JP2854619B2 - Joining method - Google Patents
Joining methodInfo
- Publication number
- JP2854619B2 JP2854619B2 JP22539289A JP22539289A JP2854619B2 JP 2854619 B2 JP2854619 B2 JP 2854619B2 JP 22539289 A JP22539289 A JP 22539289A JP 22539289 A JP22539289 A JP 22539289A JP 2854619 B2 JP2854619 B2 JP 2854619B2
- Authority
- JP
- Japan
- Prior art keywords
- brazing material
- material layer
- joining
- metal
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Ceramic Products (AREA)
Description
【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、セラミックスと金属の接合方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for joining ceramics and metal.
(従来の技術) 材料の接合方法には、固相接合、融接、焼きばめ、ろ
う付け等の種々の方法が知られている。このうち、ろう
付け方法は接合面にろう材層を形成し、該ろう材層を溶
融させて材料同志を接合させるものである。特に、セラ
ミックスと金属の接合に有効な活性金属法も前記ろう付
け法の一つである。活性金属法は、Ti、Zr、Hfなどの酸
素又は窒素等と非常に活性である元素を含有するろう材
を使用し、Ti、Zr、Hfなどのセラミックス表面への活性
作用を利用して材料同志を接合させる方法で、電子デバ
イスから構造材料まで幅広く利用されている。(Prior Art) Various methods of joining materials, such as solid-state joining, fusion welding, shrink fitting, and brazing, are known. Among these, the brazing method is to form a brazing material layer on a joint surface and melt the brazing material layer to join the materials together. In particular, an active metal method effective for joining ceramics and metal is one of the brazing methods. The active metal method uses a brazing material containing an element that is very active with oxygen or nitrogen such as Ti, Zr, and Hf, and utilizes the active action on the ceramic surface such as Ti, Zr, and Hf. It is widely used from electronic devices to structural materials.
ところで、従来の活性金属法を含むろう付け方法は箔
又はペースト状のろう材を接合部に挿入して真空又は不
活性雰囲気中で加熱して接合するものである。しかしな
がら、かかる箔又はペースト状のろう材を用いる方法で
はセラミックスと金属のように異種材料を接合させる場
合、ろう材の溶融の際に生じる熱膨張によって接合部に
応力が残留し、該残留応力によって接合部材が破壊され
るという問題があった。前記残留応力は、接合温度が高
い程、接合後の冷却過程でのろう材の凝固温度高い程、
大きくなり、接合部材の破壊がより起こり易くする。特
に、ろう材の凝固時に異種部材間の接合がなされるた
め、凝固温度が残留応力の大小に及ぼす影響は極めて大
きくなる。By the way, in the brazing method including the conventional active metal method, a brazing material in the form of a foil or a paste is inserted into a joining portion, and the joining is performed by heating in a vacuum or an inert atmosphere. However, in a method using such a brazing material in the form of a foil or a paste, when dissimilar materials such as ceramics and metal are joined, stress remains at a joint due to thermal expansion generated when the brazing material is melted, and the residual stress causes There is a problem that the joining member is broken. The residual stress, the higher the joining temperature, the higher the solidification temperature of the brazing material in the cooling process after joining,
It becomes larger and the joint member is more likely to break. Particularly, since the joining between different kinds of members is performed at the time of solidification of the brazing material, the influence of the solidification temperature on the magnitude of the residual stress becomes extremely large.
(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされた
もので、セラミックス、金属からなる部材間の接合に際
して接合温度及び冷却過程での凝固温度を低減して部材
間に生じる残留応力を抑制した接合方法を提供しようと
するものである。(Problems to be Solved by the Invention) The present invention has been made in order to solve the above-mentioned conventional problems, and is intended to reduce a joining temperature and a solidification temperature in a cooling process at the time of joining ceramic and metal members. An object of the present invention is to provide a joining method in which residual stress generated between members is suppressed.
[発明の構成] (課題を解決するための手段) 本発明は、セラミックス又は金属からなる一方の部材
の接合面に平均厚さ1000Å以下のろう材層又は平均厚さ
1000Å以下の金属薄膜を複数積層したろう材層を形成
し、このろう材層に前記部材と異なる金属又はセラミッ
クスからなる他方の部材を当接させた後、加熱して前記
ろう材層を溶融、接合することを特徴とする接合方法で
ある。[Means for Solving the Problems] The present invention provides a brazing material layer having an average thickness of 1000 mm or less or an average thickness on a joining surface of one member made of ceramics or metal.
A brazing material layer in which a plurality of metal thin films of 1000 mm or less are laminated is formed, and the other member made of a metal or ceramic different from the member is brought into contact with the brazing material layer, and then the brazing material layer is heated to melt the brazing material layer. This is a joining method characterized by joining.
上記セラミックスとしては、例えばアルミナ、ジルコ
ニアなどの酸化物系セラミックス、窒化アルミニウム、
窒化ケイ素、窒化硼素などの窒化物系セラミックス、炭
化ケイ素等の炭化物系セラミックスを挙げることができ
る。Examples of the ceramics include oxide ceramics such as alumina and zirconia, aluminum nitride,
Examples thereof include nitride ceramics such as silicon nitride and boron nitride, and carbide ceramics such as silicon carbide.
上記金属としては、種々の金属、合金を用いることが
でき、例えばCu、Fe、Ni、Co、Mo、Ta等を挙げることが
できる。Various metals and alloys can be used as the metal, and examples thereof include Cu, Fe, Ni, Co, Mo, and Ta.
上記単一のろう材層としては、例えばTi−Cu合金、Zr
−Cu合金又はCu単体等を挙げることができる。かかるろ
う材層の平均厚さを限定した理由は、その平均厚さが10
00Åを越えると接合温度及び凝固温度の低減化を達成で
きないからである。より好ましいろう材層の平均厚さ
は、50〜1000Åの範囲である。As the single brazing material layer, for example, Ti-Cu alloy, Zr
A Cu alloy or a simple substance of Cu; The reason for limiting the average thickness of such a brazing material layer is that the average thickness is 10%.
This is because if it exceeds 00 °, the joining temperature and the solidification temperature cannot be reduced. A more preferred average thickness of the brazing material layer is in the range of 50 to 1000 °.
上記金属薄膜を複数積層したろう材層としては、例え
ばTi/Pb、Zr/Pb、Ti/Bi、Zr/Bi、Ti/Sn、Zr/Sn、Ti/C
u、Zr/Cuの二層積層物等を挙げることができる。かかる
ろう材層を構成する金属薄膜の平均厚さを限定した理由
は、その平均厚さが1000Åを越えると接合温度及び凝固
温度の低減化を達成できないからである。より好ましい
金属薄膜の平均厚さは、50〜1000Åの範囲である。Examples of the brazing material layer obtained by laminating a plurality of the metal thin films include, for example, Ti / Pb, Zr / Pb, Ti / Bi, Zr / Bi, Ti / Sn, Zr / Sn, and Ti / C.
u, Zr / Cu two-layer laminate, and the like. The reason why the average thickness of the metal thin film constituting such a brazing material layer is limited is that if the average thickness exceeds 1000 °, reduction of the joining temperature and the solidification temperature cannot be achieved. The more preferable average thickness of the metal thin film is in the range of 50 to 1000 °.
上記ろう材層又はろう材層を構成する金属薄膜は、厚
さ制御が容易で良好な層形成が可能なスパッタリング
法、イオンプレーティング法、電子ビーム蒸着法により
前記セラミックス又は金属からなる一方の部材に被覆す
ることが望ましい。The brazing material layer or the metal thin film constituting the brazing material layer is one member made of the ceramics or the metal by a sputtering method, an ion plating method, or an electron beam evaporation method, in which the thickness can be easily controlled and a good layer can be formed. It is desirable to coat on.
上記加熱処理は、減圧下又は不活性雰囲気下で行うこ
とが望ましい。The heat treatment is desirably performed under reduced pressure or an inert atmosphere.
(作用) 本発明によれば、セラミックス又は金属からなる2種
の部材の接合面に平均厚さ1000Å以下のろう材層又は平
均厚さ1000Å以下の金属薄膜を複数積層したろう材層を
形成して加熱することによって、従来法のように箔又は
ペースト状のろう材層を用いる場合に比べてろう材層を
溶融させる接合温度及び冷却過程での凝固温度を低減で
きる。その結果、接合時での異種材料からなる部材間の
熱膨脹差に伴って接合部に生じる残留応力を低減できる
ため、接合後の接合部材への熱影響による亀裂、破壊等
を防止することができる。(Function) According to the present invention, a brazing material layer having an average thickness of 1000 mm or less or a brazing material layer formed by laminating a plurality of metal thin films having an average thickness of 1000 mm or less is formed on the joining surface of two members made of ceramics or metal. By performing the heating, the joining temperature for melting the brazing material layer and the solidification temperature in the cooling process can be reduced as compared with the case where a brazing material layer in the form of a foil or paste is used as in the conventional method. As a result, it is possible to reduce the residual stress generated in the joint portion due to the difference in thermal expansion between members made of dissimilar materials at the time of joining, so that it is possible to prevent cracks, breakage, and the like due to thermal effects on the joined members after joining. .
(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Hereinafter, an example of the present invention will be described in detail.
実施例1 純度99.9%のα型アルミナ基材の表面をアセトンで超
音波洗浄した後、この基材上にアルゴンイオンスパッタ
リング装置により5×10-3torrのアルゴン雰囲気中にて
平均厚さ500Åの72wt%Cu−Ti合金からなるろう材層を
形成した。次いで、前記α型アルミナ基材を真空炉中に
移し、該基材のろう材層にMo板を当接させた後、10-8〜
10-10torr、875℃の条件で10分間熱処理したところ、ろ
う材層は溶融し、870℃で凝固した。これにより、融点
が880℃のバルクの72wt%Cu−Ti合金に比べて融点で5
℃、凝固点で10℃低減化することができた。Example 1 The surface of an α-type alumina substrate having a purity of 99.9% was subjected to ultrasonic cleaning with acetone, and then the substrate was coated with an average thickness of 500 mm in an argon atmosphere of 5 × 10 −3 torr using an argon ion sputtering apparatus. A brazing filler metal layer made of a 72 wt% Cu-Ti alloy was formed. Next, the α-type alumina substrate was transferred into a vacuum furnace, and after a Mo plate was brought into contact with the brazing material layer of the substrate, 10 −8 to
After a heat treatment at 10 −10 torr and 875 ° C. for 10 minutes, the brazing material layer melted and solidified at 870 ° C. As a result, the melting point is 5 times higher than that of a bulk 72 wt% Cu-Ti alloy having a melting point of 880 ° C.
℃, the freezing point could be reduced by 10 ℃.
熱処理後、真空炉中で冷却し、炉外にアルミナ基材を
取出したところ、Mo板はアルミナ基材上に接合され、そ
の引っ張り強度は5kg/cm2以上であった。また、得られ
た接合部材を加熱しても接合部の残留応力に起因する亀
裂、破壊等は全く認められなかった。After the heat treatment, the substrate was cooled in a vacuum furnace, and the alumina substrate was taken out of the furnace. As a result, the Mo plate was bonded onto the alumina substrate, and its tensile strength was 5 kg / cm 2 or more. Further, even if the obtained joining member was heated, no crack, breakage, or the like caused by the residual stress in the joining portion was observed at all.
実施例2 純度99.9%のα型アルミナ基材の表面をアセトンで超
音波洗浄した後、この基材上にアルゴンイオンスパッタ
リング装置により5×10-3torrのアルゴン雰囲気中にて
途中で真空を破ることなく平均厚さ50ÅのTi、平均厚さ
500ÅのPbを順次積層して二層積層構造のろう材層を形
成した。次いで、前記α型アルミナ基材を真空炉中に移
し、該基材のろう材層上にMo板を当接させた後、10-8〜
10-10torr、595℃の条件で10分間熱処理したところ、ろ
う材層は溶融し、510℃で凝固した。これにより、融点
が600℃のバルクのPbに比べて融点で5℃、凝固点で90
℃、低減化することができた。Example 2 The surface of an α-type alumina substrate having a purity of 99.9% was ultrasonically cleaned with acetone, and then vacuum was broken on the substrate in an argon atmosphere of 5 × 10 −3 torr by an argon ion sputtering apparatus. Ti with average thickness of 50mm without average thickness
Pb of 500 mm was sequentially laminated to form a brazing filler metal layer having a two-layer laminated structure. Next, the α-type alumina substrate was transferred into a vacuum furnace, and after a Mo plate was brought into contact with the brazing material layer of the substrate, 10 −8 to
When heat treatment was performed at 10 −10 torr and 595 ° C. for 10 minutes, the brazing material layer melted and solidified at 510 ° C. As a result, compared to bulk Pb having a melting point of 600 ° C., the melting point is 5 ° C. and the solidification point is 90 ° C.
° C, could be reduced.
熱処理後、真空炉中で冷却し、炉外にアルミナ基材を
取出したところ、Mo板はアルミナ基材上に接合され、そ
の引っ張り強度は6kg/cm2以上であった。また、得られ
た接合部材を加熱しても接合部の残留応力に起因する亀
裂、破壊等は全く認められなかった。After the heat treatment, the substrate was cooled in a vacuum furnace, and the alumina substrate was taken out of the furnace. As a result, the Mo plate was bonded onto the alumina substrate, and had a tensile strength of 6 kg / cm 2 or more. Further, even if the obtained joining member was heated, no crack, breakage, or the like caused by the residual stress in the joining portion was observed at all.
実施例3 純度99.9%のα型アルミナ基材の表面をアセトンで超
音波洗浄した後、この基材上にアルゴンイオンスパッタ
リング装置により5×10-3torrのアルゴン雰囲気中にて
途中で真空を破ることなく平均厚さ50ÅのZr、平均厚さ
500ÅのPbを順次積層して二層積層構造のろう材層を形
成した。次いで、前記α型アルミナ基材を真空炉中に移
し、該基材のろう材層上にMo板を当接させた後、10-8〜
10-10torr、600℃の条件で10分間熱処理したところ、ろ
う材層は溶融し、530℃で凝固した。これにより、融点
が600℃のバルクのPbに比べて凝固点で70℃低減化する
ことができた。Example 3 After the surface of an α-type alumina substrate having a purity of 99.9% was ultrasonically cleaned with acetone, the vacuum was broken on the substrate in the argon atmosphere at 5 × 10 −3 torr by an argon ion sputtering apparatus. Zr with average thickness of 50mm without average thickness
Pb of 500 mm was sequentially laminated to form a brazing filler metal layer having a two-layer laminated structure. Next, the α-type alumina substrate was transferred into a vacuum furnace, and after a Mo plate was brought into contact with the brazing material layer of the substrate, 10 −8 to
When heat treatment was performed at 10 −10 torr and 600 ° C. for 10 minutes, the brazing material layer melted and solidified at 530 ° C. As a result, the solidification point was reduced by 70 ° C. as compared with bulk Pb having a melting point of 600 ° C.
熱処理後、真空炉中で冷却し、炉外にアルミナ基材を
取出したところ、Mo板はアルミナ基材上に接合され、そ
の引っ張り強度は6kg/cm2以上であった。また、得られ
た接合部材を加熱しても接合部の残留応力に起因する亀
裂、破壊等は全く認められなかった。After the heat treatment, the substrate was cooled in a vacuum furnace, and the alumina substrate was taken out of the furnace. As a result, the Mo plate was bonded onto the alumina substrate, and had a tensile strength of 6 kg / cm 2 or more. Further, even if the obtained joining member was heated, no crack, breakage, or the like caused by the residual stress in the joining portion was observed at all.
実施例4 純度99.9%の窒化アルミニウム基材の表面をアセトン
で超音波洗浄した後、この基材上にアルゴンイオンスパ
ッタリング装置により5×10-3torrのアルゴン雰囲気中
にて途中で真空を破ることなく平均厚さ50ÅのTi、平均
厚さ500ÅのBiを順次積層して二層積層構造のろう材層
を形成した。次いで、前記α型アルミナ基材を真空炉中
に移し、該基材のろう材層上にMo板を当接させた後、10
-8〜10-10torr、540℃の条件で10分間熱処理したとこ
ろ、ろう材層は溶融し、450℃で凝固した。これによ
り、融点が544℃のバルクのBiに比べて融点で4℃、凝
固点で94℃、低減化することができた。Example 4 The surface of an aluminum nitride substrate having a purity of 99.9% was subjected to ultrasonic cleaning with acetone, and then vacuum was broken on the substrate in an argon atmosphere of 5 × 10 −3 torr by an argon ion sputtering apparatus. Instead, Ti having an average thickness of 50 mm and Bi having an average thickness of 500 mm were sequentially laminated to form a brazing material layer having a two-layer laminated structure. Next, the α-type alumina substrate was transferred into a vacuum furnace, and a Mo plate was brought into contact with the brazing filler metal layer of the substrate.
When heat-treated at -8 to 10 -10 torr and 540 ° C for 10 minutes, the brazing material layer melted and solidified at 450 ° C. As a result, the melting point was reduced by 4 ° C. and the freezing point by 94 ° C. as compared with bulk Bi having a melting point of 544 ° C.
熱処理後、真空炉中で冷却し、炉外に窒化アルミニウ
ム基材を取出したところ、Mo板は窒化アルミニウム基材
上に接合され、その引っ張り強度は4kg/cm2以上であっ
た。また、得られた接合部材を加熱しても接合部の残留
応力に起因する亀裂、破壊等は全く認められなかった。After the heat treatment, the aluminum plate was cooled in a vacuum furnace, and the aluminum nitride substrate was taken out of the furnace. As a result, the Mo plate was bonded onto the aluminum nitride substrate and had a tensile strength of 4 kg / cm 2 or more. Further, even if the obtained joining member was heated, no crack, breakage, or the like caused by the residual stress in the joining portion was observed at all.
実施例5 純度99.9%の窒化アルミニウム基材の表面をアセトン
で超音波洗浄した後、この基材上にアルゴンイオンスパ
ッタリング装置により5×10-3torrのアルゴン雰囲気中
にて途中で真空を破ることなく平均厚さ50ÅのTi、平均
厚さ500ÅのSnを順次積層して二層積層構造のろう材層
を形成した。次いで、前記α型アルミナ基材を真空炉中
に移し、該基材のろう材層上にMo板を当接させた後、10
-8〜10-10torr、500℃の条件で10分間熱処理したとこ
ろ、ろう材層は溶融し、410℃で凝固した。これによ
り、融点が505℃のバルクのSnに比べて融点で5℃、凝
固点で95℃、低減化することができた。Example 5 After the surface of an aluminum nitride substrate having a purity of 99.9% was ultrasonically cleaned with acetone, the vacuum was broken on the substrate in the argon atmosphere of 5 × 10 −3 torr by an argon ion sputtering device. Instead, Ti having an average thickness of 50 mm and Sn having an average thickness of 500 mm were sequentially laminated to form a brazing material layer having a two-layer laminated structure. Next, the α-type alumina substrate was transferred into a vacuum furnace, and a Mo plate was brought into contact with the brazing filler metal layer of the substrate.
When heat treatment was performed at -8 to 10 -10 torr and 500 ° C for 10 minutes, the brazing material layer melted and solidified at 410 ° C. As a result, it was possible to reduce the melting point by 5 ° C. and the freezing point by 95 ° C. as compared with bulk Sn having a melting point of 505 ° C.
熱処理後、真空炉中で冷却し、炉外に窒化アルミニウ
ム基材を取出したところ、Mo板は窒化アルミニウム基材
上に接合され、その引っ張り強度は3kg/cm2以上であっ
た。また、得られた接合部材を加熱しても接合部の残留
応力に起因する亀裂、破壊等は全く認められなかった。After the heat treatment, the aluminum plate was cooled in a vacuum furnace, and the aluminum nitride substrate was taken out of the furnace. As a result, the Mo plate was bonded onto the aluminum nitride substrate, and had a tensile strength of 3 kg / cm 2 or more. Further, even if the obtained joining member was heated, no crack, breakage, or the like caused by the residual stress in the joining portion was observed at all.
[発明の効果] 以上詳述した如く、本発明の接合方法によればセラミ
ックス、金属からなる部材間の接合に際して接合温度及
び冷却過程での凝固温度を低減して異種材料からなる部
材間の熱膨張差に起因する残留応力の発生を抑制でき、
ひいては接合後の熱影響による亀裂、破損を防止した信
頼性の高い接合部材を得ることができる等顕著な効果を
奏する。[Effects of the Invention] As described above in detail, according to the joining method of the present invention, when joining between members made of ceramics and metal, the joining temperature and the solidification temperature in the cooling process are reduced, and the heat between the members made of dissimilar materials is reduced. The generation of residual stress due to the difference in expansion can be suppressed,
As a result, a remarkable effect is obtained, such as a highly reliable joining member in which cracks and breakage due to heat influence after joining can be prevented.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−261671(JP,A) 特開 平3−226372(JP,A) 特開 平3−174372(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 37/00 C04B 37/02────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-261671 (JP, A) JP-A-3-226372 (JP, A) JP-A-3-174372 (JP, A) (58) Field (Int. Cl. 6 , DB name) C04B 37/00 C04B 37/02
Claims (2)
の接合面に平均厚さ1000Å以下のろう材層を形成し、こ
のろう材層に前記部材と異なる金属又はセラミックスか
らなる他方の部材を当接させた後、加熱して前記ろう材
層を溶融、接合することを特徴とする接合方法。1. A brazing material layer having an average thickness of 1000 mm or less is formed on a joining surface of one member made of ceramics or metal, and the other member made of a metal or ceramic different from the member is brought into contact with the brazing material layer. And heating and melting and joining the brazing material layer.
の接合面に平均厚さ1000Å以下の金属薄膜を複数積層し
たろう材層を形成し、このろう材層に前記部材と異なる
金属又はセラミックスからなる他方の部材を当接させた
後、加熱して前記ろう材層を溶融、接合することを特徴
とする接合方法。2. A brazing material layer formed by laminating a plurality of metal thin films having an average thickness of 1000 mm or less on a joining surface of one member made of ceramics or metal, and the brazing material layer is made of a metal or ceramic different from the member. A joining method, wherein the other member is brought into contact, and then heated to melt and join the brazing material layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22539289A JP2854619B2 (en) | 1989-08-31 | 1989-08-31 | Joining method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22539289A JP2854619B2 (en) | 1989-08-31 | 1989-08-31 | Joining method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0388780A JPH0388780A (en) | 1991-04-15 |
JP2854619B2 true JP2854619B2 (en) | 1999-02-03 |
Family
ID=16828642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22539289A Expired - Fee Related JP2854619B2 (en) | 1989-08-31 | 1989-08-31 | Joining method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2854619B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3495052B2 (en) * | 1992-07-15 | 2004-02-09 | 株式会社東芝 | Metallized body and manufacturing method thereof |
CN115302033B (en) * | 2022-08-22 | 2023-11-21 | 哈尔滨工业大学(威海) | Low-temperature indirect brazing method for zirconia ceramic and titanium alloy |
-
1989
- 1989-08-31 JP JP22539289A patent/JP2854619B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0388780A (en) | 1991-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR960010166B1 (en) | Diffusion-bonded sputtering target assembly and method of manufacturing the same | |
KR100274488B1 (en) | Method of bonding a sputter target backing plate assembly and assemblies produced thereby | |
JPH0249267B2 (en) | ||
JPH0217509B2 (en) | ||
EP0301492B1 (en) | Method for bonding cubic boron nitride sintered compact | |
JP3525348B2 (en) | Manufacturing method of diffusion bonded sputtering target assembly | |
JP2854619B2 (en) | Joining method | |
JPH02196074A (en) | Production of ceramics-metal joined body | |
JPH0867978A (en) | Method for soldering target for sputtering | |
JP3469261B2 (en) | Diffusion bonded sputtering target assembly and method of manufacturing the same | |
JP3660014B2 (en) | Sputtering target | |
JPH06158296A (en) | Diffusion-bonded sputtering target assembly and its production | |
JP3302714B2 (en) | Ceramic-metal joint | |
JP4331370B2 (en) | Method for manufacturing HIP joined body of beryllium and copper alloy and HIP joined body | |
JP3629578B2 (en) | Ti-based material and Cu-based bonding method | |
JP4151859B2 (en) | Method for joining sputtering target plates | |
JPS61269998A (en) | Sn alloy solder having excellent thermal fatigue characteristic | |
JP2650460B2 (en) | Joining method of alumina ceramic and metal | |
JPH01179768A (en) | Method for bonding ceramic material and metallic material | |
JPH0672779A (en) | Method for joining carbon member | |
JP2001048668A (en) | Method for joining ceramics and metal, joined body and piezoelectric vibrator | |
JPH059396B2 (en) | ||
JP3215554B2 (en) | Method of joining materials with different coefficients of thermal expansion | |
JPH0450107B2 (en) | ||
JPH05169281A (en) | Manufacture of tantalum/copper/stainless steel (carbon steel) clad |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |