JP2856859B2 - Method for producing oxide superconductor by metal organic chemical vapor deposition - Google Patents
Method for producing oxide superconductor by metal organic chemical vapor depositionInfo
- Publication number
- JP2856859B2 JP2856859B2 JP2202428A JP20242890A JP2856859B2 JP 2856859 B2 JP2856859 B2 JP 2856859B2 JP 2202428 A JP2202428 A JP 2202428A JP 20242890 A JP20242890 A JP 20242890A JP 2856859 B2 JP2856859 B2 JP 2856859B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide superconductor
- organic metal
- solution
- vaporizer
- vapor deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002887 superconductor Substances 0.000 title claims description 35
- 229910052751 metal Inorganic materials 0.000 title claims description 29
- 239000002184 metal Substances 0.000 title claims description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 238000005229 chemical vapour deposition Methods 0.000 title claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 21
- 239000006200 vaporizer Substances 0.000 claims description 16
- 239000002904 solvent Substances 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 13
- 239000007800 oxidant agent Substances 0.000 claims description 8
- 239000003595 mist Substances 0.000 claims description 6
- 238000005507 spraying Methods 0.000 claims description 6
- 239000000470 constituent Substances 0.000 claims description 3
- 230000002194 synthesizing effect Effects 0.000 claims description 3
- 239000002994 raw material Substances 0.000 description 21
- 230000015572 biosynthetic process Effects 0.000 description 18
- 239000000203 mixture Substances 0.000 description 18
- 238000003786 synthesis reaction Methods 0.000 description 18
- 239000007789 gas Substances 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は例えば高磁界を発生する超電導コイル用の線
材に適用できる酸化物超電導体の有機金属化学気相蒸着
法による製造方法に関するものである。Description: TECHNICAL FIELD The present invention relates to a method for producing an oxide superconductor by a metal organic chemical vapor deposition method applicable to, for example, a wire for a superconducting coil generating a high magnetic field. .
[従来の技術] 最近、磁気浮上列車、核磁気共鳴装置、物性研究用な
どの分野において、運転コストの低い超電導コイル、磁
気シールド材、高周波空洞共振機などが望まれている。[Related Art] Recently, in fields such as a magnetic levitation train, a nuclear magnetic resonance apparatus, and a study of physical properties, a superconducting coil, a magnetic shielding material, a high-frequency cavity resonator, and the like having a low operating cost are desired.
従来の超電導コイルでは、臨界温度(Tc)の低い合
金、例えばNbTi(Tcは約10K)、あるいは金属間化合
物、例えばNb3Sn(Tcは約18K)からなる超電導線をコイ
ル巻枠に巻回して製作されるために、超電導コイルは液
体ヘリウム温度(4.2K)で運転されていた。このために
冷却に必要なコストが高く、システムが複雑になってい
た。In the conventional superconducting coil, a low critical temperature (Tc) alloy, for example, NbTi (Tc of about 10K), or intermetallic compounds, for example Nb 3 Sn (Tc of about 18K) winding a superconducting wire made of a coil form To be manufactured, the superconducting coil was operated at liquid helium temperature (4.2K). This required high cooling costs and complicated the system.
しかし、1987年になって液体窒素温度(77K)で超電
導性を示す非常に高いTcを持った酸化物超電導体が発見
され、液体窒素温度で超電導コイルが使用できる可能性
が示された。However, in 1987, an oxide superconductor with very high Tc, which exhibited superconductivity at the temperature of liquid nitrogen (77 K), was discovered, indicating the possibility of using a superconducting coil at the temperature of liquid nitrogen.
この超電導体はYBa2Cu3Oyで代表される組成の酸化物
などである。これは通常Y2O3、BaCO3、CuOの各粉末を混
合、成形後、焼結熱処理して作製される。なお、この分
野の技術については、例えば、雑誌[Phys.rev.58巻(1
987)908−910頁]に記載されている。This superconductor is an oxide having a composition represented by YBa 2 Cu 3 O y or the like. This is usually produced by mixing and molding each powder of Y 2 O 3 , BaCO 3 , and CuO, and then performing a sintering heat treatment. As for the technology in this field, for example, a magazine [Phys.
987) pp. 908-910].
超電導コイルに適用される超電導線は高い臨界電流密
度(Jc)を持つことが要求される。また、従来の超電導
コイルに適用される超電導線は長い連続した線であるこ
と、且つ長手方向に安定して優れた超電導特性を持つこ
とが要求されている。A superconducting wire applied to a superconducting coil is required to have a high critical current density (Jc). Further, a superconducting wire applied to a conventional superconducting coil is required to be a long continuous wire and to have excellent superconducting characteristics stably in a longitudinal direction.
しかしながら、Tcが高い酸化物超電導体はセラミック
スであるので、非常に脆弱であり、上記した焼結法では
長い連続した線を作るのが困難である。However, since the oxide superconductor having a high Tc is a ceramic, it is very fragile, and it is difficult to form a long continuous wire by the sintering method described above.
一方、この材料を化学気相蒸着法(CVD法)によって
高速で厚膜状に合成することができれば、線材の製作も
可能になる。そこで、有機金属を原料としたCVD法によ
る酸化物超電導体の合成が試みられている。この有機金
属化学気相蒸着法(MOCVD法)では、有機金属を加熱し
て気化してガス状にし、輸送ガスによって反応部に輸送
し、主として熱反応によって酸化物超電導体を合成して
いる。なお、この分野の従来技術については、例えば、
雑誌[J.Jpn.Appl.Phys.vol.27(1988)1265〜1267頁]
に記載されている。On the other hand, if this material can be synthesized into a thick film at a high speed by a chemical vapor deposition method (CVD method), it becomes possible to produce a wire. Therefore, synthesis of an oxide superconductor by a CVD method using an organic metal as a raw material has been attempted. In this metal organic chemical vapor deposition method (MOCVD method), an organic metal is heated and vaporized to a gaseous state, transported to a reaction part by a transport gas, and an oxide superconductor is synthesized mainly by a thermal reaction. In addition, about the prior art of this field, for example,
Magazine [J. Jpn. Appl. Phys. Vol. 27 (1988) pp. 1265-1267]
It is described in.
[発明が解決しようとする課題] 従来の酸化物超電導体を製造するMOCVD法では、有機
金属を加熱によって気化してガス状にしてCVD反応部に
供給するが、酸化物を構成する元素の有機金属は非常に
気化しにくい上、分解しやすく目的生成物の安定した組
成制御が困難であった。このため、時間と共に組成と合
成速度が変動し、長手方向に安定して優れた超電導特性
を持つ線材の作製に対して大きな障害になっていた。[Problems to be Solved by the Invention] In the conventional MOCVD method for manufacturing an oxide superconductor, an organic metal is vaporized by heating and gasified and supplied to a CVD reaction section. Metals are very difficult to vaporize and are easily decomposed, making it difficult to control the composition of the target product in a stable manner. For this reason, the composition and the synthesis speed fluctuate with time, and this has been a great obstacle to the production of a wire rod having excellent superconducting characteristics stably in the longitudinal direction.
本発明は上記のような課題を解決するためになされた
もので、MOCVD法による酸化物超電導体の製造方法にお
いて安定した原料輸送と組成制御を実現し、時間による
組成と合成速度の変動を無くすことによって、長手方向
に安定して優れた超電導特性を持つ線材の製造方法を提
供することを目的とする。The present invention has been made to solve the above problems, and realizes stable material transport and composition control in a method of manufacturing an oxide superconductor by a MOCVD method, and eliminates fluctuations in composition and synthesis rate due to time. Accordingly, it is an object of the present invention to provide a method for producing a wire rod having excellent superconducting characteristics stably in the longitudinal direction.
[課題を解決するための手段] 即ち、本発明は酸化物超電導体の各構成元素を含む有
機金属を溶剤に溶解させる工程、有機金属を溶剤に溶解
させた溶液を霧状に噴霧する工程、噴霧した霧状の溶液
を輸送ガスにより気化器に輸送する工程、霧状の溶液を
気化器において有機金属の蒸気と溶剤の蒸気の混合ガス
とする工程、混合ガスを反応部に輸送する工程、反応部
において輸送された有機金属と酸化剤との化学反応によ
って基板上に酸化物超電導体を合成する工程からなるこ
とを特徴とする有機金属化学気相蒸着法による酸化物超
電導体の製造方法に係る。[Means for Solving the Problems] That is, the present invention provides a step of dissolving an organic metal containing each constituent element of an oxide superconductor in a solvent, a step of spraying a solution obtained by dissolving the organic metal in the solvent in a mist state, Transporting the sprayed atomized solution to a vaporizer by a transport gas, forming the atomized solution into a mixed gas of organometallic vapor and solvent vapor in the vaporizer, transporting the mixed gas to the reaction section, A process for synthesizing an oxide superconductor on a substrate by a chemical reaction between an organic metal transported in a reaction section and an oxidizing agent, the method comprising the steps of: Related.
また、本発明方法の有機金属を溶剤に溶解させた溶液
を霧状に噴霧する工程においては、超音波振動による霧
化器を用いることができる。In the method of the present invention, in the step of spraying a solution in which an organic metal is dissolved in a solvent in a mist state, an atomizer using ultrasonic vibration can be used.
また、本発明方法の有機金属を溶剤に溶解させた溶液
を霧状に噴霧する工程は、溶液を輸送ガスと共にノズル
から噴き出すことによって行うことができる。Further, the step of spraying the solution in which the organic metal is dissolved in the solvent in the form of a mist in the method of the present invention can be performed by ejecting the solution from the nozzle together with the transport gas.
更に、本発明方法の混合ガスを反応部に輸送する工程
には、未気化の固形物を取り除くためのフィルターを設
置することができる。Further, in the step of transporting the mixed gas to the reaction section in the method of the present invention, a filter for removing unvaporized solids can be provided.
[作用] 本発明においては、上記の工程を施すことにより、安
定した原料輸送と組成制御を実現し時間による組成と合
成速度の変動を無くすことによって、長手方向に安定し
て優れた超電導特性を持つ酸化物超電導体を製造するこ
とができる。[Action] In the present invention, by performing the above-described steps, stable raw material transport and composition control are realized, and by eliminating fluctuations in composition and synthesis rate due to time, excellent superconducting properties are stably provided in the longitudinal direction. An oxide superconductor having the same can be manufactured.
[実 施 例] 以下に本発明の実施例を示す。図は本発明の有機金属
化学気相蒸着法による酸化物超電導体の製造方法におけ
る反応装置の構成図である。図において、(1)は輸送
ガス流路、(2)は酸化剤輸送路、(3)は反応管、
(4)は気化器、(5)は基板、(6)は気化器用ヒー
ター、(7)は基板加熱用ヒーター、(8)は排気口、
(9)は有機金属原料溶液槽、(10)は原料溶液霧化用
超音波振動子、(11)は超音波振動子用電源、(12)は
固形物除去用焼結体フィルターである。[Example] An example of the present invention will be described below. FIG. 1 is a configuration diagram of a reaction apparatus in a method for producing an oxide superconductor by metal organic chemical vapor deposition according to the present invention. In the figure, (1) is a transport gas flow path, (2) is an oxidant transport path, (3) is a reaction tube,
(4) is a vaporizer, (5) is a substrate, (6) is a vaporizer heater, (7) is a substrate heating heater, (8) is an exhaust port,
(9) is an organic metal raw material solution tank, (10) is an ultrasonic oscillator for atomizing the raw material solution, (11) is a power supply for the ultrasonic oscillator, and (12) is a sintered body filter for removing solids.
次に具体的な実施例として、YBa2Cu3Oy系酸化物超電
導体の製造例について説明する。Next, as a specific example, a production example of a YBa 2 Cu 3 O y- based oxide superconductor will be described.
初めに有機金属原料であるβ−ジケトン金属錯体のY
(DPM)3,Ba(DPM)2,Cu(DPM)2を組成比がY:Ba:Cu=
1:2:3、溶液濃度が0.01モル/になるように溶剤のテ
トラヒドロフランに溶解し、原料溶液とする。First, the organometallic raw material β-diketone metal complex Y
(DPM) 3 , Ba (DPM) 2 , Cu (DPM) 2 with the composition ratio Y: Ba: Cu =
1: 2: 3, dissolved in tetrahydrofuran as a solvent so that the solution concentration becomes 0.01 mol /, to obtain a raw material solution.
得られた原料溶液を有機金属原料溶液槽(9)に充填
し、原料溶液霧化用超音波振動子(10)と超音波振動子
用電源(11)により霧化する。霧化した溶液は輸送ガス
流路(1)を通して、気化器(4)に送り込まれる。輸
送ガス流量が20cc/分のとき溶液の輸送速度は20cc/時で
あった。気化器(4)は気化器用ヒーター(6)により
200〜300℃に加熱されており、送り込まれた霧状の原料
溶液は有機金属の蒸気と溶剤の蒸気の混合ガスとなる。
気化器(4)内でできた混合ガスは気化器と同じ温度に
加熱された固形物除去用フィルター(12)を通して、ご
くわずかの未蒸発原料を除去した後、反応管(3)へ送
り込まれる。The obtained raw material solution is filled in an organic metal raw material solution tank (9), and atomized by an ultrasonic vibrator for raw material solution atomization (10) and a power supply for ultrasonic vibrator (11). The atomized solution is sent to the vaporizer (4) through the transport gas channel (1). When the transport gas flow rate was 20 cc / min, the transport speed of the solution was 20 cc / hour. The vaporizer (4) is provided by a vaporizer heater (6).
The raw material solution is heated to 200 to 300 ° C., and is sent as a mixed gas of organic metal vapor and solvent vapor.
The mixed gas produced in the vaporizer (4) is passed through a filter for removing solids (12) heated to the same temperature as the vaporizer to remove a small amount of unevaporated raw material, and then sent to the reaction tube (3). .
また、反応管(3)へは酸化剤輸送路(2)を通して
酸化剤として200〜400cc/分の流量で酸素ガスを送り込
んだ。Oxygen gas was fed into the reaction tube (3) at a flow rate of 200 to 400 cc / min as an oxidant through the oxidant transport passage (2).
次に、反応管(3)の内部に置かれた基板(5)を基
板加熱用ヒーター(7)によって800〜900℃に加熱し、
輸送された有機金属と酸化剤との熱反応によって酸化物
超電導体を基板上に合成した。Next, the substrate (5) placed inside the reaction tube (3) is heated to 800 to 900 ° C. by the substrate heating heater (7),
An oxide superconductor was synthesized on the substrate by a thermal reaction between the transported organic metal and the oxidizing agent.
30分間の合成の後、大気圧の酸素雰囲気とし、10〜50
℃/分で室温まで冷却を行ったところ、膜厚5μmのC
軸配向したYBa2Cu3Oy系酸化物超電導体が得られた。こ
の時の合成速度は10μm/時(12.6mg/時)であった。反
応管部の真空度は1〜10torrとし、基板はMgOおよびSrT
iO3の単結晶を用いた。After synthesis for 30 minutes, an oxygen atmosphere at atmospheric pressure is applied and 10-50
When cooled to room temperature at a rate of ° C./min, a 5 μm thick C
An axially oriented YBa 2 Cu 3 O y- based oxide superconductor was obtained. The synthesis speed at this time was 10 μm / hour (12.6 mg / hour). The degree of vacuum in the reaction tube is 1 to 10 torr, and the substrate is MgO and SrT
A single crystal of iO 3 was used.
同じ方法によって、合成時間を1時間、5時間と増や
した場合、それぞれの合成時間での合成量と合成速度、
組成の関係を表1に示す。When the synthesis time is increased to 1 hour and 5 hours by the same method, the synthesis amount and the synthesis speed at each synthesis time,
Table 1 shows the relationship between the compositions.
また、比較のために従来法によって合成した場合の合
成量と合成速度、組成の関係を表1に併記する。For comparison, Table 1 also shows the relationship between the synthesis amount, the synthesis speed, and the composition when synthesized by the conventional method.
従来法はY、Ba、Cuを個別に加熱、気化させて反応管
へ送り込み、原料の輸送方法以外は本発明による方法と
同様の操作を行った。In the conventional method, Y, Ba, and Cu were individually heated and vaporized and sent to the reaction tube, and the same operation as the method according to the present invention was performed except for the method of transporting the raw materials.
本発明法により合成したものは合成速度および組成が
合成時間によらず一定している。これに対し、従来法に
よると時間の経過とともに合成速度が低下し、組成も安
定せず、特に合成時間が長い場合にBa組成の大きな減少
がみられる。これは、Ba原料がY,Cuと比較して経時劣化
による気化量の低下が著しい為と思われる。 Those synthesized by the method of the present invention have a constant synthesis rate and composition regardless of the synthesis time. On the other hand, according to the conventional method, the synthesis rate decreases with the passage of time, the composition is not stable, and particularly when the synthesis time is long, the Ba composition is greatly reduced. This is presumably because the amount of vaporization of the Ba raw material is significantly reduced due to deterioration with time as compared with Y and Cu.
次に、得られた超電導体の電気抵抗の温度依存性Tc、
および液体窒素温度における臨界電流密度Jcを測定した
結果を表2に示す。Next, the temperature dependence Tc of the electric resistance of the obtained superconductor,
Table 2 shows the results of measuring the critical current density Jc at the temperature of liquid nitrogen.
表2の結果によると、本発明の方法による酸化物超電
導体のTcは88〜89Kと高く、Jcも40〜50万A/cm2と大きな
値であるのに対し、従来法による場合はTcが79〜82Kと
低く、Jcが500〜2万A/cm2と小さな値であった。これ
は、本発明法によると安定した原料輸送と組成制御が可
能であることから、結果として特性の優れた超電導体を
一定の合成速度で合成することができるものと思われ
る。 According to the results in Table 2, the Tc of the oxide superconductor according to the method of the present invention is as high as 88 to 89 K and Jc is also a large value of 400,000 to 500,000 A / cm 2 , whereas the Tc according to the conventional method is large. Was as low as 79 to 82 K, and Jc was as small as 500 to 20,000 A / cm 2 . This is because the method of the present invention enables stable raw material transport and composition control, and as a result, it is considered that a superconductor having excellent characteristics can be synthesized at a constant synthesis rate.
これに対し、従来法は安定した組成の制御ができてい
ないことから、超電導特性も悪くなるものと思われる。On the other hand, the conventional method cannot control the composition stably, so that the superconductivity is considered to be deteriorated.
このように、本発明による酸化物超電導体の製造方法
によると、特性の優れた超電導体を一定の合成速度で製
造することができるので、長い連続したテープ基板を一
定速度で移動させながら、その上に酸化物超電導体を合
成した場合でも、テープ基板の長さ方向によらず組成は
一定で、しかも、優れた超電導特性を示した。As described above, according to the method for manufacturing an oxide superconductor according to the present invention, a superconductor having excellent characteristics can be manufactured at a constant synthetic speed, and thus a long continuous tape substrate is moved at a constant speed. Even when an oxide superconductor was synthesized thereon, the composition was constant regardless of the length direction of the tape substrate, and excellent superconductivity was exhibited.
なお、本発明による酸化物超電導体の製造方法におい
て原料溶液の輸送速度、あるいは溶液の濃度を変えた場
合においても、前記の実施例と同様の効果を得ることが
できた。In the method for producing an oxide superconductor according to the present invention, even when the transport speed of the raw material solution or the concentration of the solution was changed, the same effect as that of the above-described example could be obtained.
また、本発明による酸化物超電導体の製造方法におい
ては、原料溶液の霧化工程において、溶液を輸送ガスと
ともにノズルから噴き出すことによっても、前記の実施
例と同様の効果を得ることができた。In the method of manufacturing an oxide superconductor according to the present invention, the same effect as in the above-described embodiment could be obtained by ejecting the solution together with the transport gas from the nozzle in the step of atomizing the raw material solution.
上記実施例は、Y系超電導体の製造方法について示し
たが、原料にBi、Sr、Ca、Cu、Pb、Tl、Ba系の有機金属
を用い、適当に組み合わせることによってBiPbSrCaCuO
系超電導体、TlBaCaCuO系超電導体などの他の酸化物超
電導体についても同様の効果が得られる。Although the above-described embodiment has shown a method for producing a Y-based superconductor, Bi, Sr, Ca, Cu, Pb, Tl, and Ba-based organic metals are used as raw materials, and BiPbSrCaCuO
Similar effects can be obtained with other oxide superconductors such as a superconductor based on Tb and a superconductor based on TlBaCaCuO.
また、上記実施例では有機金属原料としてβ−ジケト
ン金属錯体の一種であるDPM原料を使用したが、これら
の他に例えば同じ系の金属錯体であるアセチルアセテー
トや異なる系に属すアルコキシド等を使用することが可
能である。Further, in the above embodiment, a DPM raw material which is a kind of β-diketone metal complex was used as the organic metal raw material, but in addition to these, for example, acetyl acetate which is a metal complex of the same system or an alkoxide belonging to a different system is used. It is possible.
[発明の効果] 以上のように、本発明方法によれば、酸化物超電導体
の各構成元素を含む有機金属を溶剤に溶解させる工程、
有機金属を溶剤に溶解させた溶液を霧状に噴霧する工
程、噴霧した霧状の溶液を輸送ガスにより気化器に輸送
する工程、霧状の溶液を気化器において有機金属の蒸気
と溶剤の蒸気の混合ガスとする工程、混合ガスを反応部
に輸送する工程、反応部において輸送された有機金属と
酸化剤との化学反応によって基板上に酸化物超電導体を
合成する工程を施すことにより安定した原料輸送と組成
制御を実現し、時間による組成と合成速度の変動を無く
すことによって長手方向に安定して優れた超電導特性を
持つ酸化物超電導体を製造することができる効果があ
る。[Effects of the Invention] As described above, according to the method of the present invention, a step of dissolving an organic metal containing each constituent element of an oxide superconductor in a solvent,
A step of spraying a solution obtained by dissolving an organic metal in a solvent in a mist state; a step of transporting the sprayed mist solution to a vaporizer by using a transport gas; a vapor of the organic metal and a vapor of the solvent in the vaporizer in the vaporizer A mixed gas, a step of transporting the mixed gas to the reaction section, and a step of synthesizing an oxide superconductor on the substrate by a chemical reaction between the organic metal and the oxidant transported in the reaction section. There is an effect that an oxide superconductor having excellent superconducting properties can be stably produced in the longitudinal direction by realizing material transport and composition control and eliminating fluctuations in composition and synthesis rate with time.
図は本発明の酸化物超電導体の製造方法における反応装
置の構成図である。図において、(1)は輸送ガス流
路、(2)は酸化剤輸送路、(3)は反応管、(4)は
気化器、(5)は基板、(6)は気化器用ヒーター、
(7)は基板加熱用ヒーター、(8)は排気口、(9)
は有機金属原料溶液槽、(10)は原料溶液霧化用超音波
振動子、(11)は超音波振動子用電源、(12)は固形物
除去用焼結体フィルターである。The figure is a configuration diagram of a reactor in the method for producing an oxide superconductor of the present invention. In the figure, (1) is a transport gas flow path, (2) is an oxidant transport path, (3) is a reaction tube, (4) is a vaporizer, (5) is a substrate, (6) is a vaporizer heater,
(7) is a heater for heating the substrate, (8) is an exhaust port, (9)
Is an organic metal raw material solution tank, (10) is an ultrasonic oscillator for atomizing the raw material solution, (11) is a power supply for the ultrasonic oscillator, and (12) is a sintered body filter for removing solids.
フロントページの続き (51)Int.Cl.6 識別記号 FI H01B 12/00 ZAA H01B 12/00 ZAA H01L 39/24 ZAA H01L 39/24 ZAAB (58)調査した分野(Int.Cl.6,DB名) C01G 1/00 - 57/00 H01B 12/00 C30B 29/22Continuation of the front page (51) Int.Cl. 6 identification code FI H01B 12/00 ZAA H01B 12/00 ZAA H01L 39/24 ZAA H01L 39/24 ZAAB (58) Fields investigated (Int.Cl. 6 , DB name) ) C01G 1/00-57/00 H01B 12/00 C30B 29/22
Claims (1)
属を溶剤に溶解させる工程、有機金属を溶剤に溶解させ
た溶液を霧状に噴霧する工程、噴霧した霧状の溶液を輸
送ガスにより気化器に輸送する工程、霧状の溶液を気化
器において有機金属の蒸気と溶剤の蒸気の混合ガスとす
る工程、混合ガスを反応部に輸送する工程、反応部にお
いて輸送された有機金属と酸化剤との化学反応によって
基板上に酸化物超電導体を合成する工程からなることを
特徴とする有機金属化学気相蒸着法による酸化物超電導
体の製造方法。1. A step of dissolving an organic metal containing each constituent element of an oxide superconductor in a solvent, a step of spraying a solution in which the organic metal is dissolved in a solvent, and a step of spraying the sprayed mist solution with a transport gas. Transporting to the vaporizer by the step, the step of converting the atomized solution into a mixed gas of the vapor of the organic metal and the vapor of the solvent in the vaporizer, the step of transporting the mixed gas to the reaction section, and the organic metal transported in the reaction section A method for producing an oxide superconductor by a metal organic chemical vapor deposition method, comprising a step of synthesizing an oxide superconductor on a substrate by a chemical reaction with an oxidizing agent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2202428A JP2856859B2 (en) | 1990-08-01 | 1990-08-01 | Method for producing oxide superconductor by metal organic chemical vapor deposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2202428A JP2856859B2 (en) | 1990-08-01 | 1990-08-01 | Method for producing oxide superconductor by metal organic chemical vapor deposition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0489378A JPH0489378A (en) | 1992-03-23 |
JP2856859B2 true JP2856859B2 (en) | 1999-02-10 |
Family
ID=16457351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2202428A Expired - Fee Related JP2856859B2 (en) | 1990-08-01 | 1990-08-01 | Method for producing oxide superconductor by metal organic chemical vapor deposition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2856859B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101323249B1 (en) | 2011-12-06 | 2013-11-06 | 한국전기연구원 | The method and apparatus to fabricate superconducting coated conductor |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2707671B1 (en) * | 1993-07-12 | 1995-09-15 | Centre Nat Rech Scient | Method and device for introducing precursors into a chemical vapor deposition chamber. |
US6635114B2 (en) | 1999-12-17 | 2003-10-21 | Applied Material, Inc. | High temperature filter for CVD apparatus |
JP6505838B2 (en) * | 2015-06-18 | 2019-04-24 | 東芝三菱電機産業システム株式会社 | Method of forming metal oxide film |
-
1990
- 1990-08-01 JP JP2202428A patent/JP2856859B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101323249B1 (en) | 2011-12-06 | 2013-11-06 | 한국전기연구원 | The method and apparatus to fabricate superconducting coated conductor |
Also Published As
Publication number | Publication date |
---|---|
JPH0489378A (en) | 1992-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5278138A (en) | Aerosol chemical vapor deposition of metal oxide films | |
KR910007382B1 (en) | Superconductor material and method of manufacturing super-conductor film | |
JP5015408B2 (en) | Manufacturing method of high current coated high temperature superconducting tape | |
US5395821A (en) | Method of producing Pb-stabilized superconductor precursors and method of producing superconductor articles therefrom | |
JP2856859B2 (en) | Method for producing oxide superconductor by metal organic chemical vapor deposition | |
US5863336A (en) | Apparatus for fabrication of superconductor | |
JP3771143B2 (en) | Manufacturing method of oxide superconductor | |
JPH04333572A (en) | Method for gasifying mo stock for oxide superconductor | |
US5077267A (en) | Process for making composite high temperature superconductor copper wires | |
JP3756322B2 (en) | Manufacturing apparatus and manufacturing method of oxide superconducting conductor | |
JPH01230405A (en) | Production of oxide superconducting thick film | |
JPH0337101A (en) | Production of oxide superconductor by mocvd method | |
Beauquis et al. | Scaling-up of High-T C tapes by MOCVD, spray pyrolysis and MOD processes | |
JPH0337102A (en) | Production of oxide superconductor by metal organic chemical vapor deposition method | |
JP2601034B2 (en) | Manufacturing method of oxide superconducting film | |
JP2575443B2 (en) | Method for producing oxide-based superconducting wire | |
JPH02196022A (en) | Production of oxide-based superconducting powder | |
JPH02208209A (en) | Production of oxide superconductor precursor | |
JP3415862B2 (en) | CVD raw material vaporizer | |
JP3202045B2 (en) | Method of manufacturing oxide superconductor by CVD method | |
JPH01160828A (en) | Preparation of oxide superconducting thin film | |
JPH0349985B2 (en) | ||
JP2004091809A (en) | Liquid material feeding device for cvd, and method for manufacturing oxide superconductor | |
JPH01160827A (en) | Preparation of oxide superconducting thin film | |
JPH01308826A (en) | Formation of superconducting ceramic thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |