[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2856564B2 - Control device for synchronous motor - Google Patents

Control device for synchronous motor

Info

Publication number
JP2856564B2
JP2856564B2 JP3088148A JP8814891A JP2856564B2 JP 2856564 B2 JP2856564 B2 JP 2856564B2 JP 3088148 A JP3088148 A JP 3088148A JP 8814891 A JP8814891 A JP 8814891A JP 2856564 B2 JP2856564 B2 JP 2856564B2
Authority
JP
Japan
Prior art keywords
current
field
command
axis
synchronous motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3088148A
Other languages
Japanese (ja)
Other versions
JPH04322191A (en
Inventor
真司 多々良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3088148A priority Critical patent/JP2856564B2/en
Publication of JPH04322191A publication Critical patent/JPH04322191A/en
Application granted granted Critical
Publication of JP2856564B2 publication Critical patent/JP2856564B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

[発明の目的] [Object of the invention]

【0001】[0001]

【産業上の利用分野】本発明は同期電動機をサイクロコ
ンバータやインバータ等の可変電圧、可変周波数電源で
駆動する際の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for driving a synchronous motor with a variable voltage and variable frequency power supply such as a cycloconverter or an inverter.

【0002】[0002]

【従来の技術】同期電動機を可変電圧、可変周波数で駆
動する方式には他励転流を用いた無整流子電動機やベク
トル制御を用いた駆動方式がある。このうちベクトル制
御は高性能な駆動が可能で、速い応答や精密な制御を要
する分野に適用されている。従来のベクトル制御方式の
例を図4に示す。
2. Description of the Related Art As a method of driving a synchronous motor with a variable voltage and a variable frequency, there are a non-commutator motor using a separately excited commutation and a driving method using vector control. Among them, vector control is capable of high-performance driving and is applied to fields that require fast response and precise control. FIG. 4 shows an example of a conventional vector control method.

【0003】図4は、同期電動機を自動界磁弱め方式を
用いて速度制御を行う場合の例で、同期電動機2の界磁
巻線21は界磁用の電力変換器4により直流励磁され、電
力変換器1から駆動電力が供給される。速度制御部40は
速度基準ω* と同期電動機2の速度検出信号ωを比較し
てトルク基準T* を出力する。速度検出信号ωは同期電
動機2の回転角度を検出する位置検出器3の信号θを微
分器41で微分して得られる。関数器42は速度検出信号ω
に応じて磁束基準φ* を出力し自動界磁弱めを可能に
し、関数器43は同期電動機の特性からφ* に応じた界磁
電流基準If * を出力する。また、除算器44はT* をφ
* で除算して電流基準iT * を出力する。
FIG. 4 shows an example in which the speed of a synchronous motor is controlled using an automatic field weakening method. The field winding 21 of the synchronous motor 2 is DC-excited by a power converter 4 for the field. Drive power is supplied from the power converter 1. The speed control unit 40 sets the speed reference ω * And the speed detection signal ω of the synchronous motor 2 to compare the torque reference T * Is output. The speed detection signal ω is obtained by differentiating the signal θ of the position detector 3 for detecting the rotation angle of the synchronous motor 2 with the differentiator 41. The function unit 42 outputs the speed detection signal ω
According to the magnetic flux reference φ * To enable automatic field weakening, and the function unit 43 outputs φ * from the characteristics of the synchronous motor . Field current reference I f * according to Is output. Also, the divider 44 is T * Is φ
* And the current reference i T * Is output.

【0004】同期電動機2の電機子電流と界磁電流は電
流検出器11,12で検出される。一方、位置検出器3と位
置演算器5では同期電動機の回転子磁極の位置を演算す
る。電流検出器11で検出した三相電機子電流は、dq軸
電流演算器13で位置演算器5からの位置信号とともにd
q軸上での電流検出値id ,iq として演算される。こ
の値と界磁電流検出値if とから磁束演算器6により電
機子磁束が演算される。磁束演算器6では、検出電流と
磁極位置から回転子磁極に並行なd軸磁束φdと、これ
に直行するq軸磁束φq 及び合成磁束ベクトルの角度δ
を演算する。電流基準演算器7ではトルク電流指令iT
* と角度δとから磁束方向に直行する電機子電流基準値
d * ,iq * を演算する。磁束演算器6は、図5に示
すようにdq軸上で表した同期電動機の電圧方程式から
出発し、dq軸上の磁束を演算する演算式をブロック図
で表したものである。d軸磁束φd とq軸磁束φq は次
式で示される。 φd =Lad(1+Td2S)/(1+Td1S)×(id +if ) +1a ×(id +if ) (1) φq =Laq(1+Tq2S)/(1+Tq1S)×iq +1a ×iq (2)
The armature current and the field current of the synchronous motor 2 are
It is detected by the flow detectors 11 and 12. On the other hand, the position detector 3 and the position
The position calculator 5 calculates the position of the rotor magnetic pole of the synchronous motor.
You. The three-phase armature current detected by the current detector 11 is a dq axis
In the current calculator 13, d is added together with the position signal from the position calculator 5.
Current detection value i on q axisd, IqIs calculated as This
And the field current detection value ifFrom the magnetic flux calculator 6
The armature magnetic flux is calculated. In the magnetic flux calculator 6, the detected current and
D-axis magnetic flux φ parallel to the rotor magnetic pole from the magnetic pole positiondAnd this
Q-axis magnetic flux φ orthogonal toqAnd the angle δ of the resultant magnetic flux vector
Is calculated. In the current reference calculator 7, the torque current command iT
* Armature current reference value perpendicular to magnetic flux direction from angle and angle δ
id * , Iq * Is calculated. The magnetic flux calculator 6 is shown in FIG.
From the voltage equation of the synchronous motor expressed on the dq axis
Departure, block diagram of the formula to calculate the magnetic flux on the dq axis
It is represented by d-axis magnetic flux φdAnd q-axis magnetic flux φqIs next
It is shown by the formula. φd= Lad(1 + Td2S) / (1 + Td1S) × (id+ If) +1a× (id+ If) (1) φq= Laq(1 + Tq2S) / (1 + Tq1S) × iq+1a× iq  (2)

【0005】ここでSはラプラス演算子、Lad,aq
dq軸の相互インダクタンス、1は電機子もれインダ
クタンス、Ta1,Ta1はそれぞれdq軸のダンパ抵抗
と同期インダクタンスにかかわる時定数、Td2,Tq2
それぞれdq軸のダンパ抵抗とダンパもれインダクタン
スにかかわる時定数である。d軸磁束φd は、界磁電流
f とd軸電機子電流id の和から演算され、q軸磁束
φq はq軸電流iq から演算される。δは磁束のd軸方
向に対する角度で、 δ=tan-1(Φq /Φd ) (3) で演算される。図4の電流基準演算器7は、トルク分電
流基準iT * と角度δから、dq軸の電流基準id *
q * を次式により演算する。 id * =−iT * ・sinδ (4) iq * = iT * ・cosδ (5)
[0005] where S is a Laplace operator, Lad, L aq mutual inductance dq axes, 1 a time constant related to the armature leakage inductance, T a1, T a1 damper resistor and synchronous inductance of each dq axes , T d2 and T q2 are time constants relating to the damper resistance and the leakage inductance of the dq axes, respectively. d-axis magnetic flux phi d is computed from the sum of the field current i f and d-axis armature current i d, q-axis magnetic flux phi q is calculated from the q-axis current i q. δ is the angle of the magnetic flux with respect to the d-axis direction, and is calculated as follows: δ = tan −1 (Φ q / Φ d ) (3) Current reference calculator 7 of Figure 4, torque current reference i T * And from the angle [delta], the dq-axis current reference i d * ,
i q * Is calculated by the following equation. id * = −i T * ・ Sin δ (4) i q * = I T * ・ Cosδ (5)

【0006】なわち、トルク分電流は演算された磁束と
直行するように指令する。演算された電流基準値は検出
値と比較され、増幅器9によってdq軸の電圧基準値v
d * ,vq * として出力される。増幅器9は通常比例積
分器により構成される。この電圧基準値は位置演算器5
の出力との合成で三相巻線電圧指令vu * ,vv * ,v
w * を得る。この値は回転電気角周波数で変化する交流
量となり、電力変換器1を介して同期電動機2に加えら
れる。
[0006] That is, the torque component current is calculated by calculating the calculated magnetic flux.
Command to go straight. Calculated current reference value is detected
The voltage reference value v on the dq axis is compared with the
d * , Vq * Is output as Amplifier 9 is usually a proportional product
It is composed of a divider. This voltage reference value is calculated by the position calculator 5
And three-phase winding voltage command vu * , Vv * , V
w * Get. This value is an alternating current that varies with the rotational electrical angular frequency.
And is added to the synchronous motor 2 via the power converter 1.
It is.

【0007】一方同期電動機の界磁電流if は基準値i
f * と比較され、その偏差に応じて増幅器10により界磁
電圧基準vf * を得て、界磁用電力変換器4を介して制
御される。
[0007] On the other hand the field current i f of the synchronous motor reference value i
f * And the field voltage reference v f * And is controlled via the field power converter 4.

【0008】このように、電機子電流と界磁電流とから
dq軸上の磁束を演算し、電機子のトルク分電流を、演
算した磁束と直行するように流すことにより、同一の電
機子電流でも高いトルクが得られる。なお、ベクトル制
御方式については、B.K.Bose著Power E
lectronics and AC Drivesに
も記載されている。
As described above, the magnetic flux on the dq axes is calculated from the armature current and the field current, and the current corresponding to the torque of the armature is caused to flow in a direction perpendicular to the calculated magnetic flux, thereby obtaining the same armature current. But high torque can be obtained. The vector control method is described in K. Power E by Bose
It is also described in electronics and AC Drives.

【0009】[0009]

【発明が解決しようとする課題】弱め界磁範囲での速度
制御では、電機子電圧を一定に保ち界磁電流により速度
制御を行うので、弱め界磁による速度制御範囲が広い場
合には界磁電流が非常に小さくなる。例えば弱め界磁範
囲が1:5の場合は、定格時の電流に対して1/5以下
の界磁電流となる。このような領域で大きな負荷変動が
発生すると電機子電流が大きく変化し電機子反作用によ
り界磁電流に大きな影響が生じる。この場合、図6に示
すように界磁電流if が減少する方向に電機子反作用が
生じたとき、電動機速度が不安定になる現象が生じる。
In the speed control in the weak field range, the speed is controlled by the field current while keeping the armature voltage constant. The current becomes very small. For example, when the field weakening range is 1: 5, the field current is 1/5 or less of the rated current. When a large load change occurs in such a region, the armature current changes greatly, and the armature reaction has a large effect on the field current. In this case, as shown in FIG. 6, when the armature reaction occurs in the direction in which the field current if decreases, a phenomenon occurs in which the motor speed becomes unstable.

【0010】一般に、界磁回路は一方向の電流を流すよ
うに構成されているため、上記の電機子反作用が大きく
なり、界磁電流を零以下に抑えこむと、界磁電流は負の
電流を流せないため、界磁制御が不能となる。このため
磁束が基準通り確立できなくなり急峻な負荷変動に対
し、所定のトルクを出せないことにもなる。従って界磁
範囲の広い高速度では安定な制御ができない。
In general, the field circuit is configured to flow a current in one direction. Therefore, the above-described armature reaction becomes large, and if the field current is suppressed to zero or less, the field current becomes a negative current. , The field control becomes impossible. For this reason, the magnetic flux cannot be established as standard, and a predetermined torque cannot be output for a sudden load change. Therefore, stable control cannot be performed at a high speed with a wide field range.

【0011】また、そのエネルギーが大きい場合は、界
磁電流が負側に流れないため蓄積されて界磁過電圧とな
り界磁回路の半導体素子を破壊してしまう恐れがある。
従って弱め界磁範囲の広い高速度のシステムには適用で
きなかった。
When the energy is large, the field current does not flow to the negative side and is accumulated, resulting in a field overvoltage, which may destroy the semiconductor element of the field circuit.
Therefore, it cannot be applied to a high-speed system with a wide field weakening range.

【0012】本発明は上記欠点を改良するためになされ
たもので、弱め界磁の広い制御範囲において大きな負荷
変動に対しても制御不能やトルク不足となることなく安
定に運転することのできる高性能の同期電動機の制御装
置を提供することを目的としている。 [発明の構成]
The present invention has been made in order to improve the above-mentioned drawbacks. The present invention has been made in view of the above problem. It is an object of the present invention to provide a synchronous motor control device with high performance. [Configuration of the Invention]

【0013】[0013]

【課題を解決するための手段】本発明は、上記目的を達
成すめため、可変電圧可変周波数の電力を同期電動機に
供給する制御電源部と、該同期電動機の界磁巻線に可変
の界磁電流(if )を供給する励磁電源部と、該同期電
動機の電機子電流と回転子の位置から該回転子の磁極と
同方向(d軸)及び直交方向(q軸)のdq軸電流成分
(id ,iq )を得る電流演算部と、該dq軸電流成分
(id ,iq )と該界磁電流(if )から該同期電動機
の磁束を模擬する磁束演算部と、速度指令と該同期電動
機の検出速度を比較して電流指令を得る速度制御部と、
該電流指令と該磁束演算部の出力からdq軸電流指令
(id * ,iq * )を得る電流指令演算部と、該dq軸
電流指令と該dq軸電流成分(id ,iq )の偏差に応
じて該制御電源部に対する電圧指令を得る電圧指令演算
部と、該検出速度に応じて該励磁電源部に対する界磁電
流指令(if * )を得る界磁電流指令部を備え、自動弱
め界磁により速度を制御する装置において、該界磁電流
指令(if * )に対し部分的あるいは全体的に増加した
界磁電流指令(if2 * )を得る補償手段を設け、該界磁
電流指令(if2 * )を実際の界磁電流指令とするように
構成する。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a control power supply for supplying power of a variable voltage and a variable frequency to a synchronous motor, and a variable field winding on a field winding of the synchronous motor. An excitation power supply for supplying a current ( if ), and dq-axis current components in the same direction (d-axis) and the orthogonal direction (q-axis) as the rotor magnetic poles from the armature current of the synchronous motor and the position of the rotor. (i d, i q) and the current calculation unit to obtain a magnetic flux calculating unit for simulating the magnetic flux of the synchronous motor the dq-axis current component (i d, i q) from the interfacial current (i f), the speed A speed control unit that obtains a current command by comparing a command and a detection speed of the synchronous motor;
Said current command and the dq-axis current command from the output of the magnetic flux calculation unit (i d * , I q * ) And the current command calculation portion for obtaining a voltage command calculation portion for obtaining a voltage command for the control power supply unit in accordance with the deviation of the dq axis current command and the dq-axis current component (i d, i q), the rate said detectable Field current command ( if *) for the excitation power supply unit in accordance with ) Comprises a field current command unit to obtain an apparatus for controlling a speed by an automatic field weakening, the interfacial current command (i f * ) Is partially or entirely increased with respect to the field current command ( if2 * ) Is provided, and the field current command ( if2 * ) Is set as the actual field current command.

【0014】[0014]

【作用】上記補償手段により最小界磁電流を所定値に制
限し電機子反作用が生じたときにも界磁電流が零になら
ないようにする。
The compensation means limits the minimum field current to a predetermined value so that the field current does not become zero even when an armature reaction occurs.

【0015】[0015]

【実施例】図1は本発明の一実施例を示す構成図であ
る。
FIG. 1 is a block diagram showing an embodiment of the present invention.

【0016】図1において、界磁電流補償器30が新に設
けられた要素である他の要素は図4で示したものと同一
である。界磁電流補償器30は界磁電流指令if * を補償
して実際の界磁電流指令if2 * を得るもので、その補償
の例を図2に示す。この補償特性C1 ,C2 は界磁電流
補償器30の入力である界磁電流基準if * を横軸にと
り、出力if2 * を縦軸にした関数を示している。補償特
性C1 の場合
In FIG. 1, a field current compensator 30 is newly provided.
Other elements are the same as those shown in FIG.
It is. The field current compensator 30 outputs the field current command if * Compensate
And the actual field current command if2 * Get the compensation
2 is shown in FIG. This compensation characteristic C1, CTwoIs the field current
Field current reference i which is the input of compensator 30f * On the horizontal axis
Output if2 * Indicates a function with the vertical axis. Compensation
Sex C1in the case of

【0017】界磁電流基準if * が最低界磁電流制限値
fMINより小さい場合は、if2 * をifMINの値に制限す
る。if * がifMINより大きい場合はif2 * =if *
なるように関数を決定する。
Field current reference if * If is the minimum field current limit value i fMIN smaller than, i f2 * To the value of ifMIN. if * But i fMIN case greater than i f2 * = If * Determine the function so that

【0018】この最低界磁電流制限値ifMINは弱め界磁
領域において大きな負荷がかかっても電機子反作用で、
界磁電流が零以下とならないように設定するものであ
る。
This minimum field current limit value ifMIN is caused by armature reaction even when a large load is applied in the weak field region.
The field current is set so as not to be less than zero.

【0019】このように界磁電流if * が小さい領域で
最低界磁電流制限値ifMINにより増加した界磁電流if
は、磁束演算器6に入力され、図5のブロック図により
内部相差角δが演算され、界磁電流の増加分だけd軸磁
束φd が増大し、内部相差角が開くことになり、電流基
準演算器7を介してd軸電流id * が増加させられる。
As described above, the field current i f * Increased field current i f the minimum field current limit value i fMIN in region is small
Is input to the magnetic flux calculator 6, the internal phase difference angle δ is calculated by the block diagram of FIG. 5, the d-axis magnetic flux φ d is increased by the increase of the field current, and the internal phase difference angle is opened. The d-axis current id * via the reference calculator 7 Is increased.

【0020】このid * の増加分が減磁作用として界磁
電流if * の増加による磁束と相殺されるため、磁束を
増加することなく制御できる。このことにより、出力電
圧は一定に保たれるため電圧過大となることはない。
This id * The increase of the field current i f * Is offset by the magnetic flux due to the increase in the magnetic flux, so that control can be performed without increasing the magnetic flux. As a result, the output voltage is kept constant, so that the voltage does not become excessive.

【0021】最低界磁電流制限値ifMINを適当に設定す
ることにより、弱め界磁範囲の広い高速領域においても
電機子反作用により界磁電流が零となってならないため
界磁制御が安定に行なえる。従って大きな負荷変動に対
しても安定な制御特性が実現できる。この様子を図3に
示す。実線は本実施例による特性で点線は従来の特性を
示す。また、補償特性C2 のように界磁電流if * に対
し、最低界磁電流ifMINをバイアスするだけでも同様の
効果が得られる。
By appropriately setting the minimum field current limit value ifMIN , the field current does not become zero due to the armature reaction even in a high-speed region where the field weakening range is wide, so that the field control can be performed stably. Therefore, stable control characteristics can be realized even with a large load change. This is shown in FIG. The solid line indicates the characteristic according to the present embodiment, and the dotted line indicates the conventional characteristic. Further, the field current as the compensation characteristic C 2 i f * On the other hand, the same effect can be obtained only by biasing the minimum field current ifMIN .

【0022】[0022]

【発明の効果】本発明によれば、弱め界磁範囲の広い高
速運転において急峻な負荷変動が生じても制御不能やト
ルク不足となることなく安定した速度制御を行うことの
できる同期電動機の制御装置が得られる。
According to the present invention, there is provided a synchronous motor control capable of performing stable speed control without causing control failure or torque shortage even when a sudden load change occurs in high-speed operation with a wide field weakening range. A device is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す構成図。FIG. 1 is a configuration diagram showing one embodiment of the present invention.

【図2】上記実施例の補償特性図。FIG. 2 is a compensation characteristic diagram of the embodiment.

【図3】上記実施例の効果を説明するための特性図。FIG. 3 is a characteristic diagram for explaining the effect of the embodiment.

【図4】従来装置の構成図。FIG. 4 is a configuration diagram of a conventional device.

【図5】磁束演算器のブロック図。FIG. 5 is a block diagram of a magnetic flux calculator.

【図6】従来装置の問題を説明するための特性図。FIG. 6 is a characteristic diagram for explaining a problem of the conventional device.

【符号の説明】[Explanation of symbols]

1…電力変換器 2…同期電動機 3…位置検出器 4…界磁用電力変換器 5…位置演算器 6…磁束演算器 7…電流基準演算器 9,10…増幅器 11,12…電流検出器 13…dq軸電流演算器 14…座標変換器 21…界磁巻線 30…界磁電流補償器 40…速度制御部 41…微分器 42,43…関数器 44…除算器 DESCRIPTION OF SYMBOLS 1 ... Power converter 2 ... Synchronous motor 3 ... Position detector 4 ... Field power converter 5 ... Position calculator 6 ... Magnetic flux calculator 7 ... Current reference calculator 9, 10 ... Amplifier 11, 12 ... Current detector 13 dq-axis current calculator 14 coordinate converter 21 field winding 30 field current compensator 40 speed controller 41 differentiator 42, 43 function unit 44 divider

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 可変電圧可変周波数の電力を同期電動機
に供給する制御電源部と、該同期電動機の界磁巻線に可
変の界磁電流(if )を供給する励磁電源部と、該同期
電動機の電機子電流と回転子の位置から該回転子の磁極
と同方向(d軸)及び直交方向(q軸)のdq軸電流成
分(id ,iq)を得る電流演算部と、該dq軸電流成
分(id ,iq )と該界磁電流(if )から該同期電動
機の磁束を模擬する磁束演算部と、速度指令と該同期電
動機の検出速度を比較して電流指令を得る速度制御部
と、該電流指令と該磁束演算部の出力からdq軸電流指
令(id * ,iq * )を得る電流指令演算部と、該dq
軸電流指令と該dq軸電流成分(id ,iq )の偏差に
応じて該制御電源部に対する電圧指令を得る電圧指令演
算部と、該検出速度に応じて該励磁電源部に対する界磁
電流指令(if * )を得る界磁電流指令部を備え、自動
弱め界磁により速度を制御する装置において、該界磁電
流指令(if * )に対し部分的あるいは全体的に増加し
た界磁電流指令(if2 * )を得る補償手段を設け、該界
磁電流指令(if2 * )を実際の界磁電流指令とすること
を特徴とする同期電動機の制御装置。
A control power supply for supplying electric power of a variable voltage and a variable frequency to a synchronous motor; an excitation power supply for supplying a variable field current ( if ) to a field winding of the synchronous motor; a current calculating unit for obtaining from the armature current and position of the rotor of the motor dq-axis current component (i d, i q) of the magnetic pole in the same direction of the rotor (d-axis) and the perpendicular direction (q-axis), and the dq-axis current component (i d, i q) and flux calculating unit for simulating the magnetic flux of the synchronous motor from the interfacial current (i f), a current command by comparing the detected speed of the speed command and the synchronous motor a speed control unit to obtain, dq axis current command from the output of the current command and the magnetic flux calculation unit (i d * , I q * ), And the dq
Axis current command and the dq-axis current component (i d, i q) a voltage command calculation portion for obtaining a voltage command for the control power supply unit in accordance with the deviation of the field current with respect to the excitation power supply unit in accordance with the detection speed Command ( if * ) Comprises a field current command unit to obtain an apparatus for controlling a speed by an automatic field weakening, the interfacial current command (i f * ) Is partially or entirely increased with respect to the field current command ( if2 * ) Is provided, and the field current command ( if2 * ) Is an actual field current command.
JP3088148A 1991-04-19 1991-04-19 Control device for synchronous motor Expired - Lifetime JP2856564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3088148A JP2856564B2 (en) 1991-04-19 1991-04-19 Control device for synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3088148A JP2856564B2 (en) 1991-04-19 1991-04-19 Control device for synchronous motor

Publications (2)

Publication Number Publication Date
JPH04322191A JPH04322191A (en) 1992-11-12
JP2856564B2 true JP2856564B2 (en) 1999-02-10

Family

ID=13934851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3088148A Expired - Lifetime JP2856564B2 (en) 1991-04-19 1991-04-19 Control device for synchronous motor

Country Status (1)

Country Link
JP (1) JP2856564B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9350283B2 (en) 2011-11-30 2016-05-24 Mitsubishi Electric Corporation Inverter device for electric vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248469A (en) 2005-03-14 2006-09-21 Hitachi Ltd Electric four-wheel drive car and its control system
JP2009183051A (en) * 2008-01-30 2009-08-13 Mitsubishi Electric Corp Controller of synchronous machine
CN108322125B (en) * 2018-01-25 2020-11-03 上海电气富士电机电气技术有限公司 Torque response control method of synchronous motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9350283B2 (en) 2011-11-30 2016-05-24 Mitsubishi Electric Corporation Inverter device for electric vehicle

Also Published As

Publication number Publication date
JPH04322191A (en) 1992-11-12

Similar Documents

Publication Publication Date Title
US4484128A (en) Vector control system for AC motor drives
JP3668870B2 (en) Synchronous motor drive system
JP4284355B2 (en) High response control device for permanent magnet motor
US7235947B2 (en) Synchronous motor control method and synchronous motor control system
JP4010195B2 (en) Control device for permanent magnet synchronous motor
JP4053511B2 (en) Vector controller for wound field synchronous machine
JPH1198900A (en) Current controller for power converter
JP2856564B2 (en) Control device for synchronous motor
JPH0775399A (en) Variable speed device
JPH06225574A (en) Method and apparatus for controlling motor
JPH06121570A (en) Ac motor control system
JPH1080180A (en) Control method and equipment of synchronous motor
JPH09191699A (en) Method for controlling induction motor
JP2856950B2 (en) Control device for synchronous motor
JP3161237B2 (en) Induction motor control device
JP3124019B2 (en) Induction motor control device
JP2634959B2 (en) Speed sensorless speed control method
JP3067660B2 (en) Control method of induction motor
JPH04127893A (en) Controller for synchronous motor
JPH05146191A (en) Controller for synchronous motor
JPS61106091A (en) Slip frequency calculator of induction motor and rotation controller of induction motor using the same
JPH0374191A (en) Sensorless asr control circuit pickup system
JP3095566B2 (en) Synchronous machine control device
JP2002238283A (en) Control apparatus of position sensorless motor
JPS5996888A (en) Controller for induction motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071127

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111127

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111127

Year of fee payment: 13