表示パネルに
おいて、液晶スイッチング素子に用いられるタンタル
(Ta)−絶縁体−金属、またはタンタル(Ta)−絶縁体
−透明導電体構造(以下、MIMと記す)を有する非線形
抵抗素子の製造方法にかんする。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a tantalum (Ta) -insulator-metal or tantalum (Ta) -insulator- used for a liquid crystal switching element in an active matrix type liquid crystal display panel. The present invention relates to a method for manufacturing a nonlinear resistance element having a transparent conductor structure (hereinafter, referred to as MIM).
MIM素子とは、たとえば特開昭61−295528号公報に記
載されているように、タンタル(Ta)−酸化タンタル
(Ta2O5)−酸化インジウムスズ(ITO)のような金属−
絶縁体−透明導電体の3層構造であり、その電流−電圧
特性は非線形を示す。For example, as described in JP-A-61-295528, a MIM element is a metal such as tantalum (Ta) -tantalum oxide (Ta2O5) -indium tin oxide (ITO).
It has a three-layer structure of an insulator and a transparent conductor, and its current-voltage characteristics are non-linear.
以下に、Ta−Ta2O5−ITO構造における従来技術の製造
方法について、第3図を用いて説明する。Hereinafter, a conventional manufacturing method for a Ta-Ta2O5-ITO structure will be described with reference to FIG.
第3図(a)はMIM素子を示す平面図であり、第3図
(b)は第3図(a)におけるA−B線における断面を
示す断面図である。FIG. 3A is a plan view showing the MIM element, and FIG. 3B is a cross-sectional view showing a cross section taken along line AB in FIG. 3A.
ガラス基板1上にTa2をスパッタリング法により厚さ2
50nm形成し、フォトエッチング処理によりパターニング
し、Ta2からなるMIM素子の下部電極と配線とを形成す
る。このTa2の平面パターン形状は、第3図(a)の実
線5で示す。Spread Ta2 on glass substrate 1 to a thickness of 2
It is formed to a thickness of 50 nm and patterned by photoetching to form a lower electrode and a wiring of the MIM element made of Ta2. This planar pattern shape of Ta2 is shown by the solid line 5 in FIG.
つぎに陽極酸化法により、Ta2表面に絶縁体3としてT
a2O5を厚さ50nm形成する。Next, anodizing is performed to form an insulator 3 on the Ta2 surface.
a2O5 is formed to a thickness of 50 nm.
つぎに透明導電体4として、ITOをスパッタリング法
により厚さ200nm形成し、フォトエッチング処理により
パターニングし、ITOからなるMIM素子の上部電極と液晶
駆動用画素電極とを形成する。この透明導電体4の平面
パターン形状は、第3図(a)の破線6で示す。Next, as the transparent conductor 4, ITO is formed to a thickness of 200 nm by a sputtering method, and is patterned by a photoetching process to form an upper electrode of the MIM element made of ITO and a pixel electrode for driving a liquid crystal. The planar pattern shape of the transparent conductor 4 is shown by a broken line 6 in FIG.
Ta2と透明導電体4の重なった領域がMIM素子となる。 The region where Ta2 and the transparent conductor 4 overlap is the MIM element.
前述の製造方法により形成した配線およびMIM素子の
下部電極となるTaの結晶構造はβ系(tetragonal)とな
り、比抵抗は約160Ωcmとなる。The crystal structure of Ta formed as the lower electrode of the wiring and the MIM element formed by the above-described manufacturing method is β-based (tetragonal), and the specific resistance is about 160 Ωcm.
この比抵抗値は、対角10インチ以上の表示面積を有す
る液晶表示パネルを作製する場合、配線抵抗によって生
じる表示むらを低減するために、配線幅寸法を大きくす
る必要があり、これにより、有効表示面積の低下を招く
課題がある。When a liquid crystal display panel having a display area of 10 inches or more on a diagonal is manufactured, it is necessary to increase a wiring width dimension in order to reduce display unevenness caused by wiring resistance. There is a problem that the display area is reduced.
上記課題を解決するために、本発明の非線形抵抗素子
の製造方法は、下記記載の工程を採用する。In order to solve the above problems, a method for manufacturing a nonlinear resistance element according to the present invention employs the following steps.
すなわち本発明の非線形抵抗素子の製造方法は、下部
電極と絶縁体と上部電極の3層構造からなる非線形抵抗
素子の製造方法であって、ガラス基板上の全面に上記下
部電極と配線となる金属層とタンタルとを順次膜形成す
る工程と、フォトリソ法とエッチング法により、上記タ
ンタルと上記金属層をパターニングして上記下部電極と
上記配線とを形成する工程と、陽極酸化を行ない、上記
タンタルの上面と側面の酸化タンタルと、上記金属層の
側面の酸化金属層とからなる上記絶縁体とを形成する工
程と、透明導電膜を全面に形成し、フォトリソ法とエッ
チング法により、その透明導電膜をパターニングして上
記上部電極と液晶駆動用画素電極とを形成する工程とを
有することを特徴とする。That is, the method for manufacturing a nonlinear resistance element according to the present invention is a method for manufacturing a nonlinear resistance element having a three-layer structure of a lower electrode, an insulator, and an upper electrode. A step of sequentially forming a layer and a tantalum film, a step of patterning the tantalum and the metal layer by photolithography and an etching method to form the lower electrode and the wiring, and performing anodic oxidation to form the tantalum. A step of forming the insulator comprising the tantalum oxide on the top and side surfaces and the metal oxide layer on the side surface of the metal layer; forming a transparent conductive film over the entire surface; Patterning to form the upper electrode and the liquid crystal driving pixel electrode.
〔実施例〕 以下、図面を参照しながら本発明の非線形抵抗素子の
製造方法における実施例を詳細に説明する。Examples Examples of the method for manufacturing a nonlinear resistance element according to the present invention will be described below in detail with reference to the drawings.
第2図は本発明の実施例における非線形抵抗素子の製
造方法により作製したMIM素子を示す平面図であり、第
1図(a)〜(d)は第2図のA−B線における断面を
示し、本発明のMIM素子を作製するための製造方法にお
ける実施例を工程順に示す断面図である。以下、第1図
と第2図とを交互に参照して本発明の実施例を説明す
る。FIG. 2 is a plan view showing a MIM element manufactured by a method for manufacturing a nonlinear resistance element according to an embodiment of the present invention. FIGS. 1 (a) to 1 (d) are cross-sectional views taken along line AB in FIG. FIG. 2 is a cross-sectional view showing an example of a manufacturing method for manufacturing the MIM element of the present invention in the order of steps. Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2 alternately.
まずはじめに本発明の構造を、第1図(d)を用いて
説明する。First, the structure of the present invention will be described with reference to FIG.
MIM素子の下部電極と配線としては、タングステン
(W)8およびTa9で構成する。このW8およびTa9上に絶
縁体10を設け、さらにこの絶縁体10上にITO11を形成し
てMIM素子を構成する。The lower electrode and wiring of the MIM element are made of tungsten (W) 8 and Ta9. An insulator 10 is provided on the W8 and Ta9, and an ITO 11 is formed on the insulator 10 to form a MIM element.
つぎに、この第1図(d)に示すMIM素子を作製する
ための製造方法の実施例を説明する。Next, an embodiment of a manufacturing method for manufacturing the MIM element shown in FIG. 1D will be described.
まずはじめに、第1図(a)にしめすように、ガラス
基板7上の全面にスパッタリング法により、アルゴン
(Ar)の雰囲気中で、W8を厚さ200nmと、Ta9を厚さ50nm
とを連続的に膜形成する。First, as shown in FIG. 1 (a), W8 has a thickness of 200 nm and Ta9 has a thickness of 50 nm over the entire surface of the glass substrate 7 in an argon (Ar) atmosphere by a sputtering method.
Are continuously formed.
つぎに、第1図(b)にしめすように、フォトリソ法
とドライエッチング法により、W8とTa9を下部電極と配
線との形状にパターニングする。この下部電極と配線と
の平面パターン形状は、第2図の実線12で示す。Next, as shown in FIG. 1B, W8 and Ta9 are patterned into a shape of a lower electrode and a wiring by a photolithography method and a dry etching method. The planar pattern shape of the lower electrode and the wiring is shown by a solid line 12 in FIG.
つぎに、第1図(c)にしめすように、クエン酸0.1
%水溶液中で30Vの電圧印加により、W8とTa9とを同時に
陽極酸化し、これらの表面にWO3の酸化金属層、およびT
a2O5からなる絶縁体10を厚さ50nm形成する。Next, as shown in FIG. 1 (c), citric acid 0.1
W8 and Ta9 are simultaneously anodized in a 30% aqueous solution by applying a voltage of 30 V, and a WO3 metal oxide layer and T
An insulator 10 made of a2O5 is formed to a thickness of 50 nm.
つぎに第1図(d)にしめすように、ITO11をスパッ
タリング法により、アルゴン(Ar)と酸素(O2)の雰囲
気下で厚さ200nm形成する。そののち、フォトエッチン
グ処理により、ITO11を上部電極と液晶駆動用画素電極
との形状にパターニングする。この上部電極と液晶駆動
用画素電極との平面パターン形状は、第2図の破線13で
示す。Next, as shown in FIG. 1 (d), ITO11 is formed to a thickness of 200 nm by sputtering in an atmosphere of argon (Ar) and oxygen (O2). After that, the ITO 11 is patterned into a shape of an upper electrode and a liquid crystal driving pixel electrode by photoetching. The planar pattern shape of the upper electrode and the liquid crystal driving pixel electrode is indicated by a broken line 13 in FIG.
なお、作製したMIM素子の面積は16μm2とした。The area of the fabricated MIM element was 16 μm 2 .
以上より、本実施例で形成した配線部の抵抗は従来技
術にたいし20%に低下する。As described above, the resistance of the wiring portion formed in the present embodiment is reduced to 20% of the conventional technology.
本実施例2では、実施例1のWをモリブデン(Mo)に
変え、そのほかはすべて同様に行なった。この結果、配
線部の抵抗は従来技術にたいし約20%に低下した。In Example 2, W in Example 1 was changed to molybdenum (Mo), and all other steps were performed in the same manner. As a result, the resistance of the wiring portion was reduced to about 20% of the conventional technology.
本実施例3では、実施例1のWをアルミニウム(Al)
に変え、そのほかはすべて同様に行なった。この結果、
配線部の抵抗は従来技術にたいし約10%に低下した。In the third embodiment, W of the first embodiment is replaced with aluminum (Al).
And all others were the same. As a result,
The resistance of the wiring section was reduced to about 10% compared to the prior art.
以上の説明から明らかなように、本発明の非線形抵抗
素子の製造方法においては、下部電極と配線であるタン
タル(Ta)を陽極酸化が可能でしかも比抵抗がタンタル
(Ta)より低い金属層で裏打ちする。このことにより、
本発明では安価に、配線の低抵抗化が可能となる。As is apparent from the above description, in the method of manufacturing the nonlinear resistance element of the present invention, the lower electrode and the wiring, tantalum (Ta), can be anodized and have a specific resistance lower than that of tantalum (Ta). Lining. This allows
According to the present invention, the resistance of the wiring can be reduced at low cost.
これにより大面積でしかも表示品質が高いMIMアクテ
ィブマトリクス液晶表示装置が得られる。Thus, a MIM active matrix liquid crystal display device having a large area and high display quality can be obtained.
第1図(a)〜(d)は本発明の非線形抵抗素子の製造
方法を工程順にしめす断面図、第2図は本発明の非線形
抵抗素子の製造方法によって得られる非線形抵抗素子を
しめす平面図、第3図は従来技術における非線形抵抗素
子の製造方法をしめし第3図(a)は平面図、第3図
(b)は断面図である。 7……ガラス基板、8……タングステン(W) 9……タンタル(Ta)、10……絶縁体、 11……酸化インジウムスズ(ITO)。1 (a) to 1 (d) are cross-sectional views showing a method of manufacturing a nonlinear resistor according to the present invention in the order of steps, and FIG. 2 is a plan view showing a nonlinear resistor obtained by the method of manufacturing a nonlinear resistor according to the present invention. 3A and 3B show a method of manufacturing a nonlinear resistance element according to the prior art, wherein FIG. 3A is a plan view and FIG. 3B is a sectional view. 7: glass substrate, 8: tungsten (W) 9: tantalum (Ta), 10: insulator, 11: indium tin oxide (ITO).
Claims (3)
らなる非線形抵抗素子の製造方法であって、 ガラス基板上の全面に上記下部電極と配線となる金属層
とタンタルとを順次膜形成する工程と、 フォトリソ法とエッチング法により、上記タンタルと上
記金属層をパターニングして上記下部電極と上記配線と
を形成する工程と、 陽極酸化を行ない、上記タンタルの上面と側面の酸化タ
ンタルと、上記金属層の側面の酸化金属層とからなる上
記絶縁体とを同時に形成する工程と、 透明導電膜を全面に形成し、フォトリソ法とエッチング
法により、その透明導電膜をパターニングして上記上部
電極と液晶駆動用画素電極とを形成する工程とを有する ことを特徴とする非線形抵抗素子の製造方法。1. A method of manufacturing a non-linear resistance element having a three-layer structure of a lower electrode, an insulator and an upper electrode, wherein the lower electrode, a metal layer serving as a wiring, and tantalum are sequentially formed on the entire surface of a glass substrate. Forming, by photolithography and etching, patterning the tantalum and the metal layer to form the lower electrode and the wiring; performing anodic oxidation to form tantalum oxide on the upper surface and side surfaces of the tantalum; Simultaneously forming the insulator comprising the metal oxide layer on the side surface of the metal layer and forming a transparent conductive film on the entire surface, patterning the transparent conductive film by photolithography and etching, and forming Forming an electrode and a pixel electrode for driving a liquid crystal.
より厚い ことを特徴とする請求項1に記載の非線形抵抗素子の製
造方法。2. The method according to claim 1, wherein the thickness of the metal layer is larger than the thickness of the tantalum.
ン、アルミニウムから選択される1つである ことを特徴とする請求項1に記載の非線形抵抗素子の製
造方法。3. The method according to claim 1, wherein the metal layer is one selected from tungsten, molybdenum, and aluminum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18220589A JP2859304B2 (en) | 1989-07-14 | 1989-07-14 | Manufacturing method of nonlinear resistance element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18220589A JP2859304B2 (en) | 1989-07-14 | 1989-07-14 | Manufacturing method of nonlinear resistance element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0346381A JPH0346381A (en) | 1991-02-27 |
JP2859304B2 true JP2859304B2 (en) | 1999-02-17 |
Family
ID=16114195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18220589A Expired - Lifetime JP2859304B2 (en) | 1989-07-14 | 1989-07-14 | Manufacturing method of nonlinear resistance element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2859304B2 (en) |
-
1989
- 1989-07-14 JP JP18220589A patent/JP2859304B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0346381A (en) | 1991-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2575052B2 (en) | Liquid crystal display device | |
JP2859304B2 (en) | Manufacturing method of nonlinear resistance element | |
JP2915732B2 (en) | Active matrix substrate | |
JP2795883B2 (en) | Nonlinear element in liquid crystal display | |
JPH02106723A (en) | Thin film transistor array | |
JPH01270027A (en) | Liquid crystal display device | |
JP3306923B2 (en) | Liquid crystal device manufacturing method | |
JP3041092B2 (en) | MIM element and manufacturing method thereof | |
JPH05203997A (en) | Liquid crystal display device | |
JPH0720501A (en) | Nonlinear resistive element and its production | |
JP2777394B2 (en) | Manufacturing method of nonlinear element | |
JP3306986B2 (en) | Liquid crystal device manufacturing method | |
JPH0345930A (en) | Two-terminal type nonlinear element | |
JP2794198B2 (en) | Nonlinear resistance element and liquid crystal element using the same | |
JPH05297415A (en) | Liquid crystal display device and its production | |
JP2845929B2 (en) | Manufacturing method of nonlinear element | |
JPH046927B2 (en) | ||
JPH01271728A (en) | Liquid crystal display device | |
JPH0352277A (en) | Manufacture of nonlinear element | |
JPH01120539A (en) | Liquid crystal display device | |
JPH0349274A (en) | Two-terminal type non-linear element | |
JPH0346634A (en) | Nonlinear resistor element | |
JPH0462050B2 (en) | ||
JPH063702A (en) | Solid state device having nonlinear element | |
JPH06337440A (en) | Mim type nonlinear element and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071204 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091204 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091204 Year of fee payment: 11 |