JP2735887B2 - アルカリ蓄電池用亜鉛活物質及びその製造方法 - Google Patents
アルカリ蓄電池用亜鉛活物質及びその製造方法Info
- Publication number
- JP2735887B2 JP2735887B2 JP1175981A JP17598189A JP2735887B2 JP 2735887 B2 JP2735887 B2 JP 2735887B2 JP 1175981 A JP1175981 A JP 1175981A JP 17598189 A JP17598189 A JP 17598189A JP 2735887 B2 JP2735887 B2 JP 2735887B2
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- active material
- metal
- storage battery
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/244—Zinc electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/42—Alloys based on zinc
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、ニッケル−亜鉛蓄電池、銀−亜鉛蓄電池等
のアルカリ蓄電池の負極に用いられる、亜鉛活物質及び
その製造方法に関するものである。
のアルカリ蓄電池の負極に用いられる、亜鉛活物質及び
その製造方法に関するものである。
(ロ) 従来の技術 負極活物質としての亜鉛は、単位重量当りのエネルギ
ー密度が大きく、安価であり、かつ無公害である事か
ら、研究開発が行われてきたが、未だ実用化に至ってい
ない。これは、亜鉛極が可溶性電極であることに起因し
ている。即ち、放電時に亜鉛がアルカリ電解液中に溶出
して亜鉛酸イオンとなり、充電時にこの亜鉛酸イオンが
亜鉛極表面上に樹枝状あるいは海綿状に電析し、充放電
反応の繰り返しにより電析亜鉛がセパレータを貫通して
内部短絡を生じる。また、亜鉛極の形状が変形してその
反応面積が減少し、電池特性の劣化が生じるものであ
る。
ー密度が大きく、安価であり、かつ無公害である事か
ら、研究開発が行われてきたが、未だ実用化に至ってい
ない。これは、亜鉛極が可溶性電極であることに起因し
ている。即ち、放電時に亜鉛がアルカリ電解液中に溶出
して亜鉛酸イオンとなり、充電時にこの亜鉛酸イオンが
亜鉛極表面上に樹枝状あるいは海綿状に電析し、充放電
反応の繰り返しにより電析亜鉛がセパレータを貫通して
内部短絡を生じる。また、亜鉛極の形状が変形してその
反応面積が減少し、電池特性の劣化が生じるものであ
る。
この問題に対処すべく、例えば特開昭64−52377号公
報に記載された如く、表面を酸化亜鉛と、水素過電圧が
大きく、且つ亜鉛よりも酸化還元電位が貴な金属からな
る混合層で覆われた亜鉛粉末を用いることが提案されて
いる。この亜鉛粉末を用いることにより、この種アルカ
リ蓄電池の充放電サイクル特性の向上が観察される。こ
れは、極板内に均一に分散存在せる前記金属の作用によ
り、亜鉛の水素過電圧が高められ、亜鉛の樹枝状結晶の
生長を抑制すると共に、亜鉛極の充放電反応が均一化さ
れ、亜鉛極の形状変化が小さくなることによる。また、
亜鉛表面の酸化亜鉛は亜鉛活物質表面の活性度を抑制す
る作用があり、この酸化亜鉛によっても亜鉛極の形状変
形を減少させる。
報に記載された如く、表面を酸化亜鉛と、水素過電圧が
大きく、且つ亜鉛よりも酸化還元電位が貴な金属からな
る混合層で覆われた亜鉛粉末を用いることが提案されて
いる。この亜鉛粉末を用いることにより、この種アルカ
リ蓄電池の充放電サイクル特性の向上が観察される。こ
れは、極板内に均一に分散存在せる前記金属の作用によ
り、亜鉛の水素過電圧が高められ、亜鉛の樹枝状結晶の
生長を抑制すると共に、亜鉛極の充放電反応が均一化さ
れ、亜鉛極の形状変化が小さくなることによる。また、
亜鉛表面の酸化亜鉛は亜鉛活物質表面の活性度を抑制す
る作用があり、この酸化亜鉛によっても亜鉛極の形状変
形を減少させる。
しかしながら、この様な亜鉛表面に配設された前記金
属と酸化亜鉛の混合層は、亜鉛の樹枝結晶の生長を防止
するものの、多孔度が小さいために、充放電関与物質で
ある亜鉛活物質の反応面積が減少し、亜鉛活物質の利用
率を減少させる。そのため、急速充放電を行った場合に
は、充放電反応の不均一化が生じ、亜鉛極の形状変形が
生じ易くなり、電池の充放電サイクル特性が劣化する。
属と酸化亜鉛の混合層は、亜鉛の樹枝結晶の生長を防止
するものの、多孔度が小さいために、充放電関与物質で
ある亜鉛活物質の反応面積が減少し、亜鉛活物質の利用
率を減少させる。そのため、急速充放電を行った場合に
は、充放電反応の不均一化が生じ、亜鉛極の形状変形が
生じ易くなり、電池の充放電サイクル特性が劣化する。
このように表面を酸化亜鉛と前記金属からなる混合層
で覆われた亜鉛活物質を用いた亜鉛極では、低率充放電
サイクルにおける亜鉛極の形状変形に基づく電池の容量
低下や、樹枝状亜鉛結晶生長を防止することが可能とな
る。しかしながら、急速充放電においては、充放電サイ
クル特性が劣化するという新たな問題がある。
で覆われた亜鉛活物質を用いた亜鉛極では、低率充放電
サイクルにおける亜鉛極の形状変形に基づく電池の容量
低下や、樹枝状亜鉛結晶生長を防止することが可能とな
る。しかしながら、急速充放電においては、充放電サイ
クル特性が劣化するという新たな問題がある。
(ハ) 発明が解決しようとする課題 本発明は前記問題点に鑑みてなされたものであって、
サイクル長期に亘って樹枝状亜鉛生長及び極板変形を抑
制すると共に、急速充電特性を向上しうるアルカリ蓄電
池用亜鉛活物質及びその製造方法を提供するものであ
る。
サイクル長期に亘って樹枝状亜鉛生長及び極板変形を抑
制すると共に、急速充電特性を向上しうるアルカリ蓄電
池用亜鉛活物質及びその製造方法を提供するものであ
る。
(ニ) 課題を解決するための手段 本発明のアルカリ蓄電池用亜鉛活物質は、亜鉛粉末表
面の少なくとも一部が、水素過電圧が大きく且つ亜鉛よ
りも酸化還元電位が貴である金属で置換され、更に前記
表面が酸化亜鉛層で被覆されたことを特徴とするもので
ある。
面の少なくとも一部が、水素過電圧が大きく且つ亜鉛よ
りも酸化還元電位が貴である金属で置換され、更に前記
表面が酸化亜鉛層で被覆されたことを特徴とするもので
ある。
またその製造方法は、水素過電圧が大きく且つ亜鉛よ
りも酸化還元電位が貴である金属の塩と、亜鉛の塩を溶
解させた水溶液中に、亜鉛粉末を浸漬して前記金属で前
記亜鉛粉末表面を置換した後、前記水溶液のpHを大きく
して残存せる亜鉛イオンを前記亜鉛粉末表面に析出させ
酸化亜鉛層を形成し、乾燥を行うことを特徴とするもの
である。
りも酸化還元電位が貴である金属の塩と、亜鉛の塩を溶
解させた水溶液中に、亜鉛粉末を浸漬して前記金属で前
記亜鉛粉末表面を置換した後、前記水溶液のpHを大きく
して残存せる亜鉛イオンを前記亜鉛粉末表面に析出させ
酸化亜鉛層を形成し、乾燥を行うことを特徴とするもの
である。
(ホ) 作用 本発明の如く、亜鉛の表面を水素過電圧が大きく且つ
亜鉛よりも酸化還元電位が貴である一種以上の金属で置
換し、更にその表面を酸化亜鉛層で覆うことにより、前
記金属の作用により亜鉛酸イオンの電析反応の過電圧を
増大させ、その結果活物質粒子表面への亜鉛酸イオンの
電析を緩やかにかつ均一に生じさせることが可能とな
る。そのため、亜鉛極からの樹枝状亜鉛結晶の生長が有
効に阻止される。更に、前記金属の亜鉛粉末上に付加す
る際に、亜鉛イオンを共存させているので、前記金属イ
オンと亜鉛イオンの交換反応速度が小さくなり、前記金
属が亜鉛粉末上に均一に付加する。また、表面の酸化亜
鉛は充放電サイクルの進行に伴う前記金属の溶解を防止
し充放電サイクル長期に亘り前記金属の添加効果を持続
させる。
亜鉛よりも酸化還元電位が貴である一種以上の金属で置
換し、更にその表面を酸化亜鉛層で覆うことにより、前
記金属の作用により亜鉛酸イオンの電析反応の過電圧を
増大させ、その結果活物質粒子表面への亜鉛酸イオンの
電析を緩やかにかつ均一に生じさせることが可能とな
る。そのため、亜鉛極からの樹枝状亜鉛結晶の生長が有
効に阻止される。更に、前記金属の亜鉛粉末上に付加す
る際に、亜鉛イオンを共存させているので、前記金属イ
オンと亜鉛イオンの交換反応速度が小さくなり、前記金
属が亜鉛粉末上に均一に付加する。また、表面の酸化亜
鉛は充放電サイクルの進行に伴う前記金属の溶解を防止
し充放電サイクル長期に亘り前記金属の添加効果を持続
させる。
また、酸化亜鉛は導電性が低いので、緻密であると内
部の亜鉛が充放電反応に関与できないが、本発明に係る
酸化亜鉛は、多孔質と考えられるため、内部亜鉛が充放
電反応に関与してその利用率を低下させず、急速充放電
サイクルにおいても、電池の充放電サイクル特性を劣化
させない。
部の亜鉛が充放電反応に関与できないが、本発明に係る
酸化亜鉛は、多孔質と考えられるため、内部亜鉛が充放
電反応に関与してその利用率を低下させず、急速充放電
サイクルにおいても、電池の充放電サイクル特性を劣化
させない。
(ヘ) 実施例 以下に、本発明の実施例と比較例との対比に言及し、
詳述する。
詳述する。
(実施例1) 塩化インジウム(濃度0.15mol/)1000mlと、塩化亜
鉛(濃度0.25mol/)1000mlの混合水溶液に、平均粒径
5μmの亜鉛粉末200gを浸漬し、1時間撹拌した後、水
酸化カリウム(濃度0.1mol/)水溶液を徐々に加え、
前記亜鉛粉末表面に酸化亜鉛を析出させるようにpH10付
近で保持した。このpHの値は、9〜10で行うのが望まし
い。その後生成した沈澱物をイオン交換水により十分水
洗した後、乾燥することにより、本発明に係る亜鉛活物
質を得た。この亜鉛活物質を、アンモニア及び塩化アン
モニウムの水溶液に溶解させて、亜鉛と酸化亜鉛の比に
ついて定量したところ、酸化亜鉛は亜鉛活物質粉末の約
10重量%であることが確認できた。また、この時の置換
したインジウムの重量は、亜鉛重量の約1重量%であっ
た。
鉛(濃度0.25mol/)1000mlの混合水溶液に、平均粒径
5μmの亜鉛粉末200gを浸漬し、1時間撹拌した後、水
酸化カリウム(濃度0.1mol/)水溶液を徐々に加え、
前記亜鉛粉末表面に酸化亜鉛を析出させるようにpH10付
近で保持した。このpHの値は、9〜10で行うのが望まし
い。その後生成した沈澱物をイオン交換水により十分水
洗した後、乾燥することにより、本発明に係る亜鉛活物
質を得た。この亜鉛活物質を、アンモニア及び塩化アン
モニウムの水溶液に溶解させて、亜鉛と酸化亜鉛の比に
ついて定量したところ、酸化亜鉛は亜鉛活物質粉末の約
10重量%であることが確認できた。また、この時の置換
したインジウムの重量は、亜鉛重量の約1重量%であっ
た。
次に、酸化亜鉛60重量%と、前記亜鉛活物質35重量%
及びフッ素樹脂5重量%から成る混合粉末に、水を加え
混練し、ペーストを得、集電体上に圧着して亜鉛極とし
た。この様に作製した亜鉛極を、公知の焼結式ニッケル
極とを組み合わせて、公称容量500mAhの円筒密閉型ニッ
ケル−亜鉛蓄電池を得、本発明電池Aとした。
及びフッ素樹脂5重量%から成る混合粉末に、水を加え
混練し、ペーストを得、集電体上に圧着して亜鉛極とし
た。この様に作製した亜鉛極を、公知の焼結式ニッケル
極とを組み合わせて、公称容量500mAhの円筒密閉型ニッ
ケル−亜鉛蓄電池を得、本発明電池Aとした。
(比較例1) 前記実施例1の亜鉛活物質中の亜鉛とインジウムのモ
ル比と同様になるように、亜鉛と水酸化インジウムを混
合して亜鉛極を作製し、以下実施例1と同様にして比較
電池Bを得た。
ル比と同様になるように、亜鉛と水酸化インジウムを混
合して亜鉛極を作製し、以下実施例1と同様にして比較
電池Bを得た。
(比較例2) 前記実施例1の亜鉛活物質中の、亜鉛とインジウムの
モル比と同様になるように、表面に酸化亜鉛とインジウ
ムの混合層を配設した亜鉛粉末を用いて亜鉛極を作製
し、以下実施例1と同様にして、比較電池Cを得た。
モル比と同様になるように、表面に酸化亜鉛とインジウ
ムの混合層を配設した亜鉛粉末を用いて亜鉛極を作製
し、以下実施例1と同様にして、比較電池Cを得た。
このようにして得た本発明電池A及び比較電池B、C
を用い、電池のサイクル特性を比較した。この時のサイ
クル条件は、充電電流500mAで1.5時間充電した後、放電
電流1000mAで電池電圧が1.4Vになる迄放電を行うという
ものである。そしてこの充放電サイクル試験は、電池の
容量が350mhAになるまで繰り返し行った。
を用い、電池のサイクル特性を比較した。この時のサイ
クル条件は、充電電流500mAで1.5時間充電した後、放電
電流1000mAで電池電圧が1.4Vになる迄放電を行うという
ものである。そしてこの充放電サイクル試験は、電池の
容量が350mhAになるまで繰り返し行った。
第1図に、この結果を示す。
また、第2図は、50サイクル時における各電池の放電
特性を示すものである。尚、この時の放電条件は放電電
流1000mAで終止電圧1.0V迄放電するというものである。
特性を示すものである。尚、この時の放電条件は放電電
流1000mAで終止電圧1.0V迄放電するというものである。
第1図及び第2図から明らかな如く、本発明電池Aで
は急速充放電サイクルにおいても容量低下が少なく、充
放電サイクル特性が大幅に改善されていることがわか
る。
は急速充放電サイクルにおいても容量低下が少なく、充
放電サイクル特性が大幅に改善されていることがわか
る。
尚、本実施例では、前記金属の置換及び酸化亜鉛層形
成の際に、塩化物を用いたが、硝酸塩、硫酸塩等を用い
ても、同様の効果が期待される。また、置換する金属の
量については、亜鉛に対する前記金属のモル比が0.01〜
0.10の範囲内であれば、前記同様の効果が得られる。一
方、酸化亜鉛を形成するための酸化亜鉛の量は、亜鉛に
対する塩化亜鉛のモル比が0.02〜0.20の範囲内であれ
ば、同様の効果が得られる。
成の際に、塩化物を用いたが、硝酸塩、硫酸塩等を用い
ても、同様の効果が期待される。また、置換する金属の
量については、亜鉛に対する前記金属のモル比が0.01〜
0.10の範囲内であれば、前記同様の効果が得られる。一
方、酸化亜鉛を形成するための酸化亜鉛の量は、亜鉛に
対する塩化亜鉛のモル比が0.02〜0.20の範囲内であれ
ば、同様の効果が得られる。
また、前記実施例では、水素過電圧が大きく且つ亜鉛
よりも酸化還元電位が貴である金属としてインジウムを
用いたが、これ以外にタリウム、スズ、ビスマス、鉛等
を用いても同様の効果が期待できる。
よりも酸化還元電位が貴である金属としてインジウムを
用いたが、これ以外にタリウム、スズ、ビスマス、鉛等
を用いても同様の効果が期待できる。
(ト) 発明の効果 本発明によれば、急速充放電を行っても内部短絡によ
る初期不良が少なく、サイクル長期に亘り容量低下の少
ないサイクル特性に優れたアルカリ亜鉛蓄電池を提供す
ることができ、その工業的価値は極めて大きい。
る初期不良が少なく、サイクル長期に亘り容量低下の少
ないサイクル特性に優れたアルカリ亜鉛蓄電池を提供す
ることができ、その工業的価値は極めて大きい。
第1図は電池のサイクル特性図、第2図は50サイクル時
の電池の放電特性図である。 A……本発明電池、B、C……比較電池。
の電池の放電特性図である。 A……本発明電池、B、C……比較電池。
Claims (2)
- 【請求項1】亜鉛粉末表面の少なくとも一部が、水素過
電圧が大きく且つ亜鉛よりも酸化還元電位が貴である金
属で置換され、更に前記表面が酸化亜鉛層で被覆された
ことを特徴とするアルカリ蓄電池用亜鉛活物質。 - 【請求項2】水素過電圧が大きく且つ亜鉛よりも酸化還
元電位が貴である金属の塩と、亜鉛の塩を溶解させた水
溶液中に、亜鉛粉末を浸漬して前記金属で前記亜鉛粉末
表面を置換した後、前記水溶液のpHを大きくして残存せ
る亜鉛イオンを前記亜鉛粉末表面に析出させ酸化亜鉛層
を形成し、乾燥を行うことを特徴とするアルカリ蓄電池
用亜鉛活物質の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1175981A JP2735887B2 (ja) | 1989-07-07 | 1989-07-07 | アルカリ蓄電池用亜鉛活物質及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1175981A JP2735887B2 (ja) | 1989-07-07 | 1989-07-07 | アルカリ蓄電池用亜鉛活物質及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0340366A JPH0340366A (ja) | 1991-02-21 |
JP2735887B2 true JP2735887B2 (ja) | 1998-04-02 |
Family
ID=16005619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1175981A Expired - Fee Related JP2735887B2 (ja) | 1989-07-07 | 1989-07-07 | アルカリ蓄電池用亜鉛活物質及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2735887B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113005435A (zh) * | 2021-02-09 | 2021-06-22 | 浙江工业大学 | 一种锌金属保护层材料及其制备方法、应用 |
-
1989
- 1989-07-07 JP JP1175981A patent/JP2735887B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0340366A (ja) | 1991-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02112165A (ja) | アルカリ蓄電池 | |
JP2735887B2 (ja) | アルカリ蓄電池用亜鉛活物質及びその製造方法 | |
JP2889669B2 (ja) | アルカリ蓄電池用非焼結式ニッケル正極板 | |
JP4474722B2 (ja) | アルカリ蓄電池とそれに用いるアルカリ蓄電池用正極 | |
JP3623320B2 (ja) | ニッケル電極活物質及び該ニッケル電極活物質を使用したニッケル電極 | |
JPH11307092A (ja) | アルカリ蓄電池正極活物質用水酸化ニッケル粉末及びその製造方法 | |
JP2562669B2 (ja) | アルカリ蓄電池 | |
JP3253476B2 (ja) | アルカリ蓄電池用非焼結式ニッケル極 | |
JPH06260166A (ja) | アルカリ蓄電池用ニッケル電極 | |
JP2578633B2 (ja) | アルカリ蓄電池用亜鉛極 | |
JPH0613075A (ja) | アルカリ蓄電池用ニッケル電極 | |
JPS6188453A (ja) | アルカリ蓄電池用ニツケル正極 | |
JP2846673B2 (ja) | アルカリ蓄電池用亜鉛極の製造方法 | |
JPS62108467A (ja) | アルカリ亜鉛蓄電池 | |
JPH079806B2 (ja) | アルカリ蓄電池用亜鉛極 | |
JP2589750B2 (ja) | ニッケルカドミウム蓄電池 | |
JPH10149824A (ja) | 水素吸蔵合金電極の製造方法 | |
JPH0837022A (ja) | アルカリ蓄電池 | |
JP2638055B2 (ja) | アルカリ蓄電池用ペースト式カドミウム負極の製造法 | |
JPH0410181B2 (ja) | ||
JPH11219721A (ja) | アルカリ蓄電池 | |
JPH073793B2 (ja) | アルカリ亜鉛蓄電池 | |
JPH079807B2 (ja) | アルカリ蓄電池用亜鉛極 | |
JPH10125350A (ja) | アルカリ二次電池 | |
JPS60225372A (ja) | アルカリ亜鉛蓄電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |