[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2735382B2 - Magnetic powder for magnetic recording - Google Patents

Magnetic powder for magnetic recording

Info

Publication number
JP2735382B2
JP2735382B2 JP2327122A JP32712290A JP2735382B2 JP 2735382 B2 JP2735382 B2 JP 2735382B2 JP 2327122 A JP2327122 A JP 2327122A JP 32712290 A JP32712290 A JP 32712290A JP 2735382 B2 JP2735382 B2 JP 2735382B2
Authority
JP
Japan
Prior art keywords
magnetic
coercive force
powder
magnetic recording
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2327122A
Other languages
Japanese (ja)
Other versions
JPH04214605A (en
Inventor
辰巳 前田
俊治 栗栖
悦治 小川
忠 井戸
修 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2327122A priority Critical patent/JP2735382B2/en
Publication of JPH04214605A publication Critical patent/JPH04214605A/en
Application granted granted Critical
Publication of JP2735382B2 publication Critical patent/JP2735382B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、特に高密度磁気記録に適した磁気記録用磁
性粉末に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a magnetic powder for magnetic recording particularly suitable for high-density magnetic recording.

(従来の技術) 一般に塗布形の磁気記録媒体は、たとえばポリエチレ
ンテレフタレートフィルムなどの非磁性支持体(基体)
と、この支持体面上に設けられた磁性粉末および樹脂バ
インダを主成分とする磁性層とから構成されている。
(Prior Art) Generally, a coated magnetic recording medium is a non-magnetic support (substrate) such as a polyethylene terephthalate film.
And a magnetic layer provided on the surface of the support and having a magnetic powder and a resin binder as main components.

磁性粉末としては、従来から、γ−Fe2O3、Co被着γ
−Fe2O3、Coドープγ−Fe2O3、CrO2、Fe粉などの針状強
磁性粉末が広く用いられており、磁気記録は面内長手方
向の磁化を用いる。最近、磁気記録密度の大幅な向上を
図るために、支持体と垂直な方向の磁化を用いて垂直磁
気記録のできる磁気記録用媒体が望まれており、これに
適する磁気記録用媒体として、六方晶系フェライトの超
微粒子状磁性粉末を用いたものが研究されており、一部
では実用化が進められている。
As the magnetic powder, conventionally, γ-Fe 2 O 3 ,
Acicular ferromagnetic powders such as —Fe 2 O 3 , Co-doped γ-Fe 2 O 3 , CrO 2 , and Fe powder are widely used, and magnetic recording uses magnetization in a longitudinal direction in a plane. Recently, a magnetic recording medium capable of perpendicular magnetic recording using magnetization in a direction perpendicular to the support has been desired in order to greatly improve the magnetic recording density. Researches using ultrafine magnetic powder of crystalline ferrite have been studied, and some of them are being put to practical use.

(発明が解決しようとする課題) ところで、六方晶系フェライトは、一般に常温付近に
おいて、保磁力が温度上昇とともに増大するという特性
を有している。すなわち、保磁力の温度係数(常温付近
における温度に対する保磁力の勾配)が正である。しか
して、磁気記録媒体では、保磁力の温度係数が大きい
と、温度による電磁変換特性の変動がもたらされ、記
録、再生、消去などの特性が低下し、特にオーバーライ
ト特性に支障をきたすという問題が生じる。そのため、
磁気記録媒体においては、保磁力の温度係数が−2〜+
2Oe/℃の範囲にあることが望まれている。
(Problems to be Solved by the Invention) Incidentally, hexagonal ferrite generally has a property that the coercive force increases with an increase in temperature near normal temperature. That is, the temperature coefficient of the coercive force (the gradient of the coercive force with respect to the temperature near room temperature) is positive. However, in a magnetic recording medium, if the temperature coefficient of the coercive force is large, the electromagnetic conversion characteristics fluctuate due to temperature, and the characteristics such as recording, reproduction, and erasing are deteriorated, and particularly the overwrite characteristics are hindered. Problems arise. for that reason,
In a magnetic recording medium, the temperature coefficient of the coercive force is -2 to +
It is desired to be in the range of 2 Oe / ° C.

このような要求に対し、たとえばFe成分の一部をSnで
置換することも試みられているが、保磁力の温度係数の
変化を小さく抑えようとすると、一方では飽和磁化が低
下して磁気記録媒体としての所用の機能を十分に果たし
得ないという問題がある。
In response to such demands, for example, an attempt has been made to replace a part of the Fe component with Sn. There is a problem that the function required as a medium cannot be sufficiently performed.

本発明はこのような課題に対処してなされたもので、
保磁力の温度係数がほぼ−2〜+2Oe/℃の範囲にあるば
かりでなく、磁気記録媒体として所要の飽和磁化を有
し、高密度磁気記録に適する磁気記録用磁性粉末の提供
を目的とする。
The present invention has been made in response to such problems.
The object of the present invention is to provide a magnetic powder for magnetic recording that not only has a temperature coefficient of coercive force in a range of approximately −2 to +2 Oe / ° C. but also has a required saturation magnetization as a magnetic recording medium and is suitable for high-density magnetic recording. .

[発明の構成] (課題を解決するための手段) 本発明の磁気記録用磁性粉末は、一般式、 AO・n/6(Fe12-x-y-zBxNiyCzO18−α) もしくは AO・n/6{Fe12−x−y−z/2BxNiyC′
z/218−α} (式中、AはBa、Sr、CaおよびPbの中から選ばれた少な
くとも1種の元素、BはCo、Znの中から選ばれた少なく
とも1種の2価の元素、CはTi、Sn、Geの中から選ばれ
た少なくとも1種の4価の元素、C′はNb、V、Ta、Sb
の中から選ばれた少なくとも1種の5価の元素をそれぞ
れ表し、また、α=(x+y−z)/2、7.2<n≦12.
0、0.5≦x≦1.5、0.2≦y≦1.6、0.7≦x+y≦2.7、
0≦z<2.0、0.34<α≦1.0)で示される六方晶系フェ
ライト粉末から成ることを特徴とする。
[Constitution of the Invention] (Means for Solving the Problems) The magnetic powder for magnetic recording of the present invention has a general formula: AO · n / 6 (Fe 12-xyz B x Ni y C z O 18-α ) or AO・ N / 6 {Fe 12−x−y−z / 2 B x Ni y C ′
z / 2 O 18-α } (where A is at least one element selected from Ba, Sr, Ca and Pb, and B is at least one divalent element selected from Co and Zn) C is at least one tetravalent element selected from Ti, Sn and Ge, and C 'is Nb, V, Ta, Sb
Represents at least one pentavalent element selected from the group consisting of α = (x + yz) / 2, 7.2 <n ≦ 12.
0, 0.5 ≦ x ≦ 1.5, 0.2 ≦ y ≦ 1.6, 0.7 ≦ x + y ≦ 2.7,
It is characterized by being composed of a hexagonal ferrite powder represented by 0 ≦ z <2.0, 0.34 <α ≦ 1.0).

本発明に係る六方晶系フェライトには、たとえばM型
(Magnetoplumbite tipe)やW型の六方晶系のBaフェラ
イト、Srフェライト、Pbフェライト、Caフェライトある
いはこれらの固溶体、もしくはイオン置換体などが含ま
れる。
The hexagonal ferrite according to the present invention includes, for example, M-type (Magnetoplumbite tipe) or W-type hexagonal Ba ferrite, Sr ferrite, Pb ferrite, Ca ferrite, a solid solution thereof, or an ion substitute. .

本発明に係る六方晶系フェライトにおいて、元素B、
Ni、CおよびC′の置換量、つまりx、yおよびz、な
らびにnおよびαの値の範囲を上記のように限定したの
は、次の理由による。
In the hexagonal ferrite according to the present invention, the element B,
The reason why the substitution amounts of Ni, C and C ', that is, the ranges of values of x, y and z, and n and α are limited as described above, is as follows.

すなわち、nは6の値をとったとき完全な六方晶系フ
ェライトを形成するが、実用上は6.1〜12.0の範囲とす
ることが好ましく、このとき保磁力や飽和磁化など所望
の磁気的特性を有する六方晶系フェライト粉末が得られ
る。なお、nが6.1〜7.2未満では飽和磁化が小さく、7.
2以上になると所望の飽和磁化を有する。
That is, when n takes a value of 6, a perfect hexagonal ferrite is formed, but practically it is preferably in the range of 6.1 to 12.0. At this time, desired magnetic properties such as coercive force and saturation magnetization are obtained. The obtained hexagonal ferrite powder is obtained. If n is less than 6.1 to 7.2, the saturation magnetization is small, and 7.
When it is 2 or more, it has a desired saturation magnetization.

また、保磁力を制御するための置換成分である元素B
の置換量xは、0.5未満であると得られる六方晶系フェ
ライト粉末の保磁力が2000Oeを超えるようになって、ヘ
ッド磁界が飽和現象を起こし磁気記録が困難となり、逆
に1.5を超えると、得られる六方晶系フェライト粉末の
保磁力が200Oe未満になって、これを用いて構成した磁
気記録媒体は、記録信号の保持が困難になる。
Further, an element B which is a substitution component for controlling the coercive force
When the coercive force x of the obtained hexagonal ferrite powder is less than 0.5, the coercive force of the hexagonal ferrite powder exceeds 2,000 Oe, the head magnetic field causes a saturation phenomenon, and magnetic recording becomes difficult. The coercive force of the obtained hexagonal ferrite powder is less than 200 Oe, and it is difficult for a magnetic recording medium formed using the same to retain a recording signal.

またNiの置換量yは、0.2未満であると得られる六方
晶系フェライト粉末の保磁力の温度係数が+2Oe/℃以上
と大きくなり、記録媒体のオーバーライト特性に支障を
きたす。逆に1.6を超えると得られる六方晶系フェライ
ト粉末の角型比が小さくなり、角型比×飽和磁化で表さ
れる残留磁化の値が小さくなるため、記録媒体の出力特
性の低下が大きくなってしまう。
Further, when the substitution amount y of Ni is less than 0.2, the temperature coefficient of the coercive force of the obtained hexagonal ferrite powder becomes as large as +2 Oe / ° C. or more, which impairs the overwriting characteristics of the recording medium. Conversely, when the ratio exceeds 1.6, the squareness ratio of the obtained hexagonal ferrite powder becomes small, and the value of the residual magnetization expressed by squareness ratio × saturation magnetization becomes small, so that the output characteristics of the recording medium are greatly reduced. Would.

さらにx+yの値は、0.7未満であると得られる六方
晶系フェライト粉末の保磁力が2000Oeを超えるようにな
って、ヘッド磁界が飽和現象を起こして磁気記録が困難
となり、逆に2.7を超えると得られる六方晶系フェライ
ト粉末の保磁力が200Oe未満になって、これを用いて構
成した磁気記録媒体は記録信号の保持が困難になる。
Further, when the value of x + y is less than 0.7, the coercive force of the obtained hexagonal ferrite powder exceeds 2000 Oe, the head magnetic field saturates, and magnetic recording becomes difficult. The coercive force of the obtained hexagonal ferrite powder is less than 200 Oe, and it is difficult for a magnetic recording medium formed using the same to retain a recording signal.

またさらに、元素CおよびC′の置換量zは、2.0を
超えると得られる六方晶系フェライト粉末の飽和磁化お
よび保磁力がそれぞれ小さくなり、記録媒体の出力特性
の低下が大きくなる。
Further, when the substitution amount z of the elements C and C ′ exceeds 2.0, the saturation magnetization and the coercive force of the obtained hexagonal ferrite powder become small, respectively, and the output characteristics of the recording medium are greatly reduced.

さらに、B元素、Ni、CおよびC′元素の置換量に左
右されるα(α=(x+y−z)/2)の値が、1.0を超
えると、得られる六方晶系フェライト粉末の角型比が小
さくなり、記録媒体の出力特性の低下が大きくなる。
Further, when the value of α (α = (x + yz) / 2), which depends on the substitution amounts of the elements B, Ni, C, and C ′, exceeds 1.0, the obtained hexagonal ferrite powder has a square shape. The ratio becomes smaller, and the output characteristics of the recording medium deteriorate more.

なお、本発明の磁性粉末において、六方晶系フェライ
ト結晶の平均粒径は、0.02〜0.2μmの範囲とすること
が望ましい。すなわち、平均粒径が0.02μm未満では、
磁化および保磁力が減少して磁気記録媒体の再生出力が
低下し、逆に0.2μmを超えると多磁区構造となって、
高密度記録の際に再生時のノイズが著しくなる。また保
磁力は、200〜2000Oeの範囲にあることが望ましい。
In the magnetic powder of the present invention, the average particle size of the hexagonal ferrite crystal is desirably in the range of 0.02 to 0.2 μm. That is, if the average particle size is less than 0.02 μm,
When the magnetization and coercive force decrease, the reproduction output of the magnetic recording medium decreases, and when it exceeds 0.2 μm, a multi-domain structure is formed,
At the time of high density recording, noise at the time of reproduction becomes remarkable. The coercive force is desirably in the range of 200 to 2000 Oe.

本発明に係る磁気記録用磁性粉末は、たとえばつぎの
ようにして製造し得る。すなわち、目的とする組成式を
有する六方晶系フェライトを形成するのに必要な各元素
の酸化物、炭酸化物を、ホウ酸、ケイ酸、リン酸のよう
なガラス形成物質とともに、先ず加熱溶融する。次い
で、得られた溶融液を急速に冷却して非晶質化(ガラス
化)した後、得られたガラス体に所定の温度の熱処理を
施して、目的とする六方晶系フェライトの結晶粉末を析
出させる。こうして得られた粉末をリン酸や酢酸などの
希酸で洗浄処理し、ガラス成分を溶解除去することによ
って容易に得られる。勿論上記ガラス結晶化法の他に、
共沈−焼成法や水熱法などでも得られるが、特にガラス
結晶化法を採ることが望ましい。
The magnetic powder for magnetic recording according to the present invention can be produced, for example, as follows. That is, the oxides and carbonates of the respective elements necessary to form the hexagonal ferrite having the desired composition formula are first heated and melted together with a glass-forming substance such as boric acid, silicic acid, and phosphoric acid. . Next, the obtained melt is rapidly cooled to be amorphized (vitrified), and then the obtained glass body is subjected to a heat treatment at a predetermined temperature to obtain a desired hexagonal ferrite crystal powder. Precipitate. The powder thus obtained can be easily obtained by washing with a dilute acid such as phosphoric acid or acetic acid to dissolve and remove the glass component. Of course, besides the above glass crystallization method,
Although it can be obtained by a coprecipitation-firing method or a hydrothermal method, it is particularly preferable to employ a glass crystallization method.

本発明に係る六方晶系フェライト粉末は、通常バイン
ダ樹脂とともに、非磁性支持体表面に塗布され、磁気記
録媒体として用いられる。ここで、磁性粉末とともに磁
性層を構成するバインダ樹脂としては、たとえば塩化ビ
ニル−酢酸ビニル共重合体、塩化ビニリデン系共重合
体、アクリル酸エステル系共重合体、ポリビニルブチラ
ール系樹脂、ポリウレタン系樹脂、ポリエステル系樹
脂、セルロース誘導体、エポキシ樹脂などが挙げられ、
これらは単独であるいは2種以上を混合して使用するこ
とができる。また、前記六方晶系フェライト粉末とバイ
ンダ樹脂により構成される磁性層中には、分散剤、潤滑
剤、研磨剤、帯電防止剤などの添加剤を必要に応じて適
宜含有させることができる。
The hexagonal ferrite powder according to the present invention is usually applied to the surface of a nonmagnetic support together with a binder resin, and is used as a magnetic recording medium. Here, as the binder resin constituting the magnetic layer together with the magnetic powder, for example, a vinyl chloride-vinyl acetate copolymer, a vinylidene chloride-based copolymer, an acrylate-based copolymer, a polyvinyl butyral-based resin, a polyurethane-based resin, Polyester-based resins, cellulose derivatives, epoxy resins, and the like,
These can be used alone or in combination of two or more. Further, in the magnetic layer composed of the hexagonal ferrite powder and the binder resin, additives such as a dispersant, a lubricant, an abrasive, and an antistatic agent can be appropriately contained as needed.

(作用) 本発明に係る磁性粉末は、フェライトを構成するFe原
子の一部が、Coおよび/またはZn原子で置換されている
ので、磁気記録用磁性粉末として所要の保磁力と高い飽
和磁化を有しており、さらに、Fe原子の一部がNi原子で
も置換されているので、保磁力の温度係数も零に近く、
温度変化に対して安定である。したがって、本発明に係
る磁性粉末を用いることによって、高い記録密度と再生
出力を有する磁気記録媒体を製造することができる。
(Function) In the magnetic powder according to the present invention, a part of Fe atoms constituting ferrite is replaced with Co and / or Zn atoms, so that the magnetic powder for magnetic recording has a required coercive force and high saturation magnetization. In addition, since some of the Fe atoms are also replaced by Ni atoms, the temperature coefficient of the coercive force is also close to zero,
Stable against temperature changes. Therefore, by using the magnetic powder according to the present invention, a magnetic recording medium having high recording density and reproduction output can be manufactured.

(実施例) 以下、本発明の実施例について説明する。(Example) Hereinafter, an example of the present invention will be described.

実施例1〜6 化学式、 BaO・n/6{Fe12-x-y-z(Co/Zn)xNiyCzO18−α} で表されるBaフェライトにおいて、CがTi単独およびSn
単独の場合について、各元素の置換量x、y、z、およ
びn、αが第1表に示す値となる組成のBaフェライトを
製造した。
Examples 1 to 6 In the Ba ferrite represented by the chemical formula, BaO · n / 6 {Fe 12-xyz (Co / Zn) x Ni y C z O 18-α }, C is Ti alone and Sn
With respect to the single case, Ba ferrite having a composition in which the substitution amounts x, y, z, n, and α of the respective elements have the values shown in Table 1 was produced.

すなわち、x=1.1、y=0.6、Z=0.7、α=0.50でZ
n原子を含まないCo−Ni−Ti置換体(実施例1)、Co原
子を含まないZn−Ni−Ti置換体(実施例2)およびCo=
0.54/Zn=0.56としたCo−Zn−Ni−Ti置換体(実施例
3)の3種類と、x=0.9(Co=0.5/Zn=0.4)、y=1.
6、z=0.5、α=1.0(実施例4)としたCo−Zn−Ni−T
i置換体と、X=1.10(Co=0.54/Zn=0.56)、y=0.
6、z=0.7、α=0.5(実施例6)としたCo−Zn−Ni−S
n置換体とを、それぞれガラス結晶化法により製造し
た。
That is, if x = 1.1, y = 0.6, Z = 0.7, α = 0.50, Z
Co-Ni-Ti substituent without n atom (Example 1), Zn-Ni-Ti substituent without Co atom (Example 2) and Co =
Three types of Co-Zn-Ni-Ti substitution products (Example 3) with 0.54 / Zn = 0.56, x = 0.9 (Co = 0.5 / Zn = 0.4), y = 1.
6, Co-Zn-Ni-T with z = 0.5, α = 1.0 (Example 4)
i-substitute, X = 1.10 (Co = 0.54 / Zn = 0.56), y = 0.
6, Co-Zn-Ni-S with z = 0.7 and α = 0.5 (Example 6)
The n-substituted product was produced by a glass crystallization method.

製造は先ず、B2O3・BaOガラスに、BaO、Fe2O3、CoO、
ZnO、NiOおよびTiO2の各成分を、前記組成のBaフェライ
トを構成するように調合して加え、1350℃の温度で加熱
して溶融した後、双ロールにより急冷圧延して上記成分
を含む非晶質体(ガラス)を形成した。
Manufacturing first, the B 2 O 3 · BaO glass, BaO, Fe 2 O 3, CoO,
ZnO, each component of NiO and TiO 2, added formulated to constitute a Ba ferrite of the composition, was melted by heating at a temperature of 1350 ° C., non-comprising quench rolled to the above components by a twin roll A crystalline body (glass) was formed.

次に、このガラスを、800℃で4時間加熱することに
より、マトリクス中にCo−Zn−Ni−Ti置換などのBaフェ
ライト結晶を析出させた後、希酢酸および純水で洗浄
し、ガラス形成成分の除去およびBaフェライトの抽出を
行い、さらに乾燥処理を行ってそれぞれの磁性粉末を得
た。
Next, this glass was heated at 800 ° C. for 4 hours to precipitate Ba ferrite crystals such as Co—Zn—Ni—Ti substitution in the matrix, and then washed with dilute acetic acid and pure water to form a glass. The components were removed and the Ba ferrite was extracted, followed by drying treatment to obtain respective magnetic powders.

上記で得られた各磁性粉末は、いずれも平均粒径が約
500Åと微細であった。
Each of the magnetic powders obtained above has an average particle size of about
It was as fine as 500 mm.

比較例1〜7および14 Ni原子の置換量yが、y=0、0.6、1.8でα=0、0.
50において実施例1などの場合とほぼ同じ保磁力(Hc)
が得られるようにxの値を設定して、第1表に示す組成
比を成すBaフェライトのCo−Ti置換体(比較例1)、Co
−Ni−Ti置換体(比較例2)、Co−Zn−Ti置換体(比較
例3)およびCo−Zn−Ni−Ti置換体(比較例4)と、α
=1.10、0.50、z=0.3、2.0の第1表に示す組成比を成
すCo−Zn−Ni−Ti置換体(比較例5および6)と、α=
0.3のCo−Zn−Ni−Sn置換体(比較例7)と、α=0.30
のCo−Zn−Ni−Ti置換体(比較例14)とを、それぞれ実
施例1などの場合と同様にガラス結晶化法により製造し
た。
Comparative Examples 1 to 7 and the substitution amount y of the 14 Ni atom was α = 0, 0.6, 1.8, and α = 0, 0.
Coercive force (Hc) at 50 is almost the same as in Example 1 etc.
The value of x is set so as to obtain a Co-Ti substitute of Ba ferrite having the composition ratio shown in Table 1 (Comparative Example 1),
-Ni-Ti substituent (Comparative Example 2), Co-Zn-Ti substituent (Comparative Example 3) and Co-Zn-Ni-Ti substituent (Comparative Example 4), α
= 1.10, 0.50, z = 0.3, 2.0, a Co-Zn-Ni-Ti substitution product having the composition ratio shown in Table 1 (Comparative Examples 5 and 6);
0.3 of Co-Zn-Ni-Sn substitution (Comparative Example 7) and α = 0.30
And a Co-Zn-Ni-Ti substitution product (Comparative Example 14) were produced by a glass crystallization method in the same manner as in Example 1 and the like.

上記でそれぞれ得た実施例1〜6および比較例1〜7
および14の磁性粉末について、保磁力(Hc)、飽和磁化
(σ)、角型比SQR(σν/σ)、および保磁力の
温度係数(δHc)の値を、それぞれ振動試料式磁力計に
より測定した結果を第2表に示す。
Examples 1 to 6 and Comparative Examples 1 to 7 obtained above, respectively.
The values of the coercive force (Hc), the saturation magnetization (σ s ), the squareness ratio SQR (σ ν / σ s ), and the temperature coefficient of coercive force (δHc) of Table 2 shows the results of the measurements.

なお、実施例6および比較例7はTiの代わりにSnを用
いた場合である。
Note that Example 6 and Comparative Example 7 are cases where Sn was used instead of Ti.

実施例7〜10 化学式、 BaO・n/6{Fe12−x−y−z/2(Co/Zn)xNiyNbz/2
18−α} で表されるBaフェライトにおいて、各元素の置換量x、
y、z、およびn、αが第1表に示す値となる組成のBa
フェライトを製造した。
Examples 7 to 10 Chemical formula, BaO · n / 6 {Fe 12-xy-z / 2 (Co / Zn) x Ni y Nb z / 2
In the Ba ferrite represented by O 18-α量, the substitution amount x of each element,
Ba having a composition in which y, z, and n and α have the values shown in Table 1.
Ferrite was manufactured.

すなわち、x=1.1、y=0.6、z=0.7、α=0.50でZ
n原子を含まないCo−Ni−Nb置換体(実施例7)、Co原
子を含まないZn−Ni−Nb置換体(実施例8)およびCo=
0.54/Zn=0.56としたCo−Zn−Ni−Nb置換体(実施例
9)の3種類と、x=0.9(Co=0.5/Zn=0.4)、y=1.
6、z=0.5、α=1.0(実施例10)としたCo−Zn−Ni−N
b置換体とを、それぞれガラス結晶化法により製造し
た。
That is, when x = 1.1, y = 0.6, z = 0.7 and α = 0.50, Z
Co-Ni-Nb substitution not containing n atom (Example 7), Zn-Ni-Nb substitution not containing Co atom (Example 8) and Co =
Three types of Co-Zn-Ni-Nb substituted products (Example 9) with 0.54 / Zn = 0.56, x = 0.9 (Co = 0.5 / Zn = 0.4), y = 1.
6, Co-Zn-Ni-N with z = 0.5 and α = 1.0 (Example 10)
b-substituted product was produced by a glass crystallization method.

製造は先ず、B2O3・BaOガラスに、BaO、Fe2O3、CoO、
ZnO、NiOおよびNb2O5の各成分を、前記組成のBaフェラ
イトを構成するように調合して加え、1350℃の温度で加
熱して溶融した後、双ロールにより急冷圧延して上記成
分を含む非晶質体(ガラス)を形成した。
Manufacturing first, the B 2 O 3 · BaO glass, BaO, Fe 2 O 3, CoO,
Each component of ZnO, NiO and Nb 2 O 5 was mixed and added so as to constitute the Ba ferrite of the above composition, heated and melted at a temperature of 1350 ° C., and then quenched and rolled with twin rolls to obtain the above components. An amorphous body (glass) containing the same was formed.

次に、このガラスを、800℃で4時間加熱することに
より、マトリクス中にCo−Zn−Ni−Nb置換などのBaフェ
ライト結晶を析出させた後、希酢酸および純水で洗浄
し、ガラス形成成分の除去およびBaフェライトの抽出を
行い、さらに乾燥処理を行ってそれぞれの磁性粉末を得
た。
Next, this glass is heated at 800 ° C. for 4 hours to precipitate Ba ferrite crystals such as Co—Zn—Ni—Nb substitution in the matrix, and then washed with dilute acetic acid and pure water to form a glass. The components were removed and the Ba ferrite was extracted, followed by drying treatment to obtain respective magnetic powders.

上記で得られた各磁性粉末は、いずれも平均粒径が約
500Åと微細であった。
Each of the magnetic powders obtained above has an average particle size of about
It was as fine as 500 mm.

比較例8〜13、15 Ni原子の置換量yが、y=0、0.6、1.8でα=0、0.
50において前記実施例7などの場合とほぼ同じ保磁力
(Hc)が得られるようにxの値を設定して、第3表に示
す組成比を成すBaフェライトのCo−Nb置換体(比較例
8)、Co−Ni−Nb置換体(比較例9)、Co−Zn−Nb置換
体(比較例10)およびCo−Zn−Ni−Nb置換体(比較例1
1)と、α=1.10、0.50、0.30、z=0.3、2.0、0.7の第
3表に示す組成比を成すCo−Zn−Ni−Nb置換体(比較例
12、13および15)とを、それぞれ前記実施例7などの場
合と同様にガラス結晶化法により製造した。
Comparative Examples 8 to 13, the substitution amount y of the 15 Ni atom is y = 0, 0.6, 1.8 and α = 0, 0.
In Example 50, the value of x was set so as to obtain substantially the same coercive force (Hc) as in Example 7 and the like, and the Co-Nb-substituted Ba ferrite having the composition ratio shown in Table 3 (Comparative Example) 8), Co-Ni-Nb-substituted product (Comparative Example 9), Co-Zn-Nb-substituted product (Comparative Example 10), and Co-Zn-Ni-Nb-substituted product (Comparative Example 1)
1) and a Co—Zn—Ni—Nb-substituted product having a composition ratio shown in Table 3 where α = 1.10, 0.50, 0.30, z = 0.3, 2.0, 0.7 (Comparative Example
12, 13 and 15) were produced by the glass crystallization method in the same manner as in Example 7 and the like.

上記でそれぞれ得た実施例7〜10および比較例8〜1
3、15の磁性粉末について、保磁力(Hc)、飽和磁化
(σ)、角型比SQR(σνσ)、および保磁力の温
度係数(δHc)の値を、それぞれ振動試料式磁力計によ
り測定した結果を第4表に示す。
Examples 7 to 10 and Comparative Examples 8 to 1 obtained above, respectively.
For the magnetic powders of Nos. 3 and 15, the values of coercive force (Hc), saturation magnetization (σ s ), squareness ratio SQR (σ ν σ s ), and temperature coefficient of coercive force (δHc) were measured using the vibrating sample magnetic force, respectively. Table 4 shows the results of the measurements.

第2表および第4表からわかるように、本発明に係る
各実施例の磁性粉末は、高密度記録用として適当な大き
さの保磁力を有するとともに、飽和磁化も56〜59emu/g
と高い値を示す。また、保磁力の温度係数は−2〜+2O
e/℃程度と零に近く、温度変化に対して安定しているば
かりでなく、充分に大きな角型比を有している。
As can be seen from Tables 2 and 4, the magnetic powders of the examples according to the present invention have a coercive force of an appropriate magnitude for high-density recording and a saturation magnetization of 56 to 59 emu / g.
Shows a high value. The temperature coefficient of the coercive force is -2 to +20.
It is close to zero, e / ° C., and is not only stable against temperature changes, but also has a sufficiently large squareness ratio.

したがって、本発明に係るBaフェライト粉末は、バイ
ンダ樹脂や潤滑剤、分散剤、研磨剤などとともに混合し
磁性塗料を調製し、たとえばポリエチレンテレフタレー
トフィルムなどの非磁性支持体面に塗布し、配向処理、
乾燥処理、カレンダー処理など施こして、磁気記録媒体
を構成した場合、常にすぐれた記録再生特性を保持・発
揮することになる。
Accordingly, the Ba ferrite powder according to the present invention is mixed with a binder resin, a lubricant, a dispersant, and an abrasive to prepare a magnetic paint, for example, applied to a non-magnetic support surface such as a polyethylene terephthalate film, and subjected to an orientation treatment.
When a magnetic recording medium is formed by performing a drying process, a calendering process, or the like, excellent recording / reproducing characteristics are always maintained and exhibited.

[発明の効果] 以上の説明からも明らかなように、本発明に係る磁性
粉末は、粒径が微細で高密度磁気記録が可能であるうえ
に、所要の保磁力と飽和磁化を有している。また、保磁
力は温度変化に対して安定であるため、記録媒体とした
ときオーバーライト特性の低下が防止されるばかりでな
く、高いS/N特性と再生出力を兼ね備えた磁気記録媒体
を得ることができる。
[Effects of the Invention] As is clear from the above description, the magnetic powder according to the present invention has a fine particle diameter, enables high-density magnetic recording, and has a required coercive force and saturation magnetization. I have. In addition, since the coercive force is stable against temperature changes, when a recording medium is used, a decrease in overwrite characteristics is prevented, and a magnetic recording medium having both high S / N characteristics and reproduction output is obtained. Can be.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井戸 忠 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合研究所内 (72)発明者 久保 修 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合研究所内 (56)参考文献 特開 昭63−307122(JP,A) 特開 平1−100027(JP,A) 特開 昭62−216920(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tadashi Ido 1 Toshiba-cho, Komukai-shi, Kawasaki-shi, Kanagawa Prefecture Inside Toshiba Research Institute, Inc. (72) Inventor Osamu Kubo 1 Toshiba-cho, Komukai-ku, Kawasaki-shi, Kanagawa Address Toshiba Research Institute, Inc. (56) References JP-A-63-307122 (JP, A) JP-A-1-100027 (JP, A) JP-A-62-216920 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式、 AO・n/6(Fe12-x-y-zBxNiyCzO18−α) もしくは AO・n/6(Fe12−x−y−z/2BxNiyC′z/218−α) (式中、AはBa、Sr、CaおよびPbの中から選ばれた少な
くとも1種の元素、BはCo、Znの中から選ばれた少なく
とも1種の2価の元素、CはTi、Sn、Geの中から選ばれ
た少なくとも1種の4価の元素、C′はNb、V、Ta、Sb
の中から選ばれた少なくとも1種の5価の元素をそれぞ
れ表し、また、α=(x+y−z)/2、7.2<n≦12.
0、0.5≦x≦1.5、0.2≦y≦1.6、0.7≦x+y≦2.7、
0≦z<2.0、0.34<α≦1.0)で示される六方晶系フェ
ライト粉末から成ることを特徴とする磁気記録用磁性粉
末。
(1) AO · n / 6 (Fe 12-xyz B x Ni y C z O 18-α ) or AO · n / 6 (Fe 12-x-y-z / 2 B x Ni y) C ′ z / 2 O 18-α ) wherein A is at least one element selected from Ba, Sr, Ca and Pb, and B is at least one element selected from Co and Zn. C is a divalent element, C is at least one tetravalent element selected from Ti, Sn, and Ge; and C 'is Nb, V, Ta, Sb.
Represents at least one pentavalent element selected from the group consisting of α = (x + yz) / 2, 7.2 <n ≦ 12.
0, 0.5 ≦ x ≦ 1.5, 0.2 ≦ y ≦ 1.6, 0.7 ≦ x + y ≦ 2.7,
A magnetic powder for magnetic recording, comprising a hexagonal ferrite powder represented by the following formula: 0 ≦ z <2.0, 0.34 <α ≦ 1.0).
JP2327122A 1990-10-11 1990-11-28 Magnetic powder for magnetic recording Expired - Lifetime JP2735382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2327122A JP2735382B2 (en) 1990-10-11 1990-11-28 Magnetic powder for magnetic recording

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27269190 1990-10-11
JP2-272691 1990-10-11
JP2327122A JP2735382B2 (en) 1990-10-11 1990-11-28 Magnetic powder for magnetic recording

Publications (2)

Publication Number Publication Date
JPH04214605A JPH04214605A (en) 1992-08-05
JP2735382B2 true JP2735382B2 (en) 1998-04-02

Family

ID=26550333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2327122A Expired - Lifetime JP2735382B2 (en) 1990-10-11 1990-11-28 Magnetic powder for magnetic recording

Country Status (1)

Country Link
JP (1) JP2735382B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343617A (en) * 2001-05-17 2002-11-29 Sony Corp Magnetic powder and magnetic recording medium using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216920A (en) * 1986-03-14 1987-09-24 Dowa Mining Co Ltd Magnetoplumbite type ferrite powder and its production
JPH06104576B2 (en) * 1987-06-05 1994-12-21 宇部興産株式会社 Barium ferrite magnetic powder and method for producing the same
JPH0723223B2 (en) * 1987-10-13 1995-03-15 宇部興産株式会社 Method for producing plate-shaped barium ferrite magnetic powder for magnetic recording

Also Published As

Publication number Publication date
JPH04214605A (en) 1992-08-05

Similar Documents

Publication Publication Date Title
US4636433A (en) Magnetic powders for magnetic recording media and magnetic recording media employing said magnetic powder therein
JP2735382B2 (en) Magnetic powder for magnetic recording
JP2659940B2 (en) Magnetic powder for high-density magnetic recording and method for producing the same
KR910006148B1 (en) Magnetic powder for high density recording and the medium thereof
JPS61133020A (en) Magnetic recording medium
US5686137A (en) Method of providing hexagonal ferrite magnetic powder with enhanced coercive force stability
KR900004750B1 (en) Magnetic material for high density magnetic recording and medium of its using
JP2585243B2 (en) Magnetic powder for high density magnetic recording and magnetic recording medium using the same
JP2956841B2 (en) Magnetic powder for magnetic recording
JP2723239B2 (en) Magnetic powder for magnetic recording
JP2635568B2 (en) Magnetic powder for high density magnetic recording and magnetic recording medium using the same
JPS63193507A (en) Magnetic powder for high density magnetic recording and magnetic recording medium using the powder
JPS63193506A (en) Magnetic powder for high density magnetic recording and magnetic recording medium using the powder
EP0526661B1 (en) Magnetic powder for magnetic recording and magnetic recording medium made thereof
JPH0191320A (en) Magnetic recording medium
JPH08181012A (en) Magnetic powder for high-density magnetic recording and its manufacturing method
JP2807278B2 (en) Method for producing magnetic powder for magnetic recording medium
JPH01164008A (en) Magnetic powder for high density magnetic recording and magnetic recording medium employing same
JPH04236404A (en) Ferrite magnetic powder and magnetic recording medium using same
JPS6255904A (en) Hexagonal system ferrite magnetic powder
JP2002025050A (en) Magnetic recording medium and method for manufacturing the same
JPH04337521A (en) Magnetic powder for magnetic recording medium and magnetic recording medium formed by using the powder
JPH0785301B2 (en) Magnetic powder for magnetic recording and magnetic recording medium using the same
JPH0223601A (en) Magnetic powder for magnetic recording
JPH0459619A (en) Magnetic powder for magnetic recording and magnetic recording medium therefrom