JP2840897B2 - Silver halide emulsion and method for producing the same - Google Patents
Silver halide emulsion and method for producing the sameInfo
- Publication number
- JP2840897B2 JP2840897B2 JP4077261A JP7726192A JP2840897B2 JP 2840897 B2 JP2840897 B2 JP 2840897B2 JP 4077261 A JP4077261 A JP 4077261A JP 7726192 A JP7726192 A JP 7726192A JP 2840897 B2 JP2840897 B2 JP 2840897B2
- Authority
- JP
- Japan
- Prior art keywords
- mol
- grains
- particles
- solution
- emulsion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Description
【0001】[0001]
【産業上の利用分野】本発明は写真の分野において有用
であるハロゲン化銀(以後、「AgX」と記す)乳剤に
関し、特に主平面が{100}面でアスペクト比が1.
3以上である平板状AgX粒子を有するAgX乳剤およ
びその製造方法を提供するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silver halide (hereinafter referred to as "AgX") emulsion which is useful in the field of photography, and more particularly to a {100} main plane and an aspect ratio of 1.
An object of the present invention is to provide an AgX emulsion having three or more tabular AgX grains and a method for producing the same.
【0002】[0002]
【従来の技術】平板状AgX乳剤粒子を写真感光材料に
用いた場合、非平板状AgX粒子に比べて色増感性、シ
ャープネス、光散乱特性、カバリングパワー、現像進行
性、粒状性等が改良される。この為に、互いに平行な双
晶面を有し、主平面が{111}面である平板状粒子が
多用されるようになった。その詳細に関しては特開昭5
8−113926号、同58−113927号、同58
−113928号、特開平2−838号、同2−286
38号、同2−298935号の記載を参考にすること
ができる。しかし、AgX粒子に増感色素を多量に吸着
させた場合、{100}面を有する粒子の方が通常、色
増感特性がよい。従って主平面が{100}面である平
板状粒子の開発が望まれている。主平面の形状が直角四
辺形の該{100}平板状粒子は特開昭51−8801
7号、特公昭64−8323号に記載がある。しかし、
これらの粒子の中心部のハロゲン組成はいずれも、I-
含率が1モル%より低い低I- 含率である。また、実施
例で示されている粒子は粒子全体が均一組成の粒子であ
る。コア層と一層以上のシェル層を有するコア/シェル
型平板状粒子に関する記載はない。更にそれらの乳剤粒
子はいずれも(核形成→熟成)の過程のみで形成された
粒子であり、粒子サイズやAgX収量、即ち感度、画質
を自由に制御および改良できないという欠点を有してい
る。これらの特許の実施例ではいずれも均一ハロゲン組
成の核形成を行なっている為に、該平板状粒子の生成確
率がバラつき、再現精度が悪い。2. Description of the Related Art When a tabular AgX emulsion particle is used in a photographic light-sensitive material, color sensitization, sharpness, light scattering characteristics, covering power, development progress, graininess, etc. are improved as compared with a non-tabular AgX particle. You. For this reason, tabular grains having twin planes parallel to each other and having a principal plane of {111} plane have come to be used frequently. For details, refer to
8-113926, 58-113927, 58
-113928, JP-A-2-838 and 2-286
Nos. 38 and 2-298935 can be referred to. However, when a large amount of a sensitizing dye is adsorbed on AgX particles, particles having a {100} plane usually have better color sensitization characteristics. Therefore, development of tabular grains having a {100} major plane is desired. The {100} tabular grains whose main plane is a quadrangle are disclosed in JP-A-51-8801.
No. 7, JP-B 64-8323. But,
Any halogen composition of the central portion of these particles, I -
It has a low I - content of less than 1 mol%. The particles shown in the examples are particles having a uniform composition as a whole. There is no description about core / shell type tabular grains having a core layer and one or more shell layers. Further, all of these emulsion grains are grains formed only in the process of (nucleation → ripening), and have the disadvantage that the grain size and AgX yield, that is, sensitivity and image quality cannot be freely controlled and improved. In all of the examples of these patents, since the nuclei having a uniform halogen composition are formed, the generation probability of the tabular grains varies, and the reproduction accuracy is poor.
【0003】[0003]
【発明が解決しようとする課題】本発明の目的は感度、
画質が更に優れたAgX乳剤を提供することにある。更
には平板状粒子形成の再現性がよく、粒子サイズやAg
X収量、即ち、感度、画質を自由に制御することができ
るAgX乳剤粒子の製造方法を提供することにある。SUMMARY OF THE INVENTION The object of the present invention is to provide sensitivity,
An object of the present invention is to provide an AgX emulsion having further improved image quality. Furthermore, the reproducibility of tabular grain formation is good, and the grain size and Ag
It is an object of the present invention to provide a method for producing AgX emulsion grains in which X yield, that is, sensitivity and image quality can be freely controlled.
【0004】[0004]
【課題を解決するための手段】本発明の目的は次項によ
って達成された。 (1)ハロゲン化銀乳剤粒子の全投影面積の20%以上
が主平面が{100}面でアスペクト比が1.3以上の
平板状粒子であるハロゲン化銀乳剤を製造する方法に於
いて、該平板状粒子が粒子の中心部分のヨウド含有率が
1.2モル%以上の平板状粒子またはコア層とシェル層
からなり、シェル層の少なくとも1層のヨウド含有率が
コア層のヨウド含有率の20%以上高い平板状粒子であ
り、該製造方法が少なくともハロゲン化銀の核形成の過
程、熟成の過程および結晶成長の過程を経て製造され、
かつ、該核形成がBrイオン濃度が10−2.3モル/
リットル以下で行なわれ、該熟成と該結晶成長がAgイ
オン濃度およびBrイオン濃度がともに10−2.3モ
ル/リットル以下で行なわれることを特徴とするハロゲ
ン化銀乳剤粒子の製造方法。The object of the present invention has been attained by the following items. (1) A method for producing a silver halide emulsion in which 20% or more of the total projected area of the silver halide emulsion grains are tabular grains having a {100} major plane and an aspect ratio of 1.3 or more, The tabular grains are composed of tabular grains having a core portion having an iodine content of 1.2 mol% or more or a core layer and a shell layer, and the iodine content of at least one shell layer is the iodine content of the core layer. 20% or more of the tabular grains, the production method being produced through at least the steps of silver halide nucleation, ripening and crystal growth,
And the nucleation is at a Br ion concentration of 10-2.3 mol /
A silver halide emulsion grain, wherein the ripening and the crystal growth are performed at an Ag ion concentration and a Br ion concentration of 10 to 2.3 mol / l or less.
【0005】(2)該結晶成長時の溶液条件がAgイオ
ン濃度およびBrイオン濃度がともに10−2.3モル
/リットル以下であり、かつ、粒径が0.15μm以下
のハロゲン化銀微粒子の添加により行なわれることを特
徴とする上記(1)に記載のハロゲン化銀乳剤粒子の製
造方法。(2) The conditions for the solution during the crystal growth are as follows: silver halide fine particles having an Ag ion concentration and a Br ion concentration of not more than 10-2.3 mol / liter and a particle size of not more than 0.15 μm. (1) The method for producing silver halide emulsion grains as described in (1) above, wherein the addition is performed.
【0006】まず、本発明のAgX粒子の構造について
詳述し、次に該乳剤粒子の製法について詳述する。 (A)AgX粒子構造 本発明のAgX乳剤は少なくとも分散媒とAgX粒子を
有し、該AgX粒子の全投影面積の20%以上、好まし
くは40%以上、より好ましくは60%以上、最も好ま
しくは80%以上が次の特徴を有する平板状粒子であ
る。即ち、主平面が{100}面でアスペクト比が1.
3以上、好ましくは2以上、より好ましくは3〜20、
更に好ましくは4〜16の平板状粒子である。ここでア
スペクト比とは平板粒子の(直径/厚味)を指し、直径
とは粒子を電子顕微鏡で観察した時、粒子の投影面積と
等しい面積を有する円の直径を指すものとする。また、
厚味は平板状粒子の主平面間の距離を指す。該平板状粒
子の投影粒径は10μm以下であり、好ましくは0.1
5〜5μm、より好ましくは0.2〜3μmである。該
粒子の投影粒径分布は単分散であることが好ましく、該
投影粒径分布の変動係数は40%以下が好ましく、30
%以下がより好ましく、20%以下が更に好ましい。こ
こで変動係数とは該粒子の投影面積の円換算直径で表わ
される粒子サイズのバラツキ(標準偏差)を平均粒子サ
イズで割った値の%表示で表わされる。また該主平面の
形状は直角平行四辺形もしくは直角平行四辺形の4つの
角が丸くなった形状である。より好ましくは該直角平行
四辺形の隣接辺比率が2以下、更に好ましくは1.5以
下である。但し、角が丸くなった場合は該辺の直線部を
延長し、その交点間の長さを辺長とする。本発明のAg
X粒子の第1の態様は、該粒子の中心部のI−含率が
1.2モル%より多く、好ましくは1.5〜7モル%、
より好ましくは2〜5モル%である。即ち、AgCl、
AgBrおよびその混晶で、I−含率が該規定に従う粒
子である。好ましくはCI−含率が50モル%以下の該
粒子である。本発明のAgX粒子の第2の態様は、次の
通りである。該粒子はコア層と1層以上のシェル層を有
し、更に、シェル層の少なくとも一層のI−含率がコア
層のI−含率の20%以上、好ましくは40%以上、よ
り好ましくは100%でかつ、10モル%以下であるこ
とを特徴とする。更に好ましくは粒子全体のI−含率が
1.2モル%より多く、より好ましくは1.5〜7モル
%、より好ましくは2〜5モル%である。First, the structure of the AgX grains of the present invention will be described in detail, and then the method for producing the emulsion grains will be described in detail. (A) AgX grain structure The AgX emulsion of the present invention has at least a dispersion medium and AgX grains, and 20% or more, preferably 40% or more, more preferably 60% or more, and most preferably the total projected area of the AgX grains. 80% or more are tabular grains having the following characteristics. That is, the main plane is {100} plane and the aspect ratio is 1.
3 or more, preferably 2 or more, more preferably 3 to 20,
More preferably, 4 to 16 tabular grains are used. Here, the aspect ratio refers to (diameter / thickness) of tabular grains, and the diameter refers to the diameter of a circle having an area equal to the projected area of the grains when the grains are observed with an electron microscope. Also,
Thickness refers to the distance between the major planes of the tabular grains. The projected particle size of the tabular grains is 10 μm or less, and preferably 0.1 μm or less.
It is 5-5 μm, more preferably 0.2-3 μm. The projected particle size distribution of the particles is preferably monodispersed, and the variation coefficient of the projected particle size distribution is preferably 40% or less.
% Or less, more preferably 20% or less. Here, the variation coefficient is expressed in% of a value obtained by dividing a variation (standard deviation) of a particle size represented by a circle-converted diameter of a projected area of the particle by an average particle size. The shape of the main plane is a right-angled parallelogram or a shape in which four corners of a right-angled parallelogram are rounded. More preferably, the ratio of the adjacent sides of the right-angled parallelogram is 2 or less, further preferably 1.5 or less. However, when the corner is rounded, the straight portion of the side is extended, and the length between the intersections is defined as the side length. Ag of the present invention
In the first embodiment of the X particles, the I - content at the center of the particles is more than 1.2 mol%, preferably 1.5 to 7 mol%,
More preferably, it is 2 to 5 mol%. That is, AgCl,
AgBr and its mixed crystals are particles having an I - content in accordance with the regulation. Preferably, the particles have a CI - content of 50 mol% or less. The second embodiment of the AgX particles of the present invention is as follows. The particles have a core layer and one or more shell layers, further, at least one layer of I shell layer - content of the core layer I - 20% of the content: more, preferably 40% or more, more preferably It is characterized by being 100% and 10 mol% or less. More preferably, the I - content of the whole particles is more than 1.2 mol%, more preferably 1.5 to 7 mol%, more preferably 2 to 5 mol%.
【0007】該コア/シェル型平板状粒子の断面構造例
を図1に示した。図中のaがコア層を、bがコア層より
I- 含率の高い該層を示す。(1)図はコア層の全表面
上にシェル層を積層させた態様を示し、(2)図は
(1)図の粒子の全表面上にb層よりも低沃度含率のc
層を積層させた態様を示す。c層の沃度含率はb層の沃
度含率の90%以下、好ましくは60%以下、より好ま
しくは30%以下である。(3)図はbをコア粒子のエ
ッジ部に積層させた態様、(4)図は(3)図の粒子の
エッジ部にcを積層させた態様を示す。(5)図はコア
粒子の主平面上にbを積層させた態様、(6)図は
(5)図の粒子の主平面上にcを積層させた態様であ
る。その他(1)図、(3)図および(5)図の構造の
2つ以上の組み合せ構造をあげることができる。例えば
(7)図は(5)図の粒子のエッジ部にcを積層させた
態様、(8)図は(1)図の粒子のエッジ部にcを積層
した態様を示す。FIG. 1 shows an example of a sectional structure of the core / shell type tabular grains. In the figure, a indicates the core layer, and b indicates the layer having a higher I - content than the core layer. (1) FIG. 1 shows an embodiment in which a shell layer is laminated on the entire surface of the core layer, and (2) FIG. 1 shows c on the entire surface of the particles in FIG.
An embodiment in which layers are stacked is shown. The iodine content of the c layer is 90% or less, preferably 60% or less, more preferably 30% or less of the i content of the b layer. (3) FIG. 3 shows an embodiment in which b is laminated on the edge of the core particle, and (4) shows an embodiment in which c is laminated on the edge of the particle in FIG. FIG. 5 (5) shows an embodiment in which b is laminated on the main plane of the core particle, and FIG. 6 (6) shows an embodiment in which c is laminated on the main plane of the particle in FIG. 5 (5). In addition, a combination structure of two or more of the structures shown in FIGS. 1A, 1B, and 3C can be given. For example, FIG. 7 shows an embodiment in which c is laminated on the edge of the particle in FIG. 5 and FIG. 8 shows an embodiment in which c is laminated on the edge of the particle in FIG.
【0008】なお該粒子のハロゲン組成はAgCl、A
gBrおよびその混晶であり、I-含率が前記規定に従
うことを特徴とする。a層のI- 含率は7モル%以下が
好ましく、5モル%以下がより好ましく、1.2〜5モ
ル%が更に好ましい。前記a層、b層、c層間のハロゲ
ン組成変化は急峻型、ゆるやかな変化型、階段状変化型
のいずれでもよく、それぞれの目的に応じて選ぶことが
できる。これに関しては特開昭60−143331号、
同59−45438号および後述の文献の記載を参考に
することができる。粒子のコア/シェル モル比に制限
はないが、通常1/25〜25、好ましくは1/10〜
10である。The halogen composition of the particles is AgCl, A
gBr and a mixed crystal thereof, characterized in that the I - content complies with the above-mentioned regulations. The I - content of the layer a is preferably 7 mol% or less, more preferably 5 mol% or less, and still more preferably 1.2 to 5 mol%. The halogen composition change between the a-layer, the b-layer, and the c-layer may be any of a steep type, a gradual change type, and a stepwise change type, and can be selected according to each purpose. Regarding this, JP-A-60-143331,
No. 59-45438 and the following documents can be referred to. The core / shell molar ratio of the particles is not limited, but is usually from 1/25 to 25, preferably from 1/10 to 10/25.
It is 10.
【0009】(B)該AgX乳剤粒子の製造方法 該AgX乳剤粒子はいずれも核形成→熟成→結晶成長の
過程を経て形成される。まず核形成過程から順に説明す
る。(B) Method for producing the AgX emulsion particles Each of the AgX emulsion particles is formed through a process of nucleation → ripening → crystal growth. First, the nucleation process will be described in order.
【0010】1)核形成過程 少なくとも分散媒と水を含む分散媒溶液中に攪拌しなが
らAg+塩溶液とハロゲン化物塩(以後X−塩と記す)
溶液を同時混合法で添加して核形成する。この核形成中
の分散媒溶液中のBr−濃度は10−2.3モル/リッ
トル以下であるが、10−2.6モル/リットル以下が
より好ましい。Ag+濃度は10−4モル/リットル以
上が好ましく、10−3.7〜10−1.5モル/リッ
トルがより好ましく、10−3.4〜10−1.5モル
/リットルが更に好ましい。X−塩としては通常、アル
カリ金属塩、アンモニウム塩が用いられる。Ag+塩と
しては通常、AgNO3が用いられる。分散媒としては
従来公知の写真用分散媒を用いることができるが、通常
はゼラチンが好ましく、アルカリ処理ゼラチンがより好
ましい。また、ゼラチンのCa++含量は好ましくは0
〜104ppmの中から最適含量のゼラチンを選んで用
いることができる。陽イオン交換処理をすることによ
り、該Ca++含量を調整することができる。1) Nucleation process Ag + salt solution and halide salt (hereinafter referred to as X - salt) while stirring in a dispersion medium solution containing at least a dispersion medium and water.
The solution is added by a double jet method to nucleate. The Br − concentration in the dispersion medium solution during the nucleation is 10 −2.3 mol / L or less, but is more preferably 10 −2.6 mol / L or less. The Ag + concentration is preferably 10 −4 mol / L or more, more preferably 10 −3.7 to 10 −1.5 mol / L, and even more preferably 10 −3.4 to 10 −1.5 mol / L. As the X - salt, an alkali metal salt or an ammonium salt is usually used. AgNO 3 is usually used as the Ag + salt. As the dispersion medium, a conventionally known photographic dispersion medium can be used, but usually gelatin is preferred, and alkali-treated gelatin is more preferred. The Ca ++ content of the gelatin is preferably 0.
The optimum content of gelatin can be selected from the range of from 10 to 10 4 ppm. By performing the cation exchange treatment, the Ca ++ content can be adjusted.
【0011】それらの詳細に関しては後述の文献の記載
を参考にすることができる。反応容器中の分散媒の濃度
は0.1重量%以上が好ましく、0.2〜10重量%が
より好ましく、0.3〜5重量%が更に好ましい。ま
た、Ag+ 塩溶液および/もしくはX- 塩溶液中にゼラ
チンを含有させることができる。この場合、ゼラチン濃
度は0.1〜5重量%が好ましく、0.2〜3重量%が
より好ましい。反応容器中のゼラチン濃度とほぼ等しい
濃度が特に好ましい。ここでほぼとは(濃度差/反応容
器中のゼラチン濃度)が50%以内が好ましく、25%
以内がより好ましい。AgNO3 溶液およびX- 塩溶液
が容器溶液中に液面下添加された時、添加口近辺におけ
るゼラチン濃度の不均一性がなくなり、均一な核形成が
可能となる。For the details thereof, the description in the following literature can be referred to. The concentration of the dispersion medium in the reaction vessel is preferably 0.1% by weight or more, more preferably 0.2 to 10% by weight, even more preferably 0.3 to 5% by weight. Further, gelatin can be contained in the Ag + salt solution and / or the X - salt solution. In this case, the gelatin concentration is preferably from 0.1 to 5% by weight, more preferably from 0.2 to 3% by weight. A concentration approximately equal to the gelatin concentration in the reaction vessel is particularly preferred. Here, “approximately” means that (concentration difference / gelatin concentration in reaction vessel) is preferably within 50%, and 25% or less.
Is more preferable. When the AgNO 3 solution and the X - salt solution are added below the liquid level in the container solution, non-uniformity of the gelatin concentration near the addition port is eliminated, and uniform nucleation can be achieved.
【0012】核形成時の温度に制限はないが、通常、1
0℃以上が好ましく、20℃以上がより好ましい。核形
成後に物理熟成をし、非平板状粒子を消失させ、該平板
状粒子を成長させる。従って、該熟成をより迅速に行な
わせる為には、核形成温度を低くすることが好ましい。
但し、核形成温度を高くすると、核形成時に熟成も生じ
る。Ag+ 塩の添加速度は容器溶液1リットルあたり2
〜30g/分が好ましく、4〜20g/分がより好まし
い。核形成期間は15分間以下が好ましく、5秒〜10
分間がより好ましく、15秒〜5分間が更に好ましい。
容器溶液中のpHに特に制限はないが、通常、pH11
以下、好ましくは1.5〜10.5の好ましい値を選ん
で用いられる。該核形成時に形成される(該欠陥数/粒
子)=ωは、核形成条件に依存する。該平板状粒子が生
成するのは主平面に対してエッジ面が優先的に成長する
為である。それは該粒子のエッジ面に選択成長特性を有
する欠陥(例えばらせん転位)が存在する為である。ω
とは1粒子あたりに含まれる該欠陥の数を指す。例えば
AgBr核形成の場合、ω値は容器溶液のpHは7〜
8領域で最大となり、それより低pH側もしくは高pH
側に離れるにつれ、減少する。Ag+ の過剰イオン濃
度は10-2〜10-3モル/リットル近傍で最大となり、
それより離れるにつれて減少する。容器溶液中のゼラ
チン濃度は低くなる程、上昇するが、0.1重量%以下
では種々の欠陥が入り、非平板状欠陥粒子の比率が増加
する。AgNO3 とX- 塩溶液の添加速度を増すにつ
れ、増加するが、添加速度を上げすぎると非平板状欠陥
粒子の比率が増加する。攪拌レベルを上げる程、減少
する。容器溶液のゼラチンの脱イオン化の程度が大き
い程、減少する。温度は高くする程、減少する。The temperature at the time of nucleation is not limited.
0 ° C. or higher is preferable, and 20 ° C. or higher is more preferable. After nucleation, physical ripening is performed to eliminate non-tabular grains and grow the tabular grains. Therefore, in order to perform the ripening more quickly, it is preferable to lower the nucleation temperature.
However, when the nucleation temperature is increased, ripening occurs during nucleation. Ag + salt addition rate is 2 per liter of container solution.
-30 g / min is preferable, and 4-20 g / min is more preferable. The nucleation period is preferably 15 minutes or less, and 5 seconds to 10 minutes.
Minutes, more preferably 15 seconds to 5 minutes.
Although the pH in the container solution is not particularly limited, it is usually pH 11
Hereinafter, preferably, a preferable value of 1.5 to 10.5 is selected and used. The number formed during the nucleation (the number of defects / particles) = ω depends on the nucleation conditions. The tabular grains are formed because the edge faces grow preferentially with respect to the main plane. This is because defects having selective growth characteristics (eg, screw dislocations) are present on the edge surfaces of the grains. ω
Means the number of the defects contained per particle. For example, in the case of AgBr nucleation, the value of ω is 7 to
Maximum in 8 regions, lower or higher pH
Decrease as you move away. The excess ion concentration of Ag + becomes maximum around 10 −2 to 10 −3 mol / l,
It decreases with increasing distance. The lower the gelatin concentration in the container solution, the higher the gelatin concentration, but if it is 0.1% by weight or less, various defects are introduced, and the ratio of non-tabular defect particles increases. Increasing the rate of addition of the AgNO 3 and X - salt solutions, but increasing the rate too much will increase the proportion of non-tabular defect grains. It decreases as the stirring level increases. The greater the degree of deionization of the gelatin in the container solution, the less. The higher the temperature, the lower the temperature.
【0013】これらは他の条件を同一にし、1つの条件
のみを変化させて核形成した時の結果である。即ち、種
々の条件下で核形成した後、ゼラチン濃度、pAgおよ
びpH等を同一条件(pH6.5、Ag+ 濃度≒Br-
濃度、ゼラチン濃度=2重量%)に調節し、75℃に昇
温し、熟成する。熟成時間に対して乳剤をサンプリング
し、非平板状微粒子がほぼ消失した時点の粒子写真(粒
子のレプリカの透過型電子顕微鏡写真のことを指す)よ
り平板状粒子の平均体積を求めて比較した結果である。
または、熟成初期(例えば昇温直後)に乳剤をサンプリ
ングし、粒子写真より平板状粒子数比率を数えることに
よっても求めることができる。これらの因子は互いに加
成性を有する。ω値が低すぎると該平板粒子の生成確率
が低くなる。従って、ω値が高すぎず、低すぎず、最終
的に得られる乳剤の該平板粒子の投影面積比率が前記規
定に入るように、これらの核形成条件を調節し、該ω値
を調節する。本発明の第1の態様では、核形成時に生成
するAgXのI- 含率は1.2モル%以上、好ましくは
1.5〜7モル%、より好ましくは2〜5モル%であ
る。この場合、I- 含率を上げることにより生ずるω値
の増加を他の前記因子を調節することにより適性値にす
ればよい。These are the results when the nuclei are formed with the other conditions being the same and only one condition being changed. That is, after forming nuclei under various conditions, the gelatin concentration, pAg, pH, etc. were changed under the same conditions (pH 6.5, Ag + concentration ≒ Br −).
(Concentration, gelatin concentration = 2% by weight), heated to 75 ° C, and aged. Emulsion was sampled for the ripening time, and the average volume of tabular grains was determined from a grain photograph (referred to as a transmission electron micrograph of a replica of the grains) at the time when non-tabular fine grains were almost completely eliminated. It is.
Alternatively, it can also be determined by sampling an emulsion at an early stage of ripening (for example, immediately after raising the temperature) and counting the tabular grain number ratio from a grain photograph. These factors are additive to each other. If the ω value is too low, the probability of forming the tabular grains will be low. Therefore, the nucleation conditions are adjusted and the ω value is adjusted so that the ω value is not too high or too low, and the projected area ratio of the tabular grains of the finally obtained emulsion falls within the above-mentioned range. . In the first embodiment of the present invention, the I - content of AgX formed during nucleation is 1.2 mol% or more, preferably 1.5 to 7 mol%, more preferably 2 to 5 mol%. In this case, the increase in the ω value caused by increasing the I - content may be adjusted to an appropriate value by adjusting other factors.
【0014】該核形成時に制御されるべき反応溶液のA
g+ およびBr- 過剰イオン濃度が非常に低い為、その
精密制御が困難である。この制御方法として、従来の銀
電位制御方法を用いることもできるが、次の方法がより
有効である。銀電位制御方法を用いずに、AgNO3 溶
液とBr- 塩溶液を精密送液ポンプで予め設定された流
量、時間で同時混合添加する。更に、攪拌混合時の濃度
不均一性を少なくする為に、多孔体を通して添加するこ
とがより好ましい。これに関しては特開平2−1460
33号、同3−21339号および、特願平2−326
222号明細書の記載を参考にすることができる。ま
た、Ag+ 塩溶液とX- 塩溶液をバルク液で希釈した
後、混合することがより好ましい。この装置の具体例に
関しては、特開平2−146033号、米国特許3,7
85,777号、同3,415,650号の明細書の記
載を参考にすることができる。A of the reaction solution to be controlled during the nucleation
Since the g + and Br − excess ion concentrations are very low, precise control thereof is difficult. As a control method, a conventional silver potential control method can be used, but the following method is more effective. Without using the silver potential control method, the AgNO 3 solution and the Br − salt solution are simultaneously mixed and added at a preset flow rate and time by a precision liquid sending pump. Further, in order to reduce non-uniformity of concentration at the time of stirring and mixing, it is more preferable to add through a porous material. Regarding this, Japanese Patent Laid-Open No.
Nos. 33, 21339 and 3-326
No. 222 can be referred to. It is more preferable to mix the Ag + salt solution and the X - salt solution after diluting them with the bulk liquid. For specific examples of this apparatus, see Japanese Patent Application Laid-Open No. 2-146033 and US Pat.
Nos. 85,777 and 3,415,650 can be referred to.
【0015】更には、該ω値の最適化を、Ag+とBr
−の等量点濃度域から離れた所で行なうことが好まし
い。具体的にはAg+の過剰濃度が好ましくは10
−3.4モル/リットル以上、より好ましくは10
−3.0〜10−1.5モル/リットル領域で核形成す
る。この場合はAgNO3溶液とBr−塩溶液の添加精
度のバラツキの影響が小さくなり、好ましい。この領域
で核形成すると、通常ω値が高くなりすぎるが、前記の
因子を制御することによりω値を下げ、最適化すればよ
い。または、Ag+過剰濃度を増していくと、ω値が減
少する領域がある。その領域でAg+過剰濃度を調節し
て、ω値を調節すればよい。大量装置で製造する場合
は、通常、該濃度不均一性が大きくなる。この場合、核
形成を小量容器で行ない、大量容器に蓄積する方法がよ
り好ましい。これに関しては特開平3−155539
号、特願平3−139516号明細書の記載を参考にす
ることができる。なお、ゼラチンの脱イオン化の程度
は、ゼラチンの脱イオン化レベルを調節することによっ
ても調節することができるが、(非脱イオン化ゼラチ
ン:empty ゼラチン)の混合重量比を変えること
により変える方法も好ましく用いることができる。ここ
で脱イオン化とはゼラチン中の不純物陰イオンおよび陽
イオンを脱イオン化したゼラチンを指す。また、該混合
重量比は1:0〜0:1の間で変えることができる。e
mpty ゼラチンは、元ゼラチン中の該不純物イオン
の90%以上を除去したゼラチンを指す。Further, the optimization of the ω value is performed by comparing Ag + and Br
- it is preferably carried out at a distance from the equivalence point concentration range of. Specifically, an excess concentration of Ag + is preferably 10
-3.4 mol / l or more, more preferably 10 mol / l or more
Nucleation occurs in the range of -3.0 to 10 -1.5 mol / liter. In this case, the influence of the variation in the addition accuracy of the AgNO 3 solution and the Br − salt solution is reduced, which is preferable. When nucleation occurs in this region, the ω value usually becomes too high. However, the ω value may be reduced and optimized by controlling the above factors. Alternatively, there is a region where the ω value decreases as the Ag + excess concentration increases. The value of ω may be adjusted by adjusting the Ag + excess concentration in that region. In the case of manufacturing with a large amount of equipment, the concentration non-uniformity is usually large. In this case, a method of performing nucleation in a small container and accumulating in a large container is more preferable. Regarding this, Japanese Patent Application Laid-Open No. 3-155538
And Japanese Patent Application No. 3-139516 can be referred to. The degree of deionization of gelatin can be adjusted by adjusting the level of deionization of gelatin, but a method of changing the mixing weight ratio of (non-deionized gelatin: empty gelatin) is also preferably used. be able to. Here, deionization refers to gelatin in which impurity anions and cations in gelatin are deionized. Further, the mixing weight ratio can be changed between 1: 0 and 0: 1. e
The mpty gelatin refers to gelatin from which 90% or more of the impurity ions in the original gelatin have been removed.
【0016】2)熟成過程 核形成時に平板粒子核のみを作り分けることはむつかし
い。従って、次の熟成過程で平板状粒子以外の粒子をオ
ストワルド熟成により消滅させる。該熟成温度は核形成
温度より10℃以上高くすることが好ましく、20℃以
上高くすることがより好ましい。通常は50℃以上、好
ましくは60〜90℃が用いられる。90℃以上を用い
る場合は大気圧以上、好ましくは大気圧の1.2倍以上
の加圧下で熟成することが好ましい。この加圧熟成法の
詳細に関しては特願平3−343180号の記載を参考
にすることができる。2) Ripening process It is difficult to produce only tabular grain nuclei during nucleation. Therefore, grains other than tabular grains are eliminated by Ostwald ripening in the next ripening process. The ripening temperature is preferably higher than the nucleation temperature by 10 ° C. or more, more preferably 20 ° C. or more. Usually, 50 ° C or higher, preferably 60 to 90 ° C is used. When 90 ° C. or higher is used, aging is preferably performed under a pressure of at least atmospheric pressure, preferably at least 1.2 times the atmospheric pressure. For details of the pressure aging method, the description of Japanese Patent Application No. 3-343180 can be referred to.
【0017】熟成時の溶液のAg+およびBr−濃度は
10−2.3モル/リットル以下が好ましく、10
−2.6モル/リットル以下がより好ましい。溶液のp
Hは2以上が好ましく、5〜11がより好ましく、6〜
10が更に好ましい。このpH、pAg条件の元で熟成
すると、主に無欠陥の立方体状微粒子が消失し、平板状
粒子がエッジ方向に優先的に成長する。このAg+とB
r−濃度条件から離れるにつれ、エッジの優先成長性が
低下し、非平板状粒子の消失速度が遅くなる。また粒子
の主平面の成長割合が増し、粒子のアスペクト比が低下
する。該熟成時にAgX溶剤を共存させると該熟成が促
進される。但し、該条件はAgX粒子のハロゲン組成、
pH、pAg、ゼラチン濃度、温度、AgX溶剤濃度等
により変化する為、それぞれの場合に応じて、トライ
アンド エラー法で最適条件を選ぶことが好ましい。こ
のように核形成→熟成の過程を経て形成される平板状コ
ア粒子のハロゲン組成はI−含率が好ましくは1.2モ
ル%以上、より好ましくは1.5〜7モル%、更に好ま
しくは2〜5モル%であり、Cl−含率は50モル%以
下のAgBrClIである。次の結晶成長過程で、該コ
ア粒子にシェル層を積層させるか、もしくは更にコア粒
子を所望のサイズにまで成長させた後にシェル層を積層
させる。The Ag + and Br − concentrations of the solution during ripening are preferably 10 -2.3 mol / l or less, and
-2.6 mol / liter or less is more preferable. Solution p
H is preferably 2 or more, more preferably 5 to 11, and 6 to
10 is more preferred. When ripening under these pH and pAg conditions, mainly defect-free cubic fine particles disappear, and tabular grains grow preferentially in the edge direction. Ag + and B
As one moves away from the r - concentration condition, the preferential growth of edges decreases and the rate of disappearance of nontabular grains decreases. Further, the growth rate of the main plane of the particles increases, and the aspect ratio of the particles decreases. When the AgX solvent coexists during the ripening, the ripening is accelerated. However, the conditions are the halogen composition of the AgX particles,
It varies depending on pH, pAg, gelatin concentration, temperature, AgX solvent concentration, etc.
It is preferable to select the optimal condition by the AND error method. As described above, the halogen composition of the tabular core grains formed through the process of nucleation → ripening has an I-content of preferably 1.2 mol% or more, more preferably 1.5 to 7 mol%, and still more preferably. 2 to 5 mol%, Cl - content: is AgBrClI below 50 mol%. In the next crystal growth process, a shell layer is laminated on the core particles, or the shell layer is laminated after the core particles are further grown to a desired size.
【0018】3)結晶成長過程 Ag+ およびBr- の過剰イオン濃度を10-2.3モル/
リットル以下、好ましくは10-2.6モル/リットル以下
の等量点近傍で低過飽和条件下結晶成長させると、粒子
はエッジ方向に優先的に成長する。この場合、Cl- 過
剰濃度は10-1.2モル/リットル以下が好ましく、10
-1.5モル/リットル以下がより好ましい。該等量点近傍
から離れるにつれ、また成長時の過飽和度が高くなるに
つれ、エッジ方向に対する主平面方向の成長割合が増
す。等量点からAg+ 濃度を増加させていくと、主平面
形状は直角平行四辺形で厚味方向の成長割合が増加し、
等量点からBr- 濃度を増加させていくと、直角平行四
辺形の角が落ち、厚味方向への成長割合が増加する。結
晶成長時のpBrを八面体粒子生成領域(AgBrでは
例えばpBr1.2〜2)にすると、該平板粒子の4つ
の角がすべて落ち、エッジ面が{111}面に変化し、
厚味方向へ成長し、ついには八面体粒子となる。[0018] 3) the crystal growth process Ag + and Br - excessive ion concentration of 10 -2.3 mol /
When the crystal is grown under low supersaturation conditions near the equivalent point of 1 liter or less, preferably 10 −2.6 mol / liter or less, the grains grow preferentially in the edge direction. In this case, Cl - excess concentration is preferably from 10 -1.2 mol / l, 10
-1.5 mol / l or less is more preferred. As the distance from the vicinity of the equivalence point increases, and as the degree of supersaturation during the growth increases, the growth ratio in the main plane direction to the edge direction increases. When the Ag + concentration is increased from the equivalent point, the main plane shape is a right-angled parallelogram, and the growth rate in the thick direction increases,
As the Br - concentration is increased from the equivalence point, the corners of the right-angled parallelogram fall and the growth rate in the thick direction increases. When the pBr during crystal growth is set to an octahedral grain generation region (for example, pBr 1.2 to 2 in AgBr), all four corners of the tabular grains are dropped, and the edge plane changes to {111} plane.
It grows in the thickness direction and eventually becomes octahedral particles.
【0019】これらの条件は粒子のハロゲン組成、溶液
のpH、温度、AgX溶剤濃度等により変化する。従っ
てそれぞれの場合に応じて種々のX- 塩濃度で成長さ
せ、所望の粒子が得られることを確認した後、所望のA
gX粒子を調製することが好ましい。例えばAgCl粒
子の場合は、Cl- の過剰イオン濃度が10-1.5モル/
リットルであっても、該平板状粒子はエッジ方向へ優先
的に成長する。結晶成長時の温度は通常40℃以上が用
いられ、好ましくは50〜90℃が用いられる。これら
の成長特性を利用して、本発明の第1態様の粒子および
第2の態様の粒子を形成することができる。結晶成長時
の溶質の添加方法としては主として次の2つの方法が有
効である。These conditions vary depending on the halogen composition of the particles, the pH of the solution, the temperature, the concentration of the AgX solvent, and the like. Therefore, after growing at various X - salt concentrations according to each case and confirming that desired particles are obtained,
It is preferred to prepare gX particles. For example, in the case of AgCl particles, Cl - excessive ion concentration of 10 -1.5 mol /
Even in liters, the tabular grains grow preferentially in the edge direction. The temperature at the time of crystal growth is usually 40 ° C. or higher, preferably 50 to 90 ° C. By utilizing these growth characteristics, the particles of the first embodiment and the particles of the second embodiment of the present invention can be formed. As a method of adding a solute during crystal growth, the following two methods are mainly effective.
【0020】(1) 微粒子乳剤添加法 0.15μm径以下、好ましくは0.1μm径以下、よ
り好ましくは0.06〜0.006μm径のAgX微粒
子乳剤を添加し、オストワルド熟成により該平板状粒子
を成長させる。該微粒子乳剤は連続的に添加することも
できるし、断続的に添加することもできる。該微粒子乳
剤は反応容器の近傍に設けた混合器でAgNO3 溶液と
X- 塩溶液を供給して連続的に調製し、ただちに反応容
器に連続的に添加することもできるし、予め別の容器で
バッチ式に調製した後に連続的もしくは断続的に添加す
ることもできる。該微粒子乳剤は液状で添加することも
できるし、乾燥した粉末として添加することもできる。
該微粒子は多重双晶粒子を実質的に含まないことが好ま
しい。ここで多重双晶粒子とは、1粒子あたり、双晶面
を2枚以上有する粒子を指す。実質的に含まないとは、
多重双晶粒子数比率が5%以下、好ましくは1%以下、
より好ましくは0.1%以下を指す。更には1重双晶粒
子をも実質的に含まないことが好ましい。更には、らせ
ん転位をも実質的に含まないことが好ましい。ここで実
質的に含まないとは前記規定に従う。該微粒子のハロゲ
ン組成はAgCl、AgBr、AgBrI(I- 含率は
20モル%以下が好ましく、10モル%以下がより好ま
しい)およびそれらの2種以上の混晶である。(1) Fine grain emulsion addition method AgX fine grain emulsion having a diameter of 0.15 μm or less, preferably 0.1 μm or less, more preferably 0.06 to 0.006 μm is added, and the tabular grains are subjected to Ostwald ripening. Grow. The fine grain emulsion can be added continuously or intermittently. The fine grain emulsion can be continuously prepared by supplying the AgNO 3 solution and the X − salt solution by a mixer provided near the reaction vessel, and can be immediately added to the reaction vessel immediately or in another vessel in advance. And then added continuously or intermittently. The fine grain emulsion can be added in a liquid form or as a dry powder.
The fine particles preferably do not substantially contain multiple twin particles. Here, the multiple twin particles refer to particles having two or more twin planes per particle. Substantially not included
A multiple twin particle number ratio of 5% or less, preferably 1% or less;
More preferably, it refers to 0.1% or less. Further, it is preferable that substantially no single twin particles are contained. Further, it is preferable that the composition does not substantially include a screw dislocation. Here, "substantially not included" complies with the above-mentioned rules. The halogen composition of the fine particles is AgCl, AgBr, AgBrI (I - content is preferably 20 mol% or less, more preferably 10 mol% or less) and a mixed crystal of two or more thereof.
【0021】該粒子成長時の溶液条件は、前記熟成時の
条件と同一である。それはどちらもオストワルド熟成に
より平板状粒子を成長させ、それ以外の微粒子を消滅さ
せる工程であり、機構的に同じだからである。該微粒子
乳剤添加法は特に、該平板状粒子をエッジ方向に選択的
に成長させる方法として好ましく用いることができる。
その理由は次の通りである。平板粒子をエッジ方向に選
択的に成長させるには、粒子成長時のpBr、温度、p
H等の溶液条件を最適値に選び(例えばAgBr粒子の
場合は前記等量点近傍)、更に、過飽和度を最適に選ぶ
必要がある。即ち、系の過飽和度を、主平面を成長させ
るに必要な過飽和度より低く、かつ、エッジ面を成長さ
せるに最低限必要な過飽和度より高くに精密に制御する
必要がある。微粒子を添加し、微粒子が多数共存する場
合、系の過飽和度は、該微粒子の溶解度で規定される。
即ち、微粒子のサイズを選ぶことにより、粒子成長時の
過飽和度を最適値に精密に制御できる為である。微粒子
を形成する為には、40℃以下、好ましくは30〜10
℃の分散媒溶液中にAg+ 塩溶液とX- 塩溶液を同時混
合法で添加して形成することが好ましい。該添加時間は
12分間以下が好ましく、6分間以下がより好ましい。
該添加中の分散媒溶液中のAg+ およびBr - の濃度は
(Ag+ 濃度<Br- 濃度)で、かつ、Br- 濃度<1
0-1.7モル/リットルが好ましく、Br- 濃度=10-2
〜10-3.5モル/リットルがより好ましい。それは前記
双晶粒子の混入比率を低下させることができる為であ
る。更には、前記のらせん転位等の欠陥粒子の混入比率
を低下させることができる為である。該微粒子乳剤添加
法の全般の詳細に関しては特願平2−142635号、
特開平1−183417号の記載を参考にすることがで
きる。The solution conditions during the grain growth are as follows:
Same as the condition. Both are for Ostwald ripening
Growing more tabular grains and eliminating other fine particles
This is because the process is mechanically the same. The fine particles
In particular, the emulsion addition method is to selectively treat the tabular grains in the edge direction.
It can be preferably used as a method for growing into a.
The reason is as follows. Select tabular grains in the edge direction
For selective growth, pBr during particle growth, temperature, p
H or other solution conditions (eg, AgBr particles
In the case, it is near the equivalence point), and the supersaturation degree is optimally selected.
There is a need. That is, the degree of supersaturation of the system
Lower than the supersaturation required for
Control to be higher than the minimum required supersaturation
There is a need. When fine particles are added and many fine particles coexist
In this case, the degree of supersaturation of the system is defined by the solubility of the fine particles.
In other words, by selecting the size of the fine particles,
This is because the degree of supersaturation can be precisely controlled to an optimum value. Fine particles
Is formed at a temperature of 40 ° C. or lower, preferably 30 to 10
Ag in dispersion medium solution at ℃+Salt solution and X-Simultaneous mixing of salt solution
It is preferable to form by adding in a legal manner. The addition time is
It is preferably 12 minutes or less, more preferably 6 minutes or less.
Ag in the dispersion medium solution during the addition+And Br -The concentration of
(Ag+Concentration <Br-Concentration) and Br-Concentration <1
0-1.7Mol / liter, preferably Br-Concentration = 10-2
-10-3.5Mole / liter is more preferred. It is said
This is because the mixing ratio of twin particles can be reduced.
You. Furthermore, the mixing ratio of defect particles such as the screw dislocations described above
It is because it can reduce. Addition of the fine grain emulsion
For details of the general law, refer to Japanese Patent Application No. 2-142635,
It is possible to refer to the description in JP-A-1-183417.
Wear.
【0022】(2) イオン溶液添加法 Ag+ 塩溶液とX- 塩溶液を新核を実質的に発生させな
い添加速度で同時混合法添加し、該平板状粒子を成長さ
せる。ここで実質的とは、新核の投影面積比率が好まし
くは10%以下、より好ましくは1%以下、更に好まし
くは0.1%以下を指す。粒子成長時の溶液のpAg、
pH、温度、過飽和濃度等を選ぶことにより、平板粒子
の厚味方向とエッジ方向の成長割合を選ぶことができ
る。通常、前記等量点から離れるにつれ、また共存させ
るAgX溶剤濃度が増すにつれ、厚さ方向の成長割合が
増す。一方、前記等量点近傍で、低過飽和度下で成長さ
せると、エッジ方向に優先的に成長する。ここで低過飽
和度とは臨界添加速度の70%以下、好ましくは5〜5
0%の添加速度で添加している状態を指す。臨界添加速
度とは、それ以上の添加速度で溶質を添加すると、新核
が生じ始める添加速度を指す。(2) Ion solution addition method The Ag + salt solution and the X - salt solution are added simultaneously at an addition rate that does not substantially generate new nuclei to grow the tabular grains. Here, “substantially” means that the projected area ratio of the new nucleus is preferably 10% or less, more preferably 1% or less, and still more preferably 0.1% or less. PAg of the solution during particle growth,
By selecting pH, temperature, supersaturation concentration and the like, the growth ratio of tabular grains in the thickness direction and edge direction can be selected. In general, the growth rate in the thickness direction increases as the distance from the equivalent point increases, and as the concentration of the AgX solvent coexisting increases. On the other hand, when growing near the equivalence point under a low degree of supersaturation, growth occurs preferentially in the edge direction. Here, the low degree of supersaturation is 70% or less of the critical addition rate, preferably 5 to 5%.
It refers to a state in which addition is performed at an addition rate of 0%. The critical addition rate refers to an addition rate at which a new nucleus starts to form when a solute is added at a higher addition rate.
【0023】粒子成長時の過飽和度を制御する為にAg
+ 塩とX- 塩の添加速度を添加時間に対して増すことが
できる。その他、前記微粒子添加法とイオン溶液添加法
の併用方法をあげることができる。これらの添加法の詳
細に関しては特開平2−146033号、同3−213
39号、同3−246534号、特願平2−32622
2号、同3−36582号の記載を参考にすることがで
きる。本発明では核形成時、熟成時および結晶成長時に
AgX溶剤を共存させることができる。AgX溶剤とし
ては、アンモニア、チオエーテル類、チオ尿素類、チオ
シアン酸塩、有機アミン系化合物、テトラザインデン化
合物等のかぶり防止剤等をあげることができ、詳細は後
述の文献の記載を参考にすることができる。AgX溶剤
の共存量は0〜0.3モル/リットルである。To control the degree of supersaturation during grain growth, Ag
+ Salt and X - can be increased with respect to the addition time of addition rate of the salts. In addition, a combination method of the above-mentioned fine particle addition method and ionic solution addition method can be mentioned. Details of these addition methods are described in JP-A-2-14633 and JP-A-3-213.
No. 39, No. 3-246534, Japanese Patent Application No. 2-36222
Nos. 2 and 3-36582 can be referred to. In the present invention, an AgX solvent can coexist during nucleation, ripening and crystal growth. Examples of the AgX solvent include ammonia, thioethers, thioureas, thiocyanates, organic amine compounds, antifoggants such as tetrazaindene compounds, and the like. be able to. The coexistence amount of the AgX solvent is 0 to 0.3 mol / l.
【0024】前記成長特性を利用して、コア平板粒子の
エッジ方向のみに成長させたり、厚味方向に成長させた
り、両方向に成長させることにより、図1の構造の粒子
を作り分けることができる。該エッジ方向や厚味方向へ
の選択成長性を上げる為に結晶成長制御剤を結晶成長時
に共存させることができる。結晶成長制御剤として、写
真用分光増感色素やかぶり防止剤をあげることができ
る。トライ アンド エラー法的に好ましい化合物を選
んで、好ましい濃度で用いることができる。濃度は通
常、10-6モル/リットル以上、好ましくは10-5〜1
0-2モル/リットルの領域で好ましい濃度を選んで用い
ることができる。By utilizing the above-mentioned growth characteristics, the core tabular grains can be grown only in the edge direction, in the thick direction, or in both directions, so that grains having the structure shown in FIG. 1 can be separately formed. . In order to increase the selective growth in the edge direction and the thickness direction, a crystal growth controlling agent can be made to coexist at the time of crystal growth. Examples of the crystal growth controlling agent include photographic spectral sensitizing dyes and antifoggants. Preferred compounds can be selected according to a trial and error method and used at a preferred concentration. The concentration is usually 10 -6 mol / l or more, preferably 10 -5 to 1.
A preferred concentration can be selected and used in the range of 0 -2 mol / liter.
【0025】前記従来法に記された該平板状粒子の製造
方法はいずれも核形成→熟成過程のみによる製造方法を
開示している。この場合、AgX収量/1バッチが低く
なり、かつ、得られるAgX粒子の粒径を自由に制御で
きない。しかし、該平板状コア粒子を通常の結晶成長条
件(pBr<2の条件で前記溶質添加法で溶質を添加す
る)で成長させると、該平板状粒子の4つの角が落ち、
厚味方向に成長し、ついには八面体粒子となる。従って
本発明の粒子は得られない。本発明の平板状粒子を得る
為には、pBr2.3以上、pAg2.3以上で結晶成
長させる必要がある。好ましくはpAg2.6以上、p
Br2.6以上で成長させる必要がある。但し、Cl−
の過剰イオン濃度は10−1.2モル/リットル以下が
好ましく、10−1.5モル/リットル以下がより好ま
しい。例えばAgCl核の場合、Cl−過剰イオン濃度
は10−1.5モル/リットルも許容される。該平板状
粒子は結晶成長体積の50%以上、好ましくは80%以
上、より好ましくは90%以上を該条件で成長させるこ
とが好ましい。また、この場合、高アスペクト比の該平
板状粒子を得る為には、溶質の添加法を微粒子乳剤添加
法にする必要がある。ここで微粒子とは0.15μm径
以下、好ましくは0.1μm径以下、より好ましくは
0.06〜0.006μm径のAgX微粒子を指す。溶
液条件は前記成長条件と同じである。該微粒子添加法の
その他の詳細に関しては前記記載を参考にすることがで
きる。All of the methods for producing the tabular grains described in the above-mentioned conventional methods disclose a production method only by a nucleation → ripening step. In this case, the yield of AgX / batch becomes low, and the particle size of the obtained AgX particles cannot be freely controlled. However, when the tabular core grains are grown under normal crystal growth conditions (the solute is added by the above-mentioned solute addition method under the condition of pBr <2), four corners of the tabular grains fall,
It grows in the thickness direction and eventually becomes octahedral particles. Therefore, the particles of the present invention cannot be obtained. In order to obtain the tabular grains of the present invention, it is necessary to grow crystals with pBr of 2.3 or more and pAg of 2.3 or more. Preferably pAg 2.6 or more, p
It is necessary to grow with Br2.6 or more. However, Cl-
Excess ion concentration is preferably from 10 -1.2 mol / l or less, more preferably 10 -1.5 mol / l. For example, in the case of AgCl nuclei, a Cl - excess ion concentration of 10-1.5 mol / liter is acceptable. It is preferable that the tabular grains grow under 50% or more, preferably 80% or more, more preferably 90% or more of the crystal growth volume under the above conditions. In this case, in order to obtain the tabular grains having a high aspect ratio, it is necessary to use a solute addition method as a fine grain emulsion addition method. Here, the fine particles refer to AgX fine particles having a diameter of 0.15 μm or less, preferably 0.1 μm or less, and more preferably 0.06 to 0.006 μm. Solution conditions are the same as the growth conditions. The above description can be referred to for other details of the fine particle addition method.
【0026】これらの場合の核形成条件、熟成条件に関
しては前記記載を参考にすることができる。即ち、核形
成時の分散媒溶液中のBr- 濃度は10-2.3モル/リッ
トル以下が好ましく、10-2.6モル/リットル以下がよ
り好ましい。Ag+ 濃度は10-4モル/リットル以上が
好ましく、10-3.7〜10-1.5モル/リットルがより好
ましく、10-3.4〜10-1.5モル/リットルが更に好ま
しい。熟成時の溶液のAg+ およびBr- 濃度は10
-2.3モル/リットル以下が好ましく、10-2.6モル/リ
ットル以下がより好ましい。該製造法で製造されるAg
X乳剤粒子は、全投影面積の20%以上、好ましくは5
0%以上、より好ましくは80%以上が主平面が{10
0}面でアスペクト比が1.3以上、好ましくは2以
上、より好ましくは3〜20、更に好ましくは4〜16
の平板状粒子で占められている。該平板粒子の粒径は1
0μm以下、好ましくは0.15〜5μm、より好まし
くは0.2〜3μmである。該粒子の粒子体積分布は単
分散であることが好ましく、該体積分布の変動係数は4
0%以下が好ましく、30%以下がより好ましく、20
%以下が更に好ましい。粒子全体のハロゲン組成はAg
Cl、AgBrI(I- 含率は10モル%以下、好まし
くは7モル%以下)およびその2種以上の混晶である。
但し、Cl- 含率は好ましくは49モル%以下、より好ま
しくは40モル%以下、更に好ましくは20モル%以下
である。The nucleation conditions and ripening conditions in these cases can be referred to the above description. That is, the Br - concentration in the dispersion medium solution at the time of nucleation is preferably 10 -2.3 mol / L or less, more preferably 10 -2.6 mol / L or less. The Ag + concentration is preferably at least 10 −4 mol / l, more preferably 10 −3.7 to 10 −1.5 mol / l, even more preferably 10 −3.4 to 10 −1.5 mol / l. Ag + and Br - concentrations of the solution during aging are 10
It is preferably at most -2.3 mol / l, more preferably at most 10 -2.6 mol / l. Ag produced by the production method
X emulsion grains account for at least 20%, preferably 5%, of the total projected area.
0% or more, more preferably 80% or more has a principal plane of $ 10
The aspect ratio on the 0 ° plane is 1.3 or more, preferably 2 or more, more preferably 3 to 20, and even more preferably 4 to 16.
Are occupied by tabular grains. The particle size of the tabular grains is 1
0 μm or less, preferably 0.15 to 5 μm, more preferably 0.2 to 3 μm. The particle volume distribution of the particles is preferably monodisperse, and the coefficient of variation of the volume distribution is 4
It is preferably 0% or less, more preferably 30% or less, and 20% or less.
% Is more preferable. The halogen composition of the whole grain is Ag
Cl and AgBrI (I - content is 10 mol% or less, preferably 7 mol% or less) and a mixed crystal of two or more thereof.
However, Cl - content: preferably 49 mol% or less, more preferably 40 mol% or less, still more preferably not more than 20 mol%.
【0027】該主平面の形状は、直角平行四辺形、直角
平行四辺形の角が欠けた形である。角は4つが対称的に
欠けたもの、非対称に欠けたものをあげることができ、
角の欠損部長は、該辺の直線部を延長した時の該四辺形
の一辺の長さの1/3以下、好ましくは1/5以下であ
る。該粒子の粒子表面の70%以上、好ましくは80%
以上、より好ましくは90%以上が{100}面であ
る。このような粒子は通常、Ag+とX−の等濃度近傍
で得られる。今、ある溶液条件下で熟成を続けた場合の
平衡晶癖は、random walkingにより粒子
表面に供給されるイオン数/秒と粒子表面から溶液中へ
脱離していくイオン数/秒のバランスにより決まる。A
gX粒子の場合は(粒子表面へのAg+の供給速度≒粒
子表面からのAg+の脱離速度)、(粒子表面へのX−
の供給速度≒粒子表面からのX−の脱離速度)が満たさ
れる条件で平衡晶癖が決まる。AgBr{100}面の
場合は、(粒子表面からのAg+の脱離速度)≒(粒子
表面からのX−の脱離速度)である為、(粒子表面への
Ag+の供給速度≒粒子表面へのX−の供給速度)とな
る溶液条件(Ag+とX−の拡散係数がほぼ等しい為
に、Ag+とX−の等濃度近傍)が平衡溶液条件とな
る。一方、AgBr{111}面の場合は、(粒子表面
からのAg+の脱離速度<粒子表面からのBr−の脱離
速度)である為、(Br−濃度>Ag+濃度)の溶液条
件と平衡になる。I−はファン・デア・ワールス力が大
きくて脱離しがたい為、AgBrIの{100}平衡晶
癖は(Ag+濃度>X−濃度)の条件下で得られる。A
gX溶剤を添加した場合は(Ag+濃度<Br−濃度)
であっても(Ag+濃度+Ag+錯体濃度)≒Br−濃
度となり、平衡晶癖は{100}面となる。一方、結晶
成長の場合の平衡晶癖は{100}面と{111}面の
相対成長速度比により決められる。但し低過飽和で成長
させた時は、前記熟成平衡に近い形となる。The shape of the principal plane is a right-angled parallelogram, or a shape in which the corners of the right-angled parallelogram are missing. There are four corners that are missing symmetrically and those that are missing asymmetrically.
The length of the corner missing portion is 1/3 or less, preferably 1/5 or less, of the length of one side of the quadrilateral when the straight line portion of the side is extended. 70% or more, preferably 80% of the particle surface of the particles
More preferably, 90% or more are {100} planes. Such particles are usually obtained near equal concentrations of Ag + and X − . The equilibrium crystal habit when ripening is continued under certain solution conditions is determined by the balance between the number of ions / second supplied to the particle surface by random walking and the number of ions / second desorbing from the particle surface into the solution. . A
In the case of gX particles, (the supply rate of Ag + to the particle surface ≒ the desorption rate of Ag + from the particle surface), (X − to the particle surface)
Desorption rate) equilibrium crystal habit is determined by the conditions are met - X from feed rate ≒ particle surface. In the case of the AgBr {100} plane, (the desorption speed of Ag + from the particle surface) ≒ (the desorption speed of X − from the particle surface), (the supply speed of Ag + to the particle surface ≒ the particle speed) The equilibrium solution condition is a solution condition (the rate of supply of X − to the surface) (because the diffusion coefficients of Ag + and X − are almost equal, the vicinity of an equal concentration of Ag + and X − ). On the other hand, in the case of AgBr {111} plane, <- for a (Br from the particle surface desorption rate of, (Br - concentration Ag + desorption rate of from the particle surface)> Ag + concentration) solution conditions of And equilibrium. Since I − has a large van der Waals force and is difficult to desorb, the {100} equilibrium crystal habit of AgBrI is obtained under the condition of (Ag + concentration> X − concentration). A
When the gX solvent is added (Ag + concentration <Br - concentration)
, The (Ag + concentration + Ag + complex concentration) ≒ Br − concentration, and the equilibrium crystal habit is a {100} plane. On the other hand, the equilibrium crystal habit in the case of crystal growth is determined by the relative growth rate ratio between the {100} plane and the {111} plane. However, when grown with low supersaturation, the shape is close to the ripening equilibrium.
【0028】(D)その他 前記(A)〜(C)の記載に対し、その他、次の記載を
参考にすることができる。得られた粒子をホスト粒子と
し、エピタキシャル粒子を形成して用いてもよい。ま
た、該粒子をコアとして内部に転位線を有する粒子を形
成してもよい。その他、該粒子をサブストレートとし
て、サブストレートと異なるハロゲン組成のAgX層を
積層させ、種々の既知のあらゆる粒子構造の粒子を作る
こともできる。これらに関しては後述の文献の記載を参
考にすることができる。また、得られた乳剤粒子に対
し、通常、化学増感核が付与される。(D) Others The following description can be referred to in addition to the above (A) to (C). The obtained particles may be used as host particles to form epitaxial particles. Further, particles having dislocation lines therein may be formed using the particles as a core. Alternatively, the particles may be used as a substrate, and AgX layers having a different halogen composition from the substrate may be laminated to produce various known particles having various particle structures. Regarding these, the description in the following literature can be referred to. Further, a chemically sensitized nucleus is usually provided to the obtained emulsion grains.
【0029】この場合、該化学増感核の生成場所と数/
cm2 が制御されていることが好ましい。これに関しては
特開平2−828号、同2−146033号、特願平2
−73079号、同3−73266号の記載を参考にす
ることができる。また、該平板粒子をコアとして、浅内
潜乳剤を形成して用いてもよい。また、コア/シェル型
粒子を形成することもできる。これについては特開昭5
9−133542号、同63−151618号、米国特
許第3,206,313号、同3,317,322号、
同3,761,276号、同4,269,927号、同
3,367,778号の記載を参考にすることができ
る。本発明の方法で製造したAgX乳剤粒子を他の1種
以上のAgX乳剤とブレンドして用いることもできる。
ブレンド比率は1.0〜0.01の範囲で適宜、最適比
率を選んで用いることができる。In this case, the location and number /
Preferably, cm 2 is controlled. Regarding this, JP-A-2-828 and JP-A-2-14633, Japanese Patent Application No.
Nos. 73079 and 3-73266 can be referred to. Further, a shallow inner latent emulsion may be formed using the tabular grains as a core. Also, core / shell type particles can be formed. About this,
Nos. 9-133542 and 63-151618, U.S. Pat. Nos. 3,206,313 and 3,317,322,
Nos. 3,761,276, 4,269,927, and 3,367,778 can be referred to. The AgX emulsion grains produced by the method of the present invention can be used by blending with one or more other AgX emulsions.
The blend ratio can be appropriately selected and used within the range of 1.0 to 0.01.
【0030】前記(B)、(C)の過程における反応溶
液のpHは通常1〜12、好ましくは2〜11の領域で
最も好ましい値を選んで用いることができる。これらの
乳剤に粒子形成から塗布工程までの間に添加できる添加
剤に特に制限はなく、従来公知のあらゆる写真用添加剤
を添加することができる。例えばAgX溶剤、AgX粒
子へのドープ剤(例えば第8族貴金属化合物、その他の
金属化合物、カルコゲン化合物、SCN化物等)、分散
媒、かぶり防止剤、増感色素(青、緑、赤、赤外、パン
クロ、オルソ用等)、強色増感剤、化学増感剤(イオ
ウ、セレン、テルル、金および第8族貴金属化合物、リ
ン化合物、ロダン化合物、還元増感剤の単独およびその
2種以上の併用)、かぶらせ剤、乳剤沈降剤、界面活性
剤、硬膜剤、染料、色像形成剤、カラー写真用添加剤、
可溶性銀塩、潜像安定剤、現像剤(ハイドロキノン系化
合物等)、圧力減感防止剤、マット剤等をあげることが
できる。The pH of the reaction solution in the steps (B) and (C) can be usually selected from the most preferable values in the range of 1 to 12, preferably 2 to 11. There are no particular restrictions on the additives that can be added to these emulsions during the period from the grain formation to the coating step, and any conventionally known photographic additives can be added. For example, an AgX solvent, a doping agent for AgX particles (eg, a Group 8 noble metal compound, another metal compound, a chalcogen compound, an SCN compound, etc.), a dispersion medium, an antifoggant, a sensitizing dye (blue, green, red, infrared) , Panchromatic, orthorectified, etc.), supersensitizers, chemical sensitizers (sulfur, selenium, tellurium, gold and Group 8 noble metal compounds, phosphorus compounds, rhodan compounds, reduction sensitizers alone or two or more thereof) ), Fogging agents, emulsion precipitants, surfactants, hardeners, dyes, color image forming agents, color photographic additives,
Examples include soluble silver salts, latent image stabilizers, developers (hydroquinone compounds and the like), pressure desensitizing inhibitors, matting agents and the like.
【0031】本発明のAgX乳剤粒子および製造方法で
製造したAgX乳剤は従来公知のあらゆる写真感光材料
に用いることができる。例えば、黒白ハロゲン化銀写真
感光材料(例えば、Xレイ感材、印刷用感材、印画紙、
ネガフィルム、マイクロフィルム、直接ポジ感材、超微
粒子乾板感材(LSIフォトマスク用、シャドーマスク
用、液晶マスク用)〕、カラー写真感光材料(例えばネ
ガフィルム、印画紙、反転フィルム、直接ポジカラー感
材、銀色素漂白法写真など)に用いることができる。更
に拡散転写型感光材料(例えば、カラー拡散転写要素、
銀塩拡散転写要素)、熱現像感光材料(黒白、カラ
ー)、高密度 digital記録感材、ホログラフィー用感材
などをあげることができる。The AgX emulsion particles of the present invention and the AgX emulsion produced by the production method can be used for all conventionally known photographic light-sensitive materials. For example, a black-and-white silver halide photographic light-sensitive material (for example, X-ray light-sensitive material, printing light-sensitive material, photographic paper,
Negative film, microfilm, direct positive photosensitive material, ultra fine particle dry plate photosensitive material (for LSI photomask, shadow mask, liquid crystal mask)], color photographic photosensitive material (for example, negative film, photographic paper, reversal film, direct positive color feeling) Materials, silver dye bleaching photography, etc.). Further, a diffusion transfer type photosensitive material (for example, a color diffusion transfer element,
(Silver salt diffusion transfer element), photothermographic materials (black and white, color), high-density digital recording materials, holographic materials, and the like.
【0032】塗布銀量は0.01g/m2以上の好ましい
値を選ぶことができる。該写真感光材料の構成(例え
ば、層構成、銀/発色材モル比、各層間の銀量比等)、
露光、現像処理および写真感光材料の製造装置、写真用
添加剤の乳化分散等に関しても制限はなく、従来公知の
あらゆる態様、技術を用いることができる。従来公知の
写真用添加剤、写真感光材料およびその構成、露光と現
像処理、および写真感光材料製造装置等に関しては下記
文献の記載を参考にすることができる。The amount of silver to be coated can be selected to a preferable value of 0.01 g / m 2 or more. The composition of the photographic material (eg, layer composition, silver / coloring material molar ratio, silver ratio between layers, etc.);
There are no restrictions on the exposure, development processing, the apparatus for producing a photographic light-sensitive material, the emulsification and dispersion of photographic additives, and any other conventionally known modes and techniques can be used. For the conventionally known photographic additives, photographic light-sensitive materials and their constitutions, exposure and development processing, photographic light-sensitive material manufacturing equipment, etc., the description in the following documents can be referred to.
【0033】リサーチディスクロージャー(Research D
isclosure)、176巻(アイテム17643)(12
月、1978年)、同307巻(アイテム30710
5、11月、1989年)、ダフィン(Duffin)著、写
真乳剤化学(Photographic Emulsion Chemistry)、Foca
l Press, New York (1966年)、ビル著(E. J. Bi
rr)、写真用ハロゲン化銀乳剤の安定化(Stabilizatio
n of Photographic SilverHalide Emulsions)、フォー
カル プレス(Focal Press)、ロンドン(1974
年)、ジェームス編(T. H. James)、写真過程の理論
(The Theory of Photographic Process)第4版、マク
ミラン(Macmillan)、ニューヨーク(1977年)[0033] Research D
isclosure), 176 volumes (item 17643) (12
Mon, 1978), Volume 307 (Item 30710)
May and November, 1989), by Duffin, Photographic Emulsion Chemistry, Foca.
l Press, New York (1966), by Bill (EJ Bi
rr), stabilization of photographic silver halide emulsions (Stabilizatio
n of Photographic SilverHalide Emulsions, Focal Press, London (1974)
Year), James James (TH James), The Theory of Photographic Process, 4th Edition, Macmillan, New York (1977)
【0034】グラフキデ著(P. Glafkides)、写真の化
学と物理(Chimie et Physique Photographiques)、第
5版、エディション ダ リジンヌヴェル(Edition de
l',Usine Nouvelle, パリ(1987年)、同第2版、
ポウル モンテル、パリ(1957年)、ゼリクマンら
(V. L. Zelikman et al.), 写真乳剤の調製と塗布(Ma
king and Coating Photographic Emulsion),Focal Pr
ess (1964年)、ホリスター(K. R. Hollister)ジ
ャーナル オブ イメージング サイエンス(Journal
of Imaging science),31巻、P.148〜156
(1987年)、マスカスキー(J. E. Maskasky) ,同
30巻、P.247〜254(1986年)、同32
巻、160〜177(1988年)、同33巻、10〜
13(1989年)、[0034] P. Glafkides, Chemie et Physique Photographiques, 5th ed., Edition de Linginevel
l ', Usine Nouvelle, Paris (1987), 2nd edition,
Paul Montel, Paris (1957), VL Zelikman et al., Preparation and coating of photographic emulsions (Ma
king and Coating Photographic Emulsion), Focal Pr
ess (1964), KR Hollister, Journal of Imaging Science (Journal)
of Imaging science), vol. 31, p. 148-156
(1987), JE Maskasky, pp. 30, p. 247-254 (1986), 32
Vol. 160-177 (1988), Vol. 33, No. 10
13 (1989),
【0035】フリーザーら編、ハロゲン化銀写真過程の
基礎(Die Grundlagen Der Photographischen Prozesse
Mit Silverhalogeniden) ,アカデミッシェ フェルラ
ークゲゼルシャフト(Akademische Verlaggesellschaf
t),フランクフルト(1968年)。日化協月報19
84年、12月号、P.18〜27、日本写真学会誌、
49巻、7〜12(1986年)、同52巻、144〜
166(1989年)、同52巻、41〜48(198
9年)、特開昭58−113926〜113928、同
59−90841号、同58−111936号、同62
−99751号、同60−143331号、同60−1
43332号、同61−14630号、同62−625
1号、同63−220238号、同63−151618
号、同63−281149号、同59−133542
号、同59−45438号、同62−269958号、
同63−305343号、同59−142539号、同
62−253159号、同62−266538号、同6
3−107813号、同64−26839号、同62−
157024号、同62−192036号、Ed. Freezer et al., Basics of the Silver Halide Photography Process (Die Grundlagen Der Photographischen Prozesse)
Mit Silverhalogeniden), Akademische Verlaggesellschaf
t), Frankfurt (1968). JCIA Monthly Report 19
1984, December issue, p. 18-27, Journal of the Photographic Society of Japan,
49, 7-12 (1986), 52, 144-
166 (1989), 52, 41-48 (198
9), JP-A-58-113926 to JP-A-13928, JP-A-59-90841, JP-A-58-111936, and 62.
No. 99751, No. 60-143331, No. 60-1
No. 43332, No. 61-14630, No. 62-625
No. 1, 63-220238, 63-151618
Nos. 63-281149 and 59-133542
No. 59-45438, No. 62-269958,
No. 63-305343, No. 59-142439, No. 62-253159, No. 62-266538, No. 6
Nos. 3-107813, 64-26839 and 62-
No. 157024, No. 62-192036,
【0036】特開平1−297649号、同2−127
635号、同1−158429号、同2−42号、同2
−24643号、同1−146033号、同2−838
号、同2−28638号、同3−109539号、同3
−175440号、同3−121443号、同2−73
245号、同3−119347号、米国特許第4,63
6,461号、同4,942,120号、同4,26
9,927号、同4,900,652号、同4,97
5,354号、欧州特許第0355568A2号、特願
平2−326222号、同2−415037号、同2−
266615号、同2−43791号、同3−1603
95号、同2−142635号、同3−146503
号、JP-A-1-297649 and 2-127
No. 635, No. 1-158429, No. 2-42, No. 2
No. -24643, No. 1-146033, No. 2-838
No. 2-28638, No. 3-109539, No. 3
-175440, 3-121443, 2-73
No. 245, No. 3-119347, U.S. Pat.
6,461, 4,942,120, 4,26
9,927, 4,900,652 and 4,97
5,354, European Patent No. 0355568A2, Japanese Patent Application Nos. 2-326222, 2-415037, and 2-
No. 266615, 2-43691, 3-1603
No. 95, No. 2-142635, No. 3-146503
issue,
【0037】[0037]
【実施例】次に実施例により本発明を更に詳細に説明す
るが、本発明の実施態様はこれに限定されるものではな
い。 実施例1 反応容器にゼラチン溶液−1〔CH201200cc)
脱イオン化アルカリ処理骨ゼラチン24g、KNO
3(1N)5ccを含み、HNO3(1N)液でpH
4.0とした〕を入れ、40℃に恒温した。攪拌しなが
らAgNO3−1液(AgNO33g/100cc)を
15cc添加し、5分後にAg−1水溶液(AgNO3
20g/100cc)およびそれと等モル濃度のX−1
水溶液(KBr:KI=98.5:3モル比)を48c
c/分で1分間、精密送液ポンプで同時混合法添加し
た。1分間攪拌した後、HNO3液とKOH液を用いて
pH6.2に調節し、更にAgNO3−1液とKBr−
1液(KBr3g/100cc)を用いて銀電位を16
0mV(対室温飽和カロメル電極)に調節した。次に1
0分間で温度を75℃に上げ、30分間熟成した。この
時点でサンプリングした乳剤粒子のレプリカの透過型電
子顕微鏡写真像(以後、TEM像と記す)より求めた結
果は次の通りであった。主平面が{100}面で、主平
面の形状が直角平行四辺形でアスペクト比1.3以上の
粒子(以後、平板粒子Aと記す)の投影面積比率約92
%、その平均投影粒径0.62μm、平均アスペクト比
4.77、粒子サイズ分布の変動係数は32%であっ
た。Next, the present invention will be described in more detail by way of examples, but embodiments of the present invention are not limited thereto. Example 1 A gelatin solution-1 [CH 2 01200 cc) was placed in a reaction vessel.
24 g of deionized alkali-treated bone gelatin, KNO
3 (1N) containing 5 cc, pH with HNO 3 (1N) solution
4.0 and the temperature was kept at 40 ° C. While stirring, 15 cc of an AgNO 3 -1 solution ( 3 g of AgNO 3/100 cc) was added, and after 5 minutes, an aqueous solution of Ag-1 (AgNO 3 ) was added.
20 g / 100 cc) and its equimolar concentration of X-1
48 c of an aqueous solution (KBr: KI = 98.5: 3 molar ratio)
The mixture was added at a rate of c / min for 1 minute with a precision liquid feed pump. After stirring for 1 minute, the pH was adjusted to 6.2 using an HNO 3 solution and a KOH solution, and further, an AgNO 3 -1 solution and KBr-
Using one solution (KBr 3 g / 100 cc), the silver potential was increased to 16
Adjusted to 0 mV (vs. room temperature calomel electrode). Then 1
The temperature was raised to 75 ° C. in 0 minutes and aged for 30 minutes. The results obtained from transmission electron micrograph images (hereinafter, referred to as TEM images) of replicas of the emulsion grains sampled at this time were as follows. The principal plane is a {100} plane, the shape of the principal plane is a rectangular parallelogram, and the projected area ratio of grains having an aspect ratio of 1.3 or more (hereinafter referred to as tabular grains A) is about 92.
%, Its average projected particle diameter was 0.62 μm, the average aspect ratio was 4.77, and the variation coefficient of the particle size distribution was 32%.
【0038】次にNH4NO3−1水溶液(50重量
%)3ccとNH3−1水溶液(25重量%)3ccを
添加し、更に平均粒径0.035μmの微粒子AgBr
I(I−含率1.5モル%)乳剤を0.06モル添加
し、銀電位150mVで更に18分間熟成した。更に同
微粒子乳剤を0.08モル添加し、18分間熟成した。
更に同微粒子乳剤を0.1モル添加し18分間熟成する
ことを2回くり返した後、沈降剤を添加し、30℃に降
温し、沈降水洗法で水洗した。ゼラチン水溶液を添加
し、乳剤を再分散し、pH6.4、pBr2.8に調節
した。得られた乳剤粒子のTEM像より次の結果が得ら
れた。平板粒子Aの投影面積比率92%、その平均投影
粒径1.4μm、平均アスペクト比7.7で、粒子サイ
ズ分布の変動係数は31%であった。また、該粒子の中
心部のI−含率は3モル%であり、シェル部のI−含率
は1.5モル%である。Next, 3 cc of an aqueous solution of NH 4 NO 3 -1 (50% by weight) and 3 cc of an aqueous solution of NH 3 -1 (25% by weight) were added, and fine particles of AgBr having an average particle size of 0.035 μm were further added.
0.06 mol of an I (I - content: 1.5 mol%) emulsion was added, and the mixture was further ripened at a silver potential of 150 mV for 18 minutes. Further, 0.08 mol of the same fine grain emulsion was added and ripened for 18 minutes.
After repeating the addition of 0.1 mol of the same fine grain emulsion and aging for 18 minutes twice, a sedimentation agent was added, the temperature was lowered to 30 ° C., and water was washed by sedimentation washing. An aqueous gelatin solution was added, and the emulsion was redispersed and adjusted to pH 6.4 and pBr 2.8. The following results were obtained from TEM images of the obtained emulsion grains. The projected area ratio of the tabular grains A was 92%, the average projected particle size was 1.4 μm, the average aspect ratio was 7.7, and the variation coefficient of the grain size distribution was 31%. The I - content at the center of the particles is 3 mol%, and the I - content at the shell is 1.5 mol%.
【0039】実施例2 反応容器にゼラチン溶液−1を入れ、40℃に恒温し
た。攪拌しながらAgNO3 −1液を10cc添加し、5
分後にAg−1水溶液およびそれと等モル濃度のX−1
−2水溶液(KBr:KI=98.5:1.5モル比)
を48cc/分で1分間、精密送液ポンプで同時混合法添
加した。1分間攪拌した後、HNO3 液とKOH液を用
いてpH6.1に調節し、更にAgNO3 −1液とKB
r−1液を用いて銀電位を160mVに調節した。次に
10分間で温度を75℃に上げ、30分間熟成した。次
にNH4 NO3 水溶液−1(50重量%)を5cc、NH
3 水溶液−1(25重量%)を5cc添加した後にAg−
2水溶液(AgNO3 10g/100cc)とX−2水溶
液(100cc中にKBr6.8g、KI0.294gを
含む)を用いて、銀電位120mVに保ちながら C. D.
J. ( Controlled double jet ) 添加した。初期流量は
10cc/分で0.05cc/分の直線的流量加速添加法で
570cc添加した。2分間攪拌した後、30℃に降温
し、沈降水洗法で水洗した。ゼラチン水溶液を添加し、
乳剤を再分散し、pH6.4、pBr2.8に調節し
た。得られた乳剤粒子のレプリカのTEM像より次の結
果が得られた。平板粒子Aの投影面積比率約93%、そ
の平均投影粒径1.2μm、平均アスペクト比4.9、
粒子サイズ分布の変動係数は28%であった。該粒子は
コア/シェル型粒子であり、コア層のI- 含率は1.5
モル%で、シェル層のI- 含率は3モル%である。Example 2 A gelatin solution-1 was placed in a reaction vessel and the temperature was kept at 40 ° C. While stirring, 10 cc of AgNO 3 -1 solution was added, and 5
Minutes later, an aqueous solution of Ag-1 and an equimolar concentration of X-1
-2 aqueous solution (KBr: KI = 98.5: 1.5 molar ratio)
Was added at a flow rate of 48 cc / min for 1 minute using a precision liquid feeding pump. After stirring for 1 minute, the pH was adjusted to 6.1 with HNO 3 solution and KOH solution, and further, AgNO 3 -1 solution and KB
Silver potential was adjusted to 160 mV using r-1 solution. Next, the temperature was raised to 75 ° C. in 10 minutes and aged for 30 minutes. Next, 5 cc of NH 4 NO 3 aqueous solution-1 (50% by weight)
After adding 5 cc of 3 aqueous solution-1 (25% by weight), Ag-
2 aqueous solution (AgNO 3 10 g / 100 cc) and X-2 aqueous solution (containing 6.8 g of KBr and 0.294 g of KI in 100 cc) while keeping the silver potential at 120 mV.
J. (Controlled double jet) was added. The initial flow rate was 10 cc / min, and 570 cc was added by a linear flow rate acceleration addition method of 0.05 cc / min. After stirring for 2 minutes, the temperature was lowered to 30 ° C., and the resultant was washed with water by a sedimentation washing method. Add gelatin aqueous solution,
The emulsion was redispersed and adjusted to pH 6.4, pBr 2.8. The following results were obtained from the TEM image of the replica of the obtained emulsion grains. The projected area ratio of the tabular grains A is about 93%, the average projected grain size is 1.2 μm, the average aspect ratio is 4.9,
The coefficient of variation of the particle size distribution was 28%. The particles are core / shell particles and the core layer has an I - content of 1.5
In mol%, the I - content of the shell layer is 3 mol%.
【0040】実施例3 コア粒子形成は実施例1と同じにした。次にNH4 NO
3 −1水溶液5cc、NH3 −1水溶液を5cc添加した
後、Ag−2水溶液とX−2水溶液を用いて銀電位12
0mVに保ちながら C. D. J. 添加した。初期流量は1
1.0cc/分で0.05cc/分の直線的流量加速添加法
で570cc添加した。2分間攪拌した後、30℃に降温
し、沈降水洗法で水洗した。ゼラチン水溶液を添加し、
乳剤を再分散し、pH6.4、pBr2.8に調節し
た。得られた乳剤粒子のレプリカのTEM像より次の結
果が得られた。平板粒子Aの投影面積比率約92%、そ
の平均投影粒径1.18μm、平均アスペクト比4.
7、粒子サイズ分布の変動係数は30%であった。該粒
子の中心部のI- 含率は3モル%であり、粒子全体のI
- 含率も3モル%である。Example 3 The core particle formation was the same as in Example 1. Next, NH 4 NO
3 -1 aqueous 5cc, after addition 5cc the NH 3 -1 aqueous silver potential 12 by using the aqueous solution Ag-2 and X-2 aqueous solution
CDJ was added while maintaining the voltage at 0 mV. Initial flow rate is 1
At a rate of 1.0 cc / min, 570 cc was added by a linear flow rate acceleration addition method of 0.05 cc / min. After stirring for 2 minutes, the temperature was lowered to 30 ° C., and the resultant was washed with water by a sedimentation washing method. Add gelatin aqueous solution,
The emulsion was redispersed and adjusted to pH 6.4, pBr 2.8. The following results were obtained from the TEM image of the replica of the obtained emulsion grains. The projected area ratio of the tabular grains A is about 92%, the average projected grain size is 1.18 μm, and the average aspect ratio is 4.
7. The variation coefficient of the particle size distribution was 30%. The I - content in the center of the particles was 3 mol%, and the I-
The content is also 3 mol%;
【0041】実施例4 反応容器にゼラチン溶液−2〔H2O1200cc、e
mpty アルカリ処理骨ゼラチン12g、非脱イオン
化同ゼラチン12g、KNO3(1N)5ccを含み、
KOH(1N)液でpH5.5とした〕を入れ、40℃
に恒温した。攪拌しながらAgNO3−1液を33cc
入れ、5分後にAg−l−4溶液〔100cc中にAg
NO320g、ゼラチン1g、HNO3(1N)液0.
25cc含む〕とX−1−4水溶液〔100cc中にK
Br14g、ゼラチン1g、KOH(1N)0.25c
c含む〕を48cc/分で1分間、精密送液ポンプで添
加した。1分間攪拌した後、pHを6.1に調節し、A
gNO3−1液とKBr−1液を用いて銀電位を150
mVに調節した。次に10分間で温度を75℃に上げ、
20分間熟成した。この時点でサンプリングした乳剤粒
子のレプリカのTEM像の観察結果は次の通りであっ
た。Example 4 A gelatin solution-2 [1200 cc of H 2 O, e
mpty contains 12 g of alkali-treated bone gelatin, 12 g of non-deionized same gelatin, 5 cc of KNO 3 (1N),
PH was adjusted to 5.5 with a KOH (1N) solution] at 40 ° C.
To constant temperature. 33cc of AgNO 3 -1 solution while stirring
5 minutes later, Ag-1-4 solution [Ag in 100 cc
20 g of NO 3 , 1 g of gelatin, HNO 3 (1N) solution
25cc) and X-1-4 aqueous solution [K in 100cc
Br14g, gelatin 1g, KOH (1N) 0.25c
c) at 48 cc / min for 1 minute using a precision liquid sending pump. After stirring for 1 minute, the pH was adjusted to 6.1 and A
The silver potential was set to 150 using the gNO 3 -1 solution and the KBr-1 solution.
Adjusted to mV. Then raise the temperature to 75 ° C in 10 minutes,
Aged for 20 minutes. The observation result of the TEM image of the replica of the emulsion grains sampled at this time was as follows.
【0042】平板粒子Aの投影面積比率約95%、その
平均投影粒径0.75μm、平均アスペクト比6.5、
粒子サイズ分布の変動係数は33%であった。次にNH
4NO3−1水溶液を5cc、NH3−1水溶液を5c
c添加した後、Ag−2水溶液とX−2水溶液を用いて
銀電位120mVに保ちながらC.D.J.添加した。
初期流量は9cc/分で0.05cc/分の直線的流量
加速添加法で570cc添加した。2分間攪拌した後、
30℃に降温し、沈降水洗法で水洗した。ゼラチン水溶
液を添加し、乳剤を再分散し、pH6.4、pBr2.
8に調節した。得られた乳剤粒子のレプリカのTEM像
より次の結果が得られた。平板粒子Aの投影面積比率約
95%、その平均投影粒径1.34μm、平均アスペク
ト比5.36、粒子サイズ分布の変動係数は30%であ
った。該粒子の中心部のI−含率は0モル%であり、シ
ェル層のI−含率は3モル%であり、図1の(1)型の
平板状粒子である。The projected area ratio of the tabular grains A is about 95%, the average projected grain size is 0.75 μm, the average aspect ratio is 6.5,
The coefficient of variation of the particle size distribution was 33%. Next, NH
5 NO 3 -1 aqueous solution 5 cc, NH 3 -1 aqueous solution 5 c
After the addition of C.c, while maintaining the silver potential at 120 mV using an aqueous solution of Ag-2 and an aqueous solution of X-2, C.I. D. J. Was added.
The initial flow rate was 9 cc / min, and 570 cc was added by a linear flow rate acceleration addition method of 0.05 cc / min. After stirring for 2 minutes,
The temperature was lowered to 30 ° C., and water was washed by a sedimentation precipitation method. An aqueous gelatin solution was added and the emulsion was redispersed, pH 6.4, pBr2.
Adjusted to 8. The following results were obtained from the TEM image of the replica of the obtained emulsion grains. The projected area ratio of the tabular grains A was about 95%, the average projected grain size was 1.34 μm, the average aspect ratio was 5.36, and the variation coefficient of the grain size distribution was 30%. The I-content of the central part of the grains is 0 mol%, and the I - content of the shell layer is 3 mol%, which is a tabular grain of type (1) in FIG.
【0043】実施例5 実施例4でAgBrコア粒子を作る所までは同じにし
た。次にAgBr微粒子乳剤(粒径0.04μm)を
0.06モル添加し、銀電位150mVで25分間熟成
した。更に該微粒子乳剤を0.06モル添加し、25分
間熟成をした後、NH4 NO3 −1水溶液を5cc、NH
3 −1水溶液を5cc添加し、銀電位を220mVとし、
Ag−2水溶液とX−2水溶液を用いて該電位で C. D.
J. 添加した。初期流量は9cc/分で0.05cc/分の
直線的流量加速添加法で200cc添加した。2分間攪拌
した後、30℃に降温し、沈降水洗法で水洗した。ゼラ
チン水溶液を添加し、乳剤を再分散し、pH6.4、p
Br2.8に調節した。得られた乳剤粒子のレプリカの
TEM像より次の結果が得られた。平板粒子Aの投影面
積比率約95%、その平均投影粒径1.32μm、平均
アスペクト比6.87、粒子サイズ分布の変動係数は3
1%であった。該粒子の中心部のI- 含率は0モル%、
シェル層のI- 含率3モル%であり、図1の(5)型の
平板粒子であった。Example 5 The procedure was the same as in Example 4, except that the AgBr core particles were prepared. Next, 0.06 mol of an AgBr fine particle emulsion (having a particle size of 0.04 μm) was added, and ripening was performed at a silver potential of 150 mV for 25 minutes. Further, 0.06 mol of the fine grain emulsion was added, and the mixture was aged for 25 minutes. Then, 5 cc of an aqueous NH 4 NO 3 -1 solution was added.
3 -1 solution was added 5 cc, the silver potential and 220 mV,
Using the aqueous solution of Ag-2 and the aqueous solution of X-2,
J. Added. The initial flow rate was 9 cc / min, and 200 cc was added by a linear flow rate acceleration addition method of 0.05 cc / min. After stirring for 2 minutes, the temperature was lowered to 30 ° C., and the resultant was washed with water by a sedimentation washing method. An aqueous gelatin solution was added, and the emulsion was redispersed, pH 6.4, p.
Br was adjusted to 2.8. The following results were obtained from the TEM image of the replica of the obtained emulsion grains. The projected area ratio of the tabular grains A is about 95%, the average projected grain size is 1.32 μm, the average aspect ratio is 6.87, and the variation coefficient of the grain size distribution is 3
1%. The I - content at the center of the particles is 0 mol%,
The shell layer had an I - content of 3 mol%, and was tabular grains of the type (5) in FIG.
【0044】実施例6 実施例4でAgBrコア粒子を作る所までは同じにし
た。次にAg−2水溶液とX−2−6水溶液(KBr
0.14g/cc)を用いて銀電位180mVで C.D. J.
添加した。初期流量は12cc/分で、0.1cc/分の
直線的流量加速添加法で300cc添加した。次に銀電位
を150mVとし、微粒子AgBrI(I-含率2モル
%、平均粒径約0.033μm)乳剤を0.1モル添加
し、25分間熟成した後、30℃に降温し、沈降水洗法
で水洗した。ゼラチン水溶液を添加し、乳剤を再分散
し、pH6.4、pBr2.7に調節した。得られた乳
剤粒子のレプリカのTEM像より次の結果が得られた。
平板粒子Aの投影面積比率約95%、その平均投影粒径
1.15μm、平均アスペクト比5.75、粒子サイズ
分布の変動係数は30%であった。該粒子の中心部のI
- 含率は0モル%、シェル層のI- 含率2モル%であ
り、図1の(3)型の平板粒子であった。 (微粒子乳剤の調製)前記AgBrI(I- 含率1.5
モル%)、AgBrおよびAgBrI(I-含率2モル
%)微粒子乳剤は、特開平2−146033号、同4−
34544号の記載を参考にして調製した。即ち、反応
容器にゼラチン水溶液(水1200cc、平均分子量3万
の脱イオン化アルカリ処理ゼラチン24g、KBr0.
6gを有する)を入れ、22℃に保ち、攪拌しながらA
gNO3 液(AgNO3 0.3g/cc)とX- 塩液
(0.1773モル/100cc)を90cc/分で3分間
添加して調製した。Example 6 The procedure was the same as in Example 4 until the AgBr core particles were prepared. Next, an aqueous solution of Ag-2 and an aqueous solution of X-2-6 (KBr
0.14 g / cc) at a silver potential of 180 mV
Was added. The initial flow rate was 12 cc / min, and 300 cc was added by a linear flow rate acceleration addition method of 0.1 cc / min. Next, the silver potential was set to 150 mV, 0.1 mol of a fine grain AgBrI (I - content: 2 mol%, average particle size: about 0.033 μm) emulsion was added, the mixture was aged for 25 minutes, then cooled to 30 ° C., and washed by settling. Washed with water. An aqueous gelatin solution was added, and the emulsion was redispersed and adjusted to pH 6.4 and pBr 2.7. The following results were obtained from the TEM image of the replica of the obtained emulsion grains.
The projected area ratio of the tabular grains A was about 95%, the average projected grain size was 1.15 μm, the average aspect ratio was 5.75, and the variation coefficient of the grain size distribution was 30%. I at the center of the particle
The content was 0 mol% and the I - content of the shell layer was 2 mol%, and the particles were tabular grains of the type (3) in FIG. (Preparation of fine grain emulsion) AgBrI (I - content 1.5
Mol%), AgBr and AgBrI (I - content: 2 mol%) fine grain emulsion, JP-A-2-146033, the 4-
It was prepared with reference to the description of 34544. That is, in a reaction vessel, an aqueous gelatin solution (1200 g of water, 24 g of deionized alkali-treated gelatin having an average molecular weight of 30,000, KBr0.
6 g), maintain at 22 ° C. and stir with A
It was prepared by adding a gNO 3 solution (AgNO 3 0.3 g / cc) and an X - salt solution (0.1773 mol / 100 cc) at 90 cc / min for 3 minutes.
【0045】比較例1 コア粒子形成は実施例4と同じにした。次にAg−2−
4水溶液(AgNO315g/100cc)とX−2−
4水溶液(KBr10.5g/100cc)を用いて7
5℃で初期流量9cc/分で0.05cc/分の直線的
流量加速添加法で380ccを、銀電位175mVで
C.D.J.添加した。2分間攪拌した後、30℃に降
温し、沈降水洗法で水洗した。ゼラチン水溶液を添加
し、乳剤を再分散し、pH6.5、pBr2.8に調節
した。得られた乳剤粒子のレプリカのTEM像の結果に
よると、平均投影粒径1.33μm、平均アスペクト比
5.4、粒子サイズ分布の変動係数30%であり、実施
例4とほぼ同じであった。Comparative Example 1 The core particles were formed in the same manner as in Example 4. Next, Ag-2-
4 aqueous solution (AgNO 3 15g / 100cc) X -2-
4 Using aqueous solution (KBr 10.5 g / 100 cc)
At 5 ° C., an initial flow rate of 9 cc / min and a linear flow rate accelerated addition method of 0.05 cc / min. D. J. Was added. After stirring for 2 minutes, the temperature was lowered to 30 ° C., and the resultant was washed with water by a sedimentation washing method. An aqueous gelatin solution was added, and the emulsion was redispersed and adjusted to pH 6.5 and pBr 2.8. According to the result of the TEM image of the replica of the obtained emulsion particles, the average projected particle diameter was 1.33 μm, the average aspect ratio was 5.4, and the variation coefficient of the particle size distribution was 30%, which were almost the same as those in Example 4. .
【0046】比較例2 コア粒子形成は実施例4と同じにした。次にAg−2−
4水溶液とX−2−4水溶液を用いて、75℃で初期流
量7.5cc/分で0.05cc/分の直線的流量加速添加
法で385ccを銀電位160mVで C. D. J. 添加し
た。2分間攪拌した後、30℃に降温し、沈降水洗法で
水洗した。ゼラチン水溶液を添加し、乳剤を再分散し、
pH6.4、pBr2.8に調節した。得られた乳剤粒
子のレプリカのTEM像の結果によると、平均投影粒径
1.38μm、平均アスペクト比7.8、粒子サイズ分
布の変動係数は31%であり、実施例1とほぼ同じであ
った。実施例1、4および比較例1、2で得られた乳剤
を55℃に昇温し、色素1を飽和吸着量の70%添加
し、Comparative Example 2 The core particles were formed in the same manner as in Example 4. Next, Ag-2-
Using the 4 aqueous solution and the X-2-4 aqueous solution, 385 cc of CDJ was added at 75 ° C. at an initial flow rate of 7.5 cc / min and a linear flow rate accelerated addition method of 0.05 cc / min at a silver potential of 160 mV. After stirring for 2 minutes, the temperature was lowered to 30 ° C., and the resultant was washed with water by a sedimentation washing method. Add gelatin aqueous solution, redisperse emulsion,
The pH was adjusted to 6.4 and pBr 2.8. According to the result of the TEM image of the replica of the obtained emulsion grains, the average projected particle size is 1.38 μm, the average aspect ratio is 7.8, and the variation coefficient of the grain size distribution is 31%, which is almost the same as that of Example 1. Was. The emulsions obtained in Examples 1 and 4 and Comparative Examples 1 and 2 were heated to 55 ° C., and Dye 1 was added at 70% of the saturated adsorption amount.
【0047】[0047]
【化1】 Embedded image
【0048】ハイポを2×10−5モル/モルAgXの
割合で添加し、5分後に金増感剤〔塩化金酸:NaSC
N=1:50モル比水溶液〕を金量で1X105モル/
モルAgXだけ添加し、30分後に40℃に降温した。
次にかぶり防止剤TAI(4−hydroxy−6−m
ethyl−1,3,3a,7−tetraazain
dene)を2×10−3モル/モルAgXだけ添加し
た後、増粘剤(ポリp−スチレンスルホン酸ナトリウ
ム)と塗布助剤(ドデシルベンゼンスルホン酸ナトリウ
ム)を加えて、下塗りしたTAC(三酢酸セルロース)
ベース上に、保護層とともに銀量1g/m2で塗布し
た。各塗布試料をマイナス青フィルターを通して10
−2秒間のウェッジ露光をし、MAA−1現像液(「J
ournalof Photographic Sci
ence」23巻、249〜256頁、1975年参
照)で20℃、10分間現像した。更に停止液、定着
液、水洗液を通し、乾燥させた。該写真特性の結果は次
の通りであった。比較例1(相対感度100、粒状性1
00)に対し、実施例4(相対感度115、粒状性9
3)、比較例2(相対感度105、粒状性97)に対
し、実施例1(相対感度121、粒状性90)であっ
た。従って、従来型の乳剤である比較例1、2に対し、
実施例1、4の方が感度、粒状度において優ることが確
認された。また、中心部のI−含率の高い実施例1の乳
剤の優位性が確認された。なおRMS粒状度は試料をか
ぶり上0.2の濃度を与える光量で一様に露光し、前述
の現像処理を行なった後、ジェームス編、ザ・セオリー
・オブ・ザ・フォトグラフィック・プロセス、21章
(1977年)に記述された方法で測定した。各々、比
較用試料を100として相対的に表わした。Hypo was added at a rate of 2 × 10 −5 mol / mol AgX, and after 5 minutes a gold sensitizer [chloroauric acid: NaSC
N = 1: 50 molar ratio aqueous solution] in 1 × 10 5 mol /
Only the mole AgX was added, and the temperature was lowered to 40 ° C. after 30 minutes.
Next, an antifoggant TAI (4-hydroxy-6-m
ethyl-1,3,3a, 7-tetraazain
after adding 2 × 10 −3 mol / mol AgX, a thickener (sodium poly-p-styrenesulfonate) and a coating aid (sodium dodecylbenzenesulfonate) were added. cellulose)
On the base, a silver amount of 1 g / m 2 was applied together with a protective layer. Pass each coated sample through a minus blue filter for 10
-Wedge exposure for 2 seconds, MAA-1 developer ("J
ournalof Photographic Sci
ence, vol. 23, pages 249-256, 1975) at 20 ° C. for 10 minutes. Further, the solution was passed through a stop solution, a fixing solution, and a washing solution to be dried. The results of the photographic characteristics were as follows. Comparative Example 1 (relative sensitivity 100, graininess 1
00), as compared with Example 4 (relative sensitivity 115, granularity 9
3) and Comparative Example 2 (relative sensitivity 105, granularity 97), and Example 1 (relative sensitivity 121, granularity 90). Therefore, in comparison with Comparative Examples 1 and 2, which are conventional emulsions,
It was confirmed that Examples 1 and 4 were superior in sensitivity and granularity. Further, the superiority of the emulsion of Example 1 having a high I - content at the center was confirmed. The RMS granularity is determined by uniformly exposing the sample to an amount of light that gives a density of 0.2 above the fog, and after performing the above-described development processing, James ed., The Theory of the Photographic Process, 21 Measured as described in Chapter (1977). In each case, the comparative sample was relatively expressed as 100.
【0049】[0049]
【発明の効果】従来の{100}平板粒子を含むAgX
乳剤に比べて感度、画質のより改良されたAgX乳剤を
提供することができる。更には感度、画質を自由に制御
することができるAgX乳剤の製造方法を提供すること
ができる。The conventional AgX containing {100} tabular grains
An AgX emulsion having improved sensitivity and image quality as compared with an emulsion can be provided. Further, it is possible to provide a method for producing an AgX emulsion in which sensitivity and image quality can be freely controlled.
【図1】請求項1記載のコア/シェル型平板状粒子の粒
子構造例(1)〜(8)を示す。a層はコア層を、b層
はコア層よりI- 含率の高い層を、c層はb層よりI-
含率の低い層を示す。FIG. 1 shows examples of the grain structure (1) to (8) of the core / shell type tabular grains according to claim 1. The layer a core layer, b layer I than the core layer - a high content: layer, c layer I than b layer -
3 shows a layer with a low content.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G03C 1/015 G03C 1/035──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G03C 1/015 G03C 1/035
Claims (2)
0%以上が主平面が{100}面でアスペクト比が1.
3以上の平板状粒子であるハロゲン化銀乳剤を製造する
方法に於いて、該平板状粒子が粒子の中心部分のヨウド
含有率が1.2モル%以上の平板状粒子またはコア層と
シェル層からなり、シェル層の少なくとも1層のヨウド
含有率がコア層のヨウド含有率の20%以上高い平板状
粒子であり、該製造方法が少なくともハロゲン化銀の核
形成の過程、熟成の過程および結晶成長の過程を経て製
造され、かつ、該核形成がBrイオン濃度が10
−2.3 モル/リットル以下で行なわれ、該熟成と該結
晶成長がAgイオン濃度およびBrイオン濃度がともに
10 −2.3 モル/リットル以下で行なわれることを特
徴とするハロゲン化銀乳剤粒子の製造方法。 (1) The total projected area of the silver halide emulsion grains is 2
0% or more has a {100} principal plane and an aspect ratio of 1.
Produce a silver halide emulsion that is three or more tabular grains
In the method, the tabular grains have an iodine content at the center of the grains.
A tabular grain or core layer having a content of 1.2 mol% or more;
A shell layer, at least one iodine of the shell layer
Flat plate whose content is 20% or more higher than the iodine content of the core layer
Grains, and the production method comprises at least a silver halide nucleus.
It is manufactured through the process of formation, ripening, and crystal growth.
And the nucleation is at a Br ion concentration of 10
-At a rate of not more than 2.3 mol / l,
Both the Ag ion concentration and the Br ion concentration
10 -2.3 JP to be performed in the following mole / liter
And a method for producing silver halide emulsion grains.
度およびBrイオン濃度がともに10 −2.3 モル/リ
ットル以下であり、かつ、粒径が0.15μm以下のハ
ロゲン化銀微粒子の添加により行なわれることを特徴と
する請求項1記載のハロゲン化銀乳剤粒子の製造方法。 2. The solution condition during the crystal growth is Ag ion concentration.
Degree and Br ion concentration are both 10-2.3 mol / l
C and a particle size of 0.15 μm or less.
It is characterized by being performed by the addition of silver logenide fine particles.
The method for producing silver halide emulsion grains according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4077261A JP2840897B2 (en) | 1992-03-31 | 1992-03-31 | Silver halide emulsion and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4077261A JP2840897B2 (en) | 1992-03-31 | 1992-03-31 | Silver halide emulsion and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05281640A JPH05281640A (en) | 1993-10-29 |
JP2840897B2 true JP2840897B2 (en) | 1998-12-24 |
Family
ID=13628910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4077261A Expired - Fee Related JP2840897B2 (en) | 1992-03-31 | 1992-03-31 | Silver halide emulsion and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2840897B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2736734B1 (en) * | 1995-07-10 | 2002-05-24 | Kodak Pathe | TABULAR SILVER HALIDE EMULSION AND PHOTOGRAPHIC PRODUCT CONTAINING THE SAME |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0750312B2 (en) * | 1988-05-12 | 1995-05-31 | 富士写真フイルム株式会社 | Negative silver halide photographic light-sensitive material |
JPH03163433A (en) * | 1989-11-21 | 1991-07-15 | Fuji Photo Film Co Ltd | Silver halide emulsion and production thereof |
JP2699006B2 (en) * | 1990-01-31 | 1998-01-19 | 富士写真フイルム株式会社 | Silver halide color photographic materials |
-
1992
- 1992-03-31 JP JP4077261A patent/JP2840897B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05281640A (en) | 1993-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4945037A (en) | Silver halide photographic emulsion and method for manufacture thereof | |
US4184877A (en) | Process for the manufacture of photographic silver halide emulsions containing silver halide crystals of the twinned type | |
JP3025585B2 (en) | Silver halide emulsion | |
JP3383397B2 (en) | Silver halide emulsion | |
JP2794247B2 (en) | Silver halide emulsion | |
EP0645670B1 (en) | Silver halide emulsion | |
JP2559264B2 (en) | Silver halide emulsion and method for producing the same | |
JP2840897B2 (en) | Silver halide emulsion and method for producing the same | |
JPH0789205B2 (en) | Silver halide emulsion | |
JP2583445B2 (en) | Silver halide emulsion and method for producing the same | |
JP3325954B2 (en) | Silver halide emulsion | |
JP3142983B2 (en) | Silver halide emulsion | |
US5420005A (en) | Silver halide emulsion | |
JP3425481B2 (en) | Method for producing silver halide emulsion | |
JP3388914B2 (en) | Silver halide emulsion | |
JPH06332090A (en) | Manufacture of silver halide emulsion | |
JP2709799B2 (en) | Method for producing silver halide emulsion | |
JPH11249248A (en) | Silver halide emulsion | |
JP3041377B2 (en) | Silver halide emulsion and light-sensitive material containing the emulsion | |
JP2779719B2 (en) | Silver halide emulsion | |
JPH03163433A (en) | Silver halide emulsion and production thereof | |
JPH07104405A (en) | Manufacture of silver halide emulsion | |
JPH0996881A (en) | Production of silver halide emulsion | |
JPH11271899A (en) | Preparation of silver halide photographic emulsion and silver halide photographic sensitive material | |
JPH0713280A (en) | Production of silver halide emulsion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071023 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071023 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081023 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091023 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |