JP2734478B2 - Pressure pulsation absorber - Google Patents
Pressure pulsation absorberInfo
- Publication number
- JP2734478B2 JP2734478B2 JP1309382A JP30938289A JP2734478B2 JP 2734478 B2 JP2734478 B2 JP 2734478B2 JP 1309382 A JP1309382 A JP 1309382A JP 30938289 A JP30938289 A JP 30938289A JP 2734478 B2 JP2734478 B2 JP 2734478B2
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- liquid
- gas
- gas container
- pressure pulsation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Pipe Accessories (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば水や油を移送するポンプなどの配管
に適用される圧力脈動吸収装置に関するものである。Description: TECHNICAL FIELD The present invention relates to a pressure pulsation absorber applied to a pipe such as a pump for transferring water or oil.
第7図は従来の圧力脈動吸収装置の構造説明図であ
る。図において、従来の圧力脈動吸収装置には同図
(a)に示すサイドブランチ(枝管)10、同部(b)に
示す拡大管11、同図(c)に示すレサーバタンク12、同
図(d)に示すアキュムレータ13などがあり、何れも配
管1に比べてかなり大きな形状で、配管1内における液
体5の圧力脈動を吸収して減衰させる。FIG. 7 is a structural explanatory view of a conventional pressure pulsation absorbing device. In the figure, the conventional pressure pulsation absorbing device includes a side branch (branch pipe) 10 shown in FIG. 1A, an enlarged pipe 11 shown in FIG. 2B, a reservoir tank 12 shown in FIG. There are accumulators 13 and the like shown in FIG. 2D, each of which has a considerably larger shape than the pipe 1, and absorbs and attenuates the pressure pulsation of the liquid 5 in the pipe 1.
上記のような従来の圧力脈動吸収装置において、第7
図(a)に示すサイドブランチ10は、チューニングされ
る周波数の幅が狭く、僅かな脈動の変化で大幅に吸収量
が異る。また、同図(b)に示す拡大管11は、大きな拡
大比をとらないと吸収効果が得られず、大形化,圧力損
失の増加,流れによる2次騒音の発生などの併害を伴
う。また、同図(c)に示すリザーバタンク12は容量が
大きく、設置場所が限定される。また、同図(d)に示
すアキュムレータ13は大きく、高価で、また配管1内の
1部にのみ作用するので、吸収効果に限界がある。In the conventional pressure pulsation absorbing device as described above,
The side branch 10 shown in FIG. 7A has a narrow frequency range to be tuned, and the amount of absorption greatly differs due to a slight change in pulsation. In addition, the expansion pipe 11 shown in FIG. 3B cannot obtain the absorption effect unless a large expansion ratio is taken, and is accompanied by such complications as an increase in size, an increase in pressure loss, and generation of secondary noise due to flow. . Further, the reservoir tank 12 shown in FIG. 3C has a large capacity, and the installation place is limited. Further, the accumulator 13 shown in FIG. 3D is large and expensive, and acts only on a part of the pipe 1, so that the absorption effect is limited.
本発明に係る圧力脈動吸収装置は上記課題の解決を目
的にしており、配管に上記配管内の液体と接して装着さ
れ上記配管内の液体と音響特性インピーダンスが略一致
する柔軟性を有する材料で造られた気体容器と、該気体
容器の内部に上記配管内の液体と圧力をバランスして封
入された気体と、多孔材により造られて上記気体容器と
上記配管内の液体との間に介装され上記気体容器の形状
を保つ多孔管とを備えた構成を特徴としている。The pressure pulsation absorbing device according to the present invention is intended to solve the above-mentioned problem, and is a material having flexibility in which the acoustic characteristic impedance substantially matches the liquid in the pipe, which is attached to the pipe in contact with the liquid in the pipe. A gas container, a gas sealed inside the gas container with the liquid in the pipe balanced with pressure, and an intervening gas between the gas container and the liquid in the pipe made of a porous material. And a perforated tube for maintaining the shape of the gas container.
即ち、本発明に係る圧力脈動吸収装置においては、内
部に気体が配管内の液体と圧力をバランスして封入され
配管内の液体と音響特性インピーダンスが略一致する柔
軟性を有する材料で造られた気体容器が配管に配管内の
液体と接して装着され、多孔材により造られ気体容器と
配管内の液体との間に介装された多孔管により形状を保
たれるようになっており、多孔材により造られ気体容器
と配管内の液体との間に介装された多孔管により気体容
器が形状を保たれることにより、気体容器の配管内の液
体と音響特性インピーダンスが略一致する非常に柔軟性
を有する材料を使用することができる。この気体容器内
に気体が配管内の液体と圧力をバランスして封入される
とともに、配管内の液体と気体容器内の気体とが音響特
性インピーダンスが略一致する柔軟性を有する材料を介
して接していることにより、配管内の液体と気体容器内
の気体との間が極く理想的な自由境界面に近づく。これ
により、配管内の液体と気体容器内の気体との力が極く
理想的な自由境界面で相互に作用し合って気体容器内の
気体が配管内における液体の圧力脈動を吸収して減衰さ
せる。That is, in the pressure pulsation absorbing device according to the present invention, the gas is filled in the inside of the pipe while balancing the pressure with the liquid in the pipe, and is made of a flexible material whose acoustic characteristic impedance substantially matches that of the liquid in the pipe. The gas container is attached to the pipe in contact with the liquid in the pipe, and the shape is maintained by a porous pipe made of a porous material and interposed between the gas container and the liquid in the pipe. By maintaining the shape of the gas container with a porous tube made of material and interposed between the gas container and the liquid in the pipe, the acoustic characteristic impedance of the liquid in the pipe of the gas container substantially matches the acoustic characteristic impedance. A flexible material can be used. In this gas container, the gas is sealed in a balanced manner with the liquid in the pipe and the pressure, and the liquid in the pipe and the gas in the gas container come into contact with each other via a flexible material whose acoustic characteristic impedance substantially matches. As a result, the space between the liquid in the pipe and the gas in the gas container approaches an extremely ideal free boundary surface. As a result, the force between the liquid in the pipe and the gas in the gas container interacts at an extremely ideal free boundary surface, and the gas in the gas container absorbs and attenuates the pressure pulsation of the liquid in the pipe. Let it.
第1図乃至第4図はそれぞれ本発明の第一乃至第四の
実施例に係る圧力脈動吸収装置の構造説明図、第5図お
よび第6図はこれらの作用説明図である。第1図におい
て、第一の実施例に係る圧力脈動吸収装置は図に示すよ
うに、配管1を拡大させたケーシング2に対して配管1
と同一径の多孔板或いは多孔質金属など通気性のある材
料で作られた多孔管4が設置され、この多孔管4とケー
シング2との間にできた環状部にゴムなど柔軟で延性に
富む材料で作られた気体容器3が設置されている。気体
容器3には気体封入栓7が設けられており、ここから気
体6が封入されている。FIGS. 1 to 4 are explanatory views of the structure of the pressure pulsation absorbing device according to the first to fourth embodiments of the present invention, and FIGS. 5 and 6 are explanatory views of their operation. In FIG. 1, the pressure pulsation absorbing device according to the first embodiment, as shown in FIG.
A porous tube 4 made of a gas permeable material such as a porous plate or a porous metal having the same diameter as that of the porous tube 4 is provided. An annular portion formed between the porous tube 4 and the casing 2 is flexible and highly ductile such as rubber. A gas container 3 made of a material is provided. The gas container 3 is provided with a gas sealing plug 7 from which the gas 6 is sealed.
第2図において、第二の実施例に係る圧力脈動吸収装
置は図に示すように、配管1を拡大させずに多孔板或い
は多孔質金属などで作られた多孔管4の径を絞り、第一
の実施例と同様に液体柱の周囲がゴムなどの柔軟で延性
に富む材料で製られた気体容器3と接するようにしてい
る。In FIG. 2, the pressure pulsation absorber according to the second embodiment reduces the diameter of a perforated tube 4 made of a perforated plate or a porous metal without enlarging the pipe 1, as shown in FIG. As in the first embodiment, the periphery of the liquid column is in contact with the gas container 3 made of a flexible and highly ductile material such as rubber.
第3図において、第三の実施例に係る圧力脈動吸収装
置は図に示すように、多孔板或いは多孔質金属などで作
られた多孔管4を筒状にしてその中に予め気体6を封入
した気体容器3を入れ、それを配管1内に設置してい
る。In FIG. 3, the pressure pulsation absorber according to the third embodiment, as shown in the figure, forms a perforated tube 4 made of a perforated plate or a porous metal into a tubular shape, and fills a gas 6 therein in advance. The filled gas container 3 is placed in the pipe 1.
第4図において、第四の実施例に係る圧力脈動吸収装
置は図に示すように、配管1の一側部に多孔管4を介し
てポケット2を設け、その中に気体容器3を設けてお
り、第三の実施例と同様に液体柱の一部がゴムなどの柔
軟で延性に富む材料を介して気体6と接するようにして
いる。In FIG. 4, the pressure pulsation absorbing device according to the fourth embodiment has a pocket 2 provided on one side of a pipe 1 via a porous tube 4 and a gas container 3 provided therein, as shown in the figure. As in the third embodiment, a part of the liquid column is brought into contact with the gas 6 via a flexible and highly ductile material such as rubber.
なお、上記の4実施例における気体容器3の材料とし
ては、配管1内の液体5と音響特性インピーダンスが殆
んど一致する特性をもつ柔軟で延性に富むものが使用さ
れている。配管1内の液体5が水の場合にはρCゴムが
最適である。As the material of the gas container 3 in the above-described four embodiments, a flexible and highly ductile material having a characteristic whose acoustic characteristic impedance almost matches that of the liquid 5 in the pipe 1 is used. When the liquid 5 in the pipe 1 is water, ρC rubber is optimal.
このように、上記の第一および第二の実施例に係る圧
力脈動吸収装置は、ゴムのような柔軟で延性に富み配管
1内の液体5と音響特性インピーダンスが殆ど一致する
材料で作られた環状の気体容器3を配管1の内壁に内接
して設置し、この気体容器3の内部に配管1内を通る液
体5と圧力がバランスするように気体6を充填すること
により、液体柱の周わりに圧縮性に富む気体6を配置す
るようにし、また気体容器3を多孔板や通気性を有する
多孔質の材料で作られた多孔管4の中に入れることによ
り、気体容器3の形状を保つとともに液体5の周囲が気
体6で包まれるようになっている。従って、配管1内の
液体5の圧力脈動は、後述の理由により最小のcut off
周波数以下の低周波数領域で大幅に減衰する。その減衰
量は気体容器3の長さに比例し、必要に応じて自由に調
節できる。また、液体5と気体6との境界はゴムなど柔
軟で延性に富み配管1内の液体5と音響特性インピーダ
ンスが殆ど一致する材料によって離隔されていて液体5
中に気体6が混合することはないが、力は相互に作用し
合って自由境界面に近いものが得られる。さらに、多孔
板などで製られた多孔管4内に気体容器3を挿入するこ
とにより、液体5の圧力が下がっても気体6の圧力は多
孔管4で支えられ、気体容器3が破裂することはない。
このため、気体容器3は配管1内の液体5と音響特性イ
ンピーダンスが殆ど一致する非常に柔軟な材料を使用す
ることができ、極く理想的な自由境界面の条件に近付け
ることができる。また、液体5の圧力が設定値以上に上
昇した場合は、気体容器3は縮むだけであり、特に問題
は起こらない。ポンプなどの圧力脈動は一般に周波数が
低く、非常に効果的に減衰できる。仮に、液体柱の周わ
りを気体6が包む理想的な自由境界面の条件が実現でき
れば、理論的には十分に低い周波数領域で配管1の直径
相当の長さ当り約38dbと大きな圧力脈動の減衰が得られ
る。実際には種々の制約があるためにここまで減音はし
ないが、最小のcut off周波数以下の総ての周波数で減
衰が期待できる。As described above, the pressure pulsation absorbers according to the first and second embodiments are made of a material such as rubber which is flexible and highly ductile, and whose acoustic characteristic impedance almost matches that of the liquid 5 in the pipe 1. An annular gas container 3 is installed in contact with the inner wall of the pipe 1, and the inside of the gas container 3 is filled with a gas 6 so that the pressure of the liquid 5 passing through the inside of the pipe 1 is balanced with that of the liquid column 3. Instead, the gas 6 rich in compressibility is arranged, and the shape of the gas container 3 is maintained by putting the gas container 3 in a porous plate or a porous tube 4 made of a porous material having air permeability. At the same time, the periphery of the liquid 5 is surrounded by the gas 6. Therefore, the pressure pulsation of the liquid 5 in the pipe 1 is minimized by the cut-off for the reason described later.
Significantly attenuates in the low frequency range below the frequency. The amount of attenuation is proportional to the length of the gas container 3 and can be freely adjusted as needed. The boundary between the liquid 5 and the gas 6 is separated by a material such as rubber which is flexible and highly ductile and has almost the same acoustic characteristic impedance as the liquid 5 in the pipe 1.
The gas 6 does not mix therein, but the forces interact with each other to obtain something close to the free boundary surface. Further, by inserting the gas container 3 into the perforated tube 4 made of a perforated plate or the like, even if the pressure of the liquid 5 decreases, the pressure of the gas 6 is supported by the perforated tube 4 and the gas container 3 is ruptured. There is no.
Therefore, the gas container 3 can be made of a very flexible material whose acoustic characteristic impedance almost matches that of the liquid 5 in the pipe 1, and can be brought close to an extremely ideal free boundary condition. When the pressure of the liquid 5 rises above the set value, the gas container 3 only shrinks, and no particular problem occurs. Pressure pulsations in pumps and the like are generally low in frequency and can be damped very effectively. If the ideal free boundary condition in which the gas 6 wraps around the liquid column can be realized, theoretically, a large pressure pulsation of about 38 db per length corresponding to the diameter of the pipe 1 in a sufficiently low frequency region. A damping is obtained. Actually, sound reduction is not performed so far due to various restrictions, but attenuation can be expected at all frequencies below the minimum cutoff frequency.
仮に、液体柱の周わりを気体6が包む理想的な自由境
界面の条件が実現できたとする。この場合、第5図に示
すような液体柱の中の圧力脈動は配管の断面内で特定の
圧力脈動モードを形成して伝播していく。配管内の任意
の点(x,y,z)で(m,n)モードを形成する音圧Pmn(x,
y,z) は次式で表わされる。It is assumed that an ideal free boundary surface condition in which the gas 6 wraps around the liquid column is realized. In this case, the pressure pulsation in the liquid column as shown in FIG. 5 propagates while forming a specific pressure pulsation mode in the cross section of the pipe. A sound pressure P mn (x, x) that forms the (m, n) mode at any point (x, y, z) in the pipe
y, z) is expressed by the following equation.
ここで、ly,lzはそれぞれy方向,z方向の配管の断面
寸法、Amnはx=0断面における振幅、gym,gznはそれぞ
れy方向,z方向のm次,n次の固有値で、配管壁の境界条
件によって求まる。ωは角周波数、tは時刻、cは音速
である。τmnは(m,n)モードを形成してx方向に伝播
する圧力脈動の透過係数で、次式で与えられる。 Here, l y and l z are the cross-sectional dimensions of the pipe in the y direction and z direction, respectively, A mn is the amplitude in the x = 0 cross section, and g ym and g zn are the m order and the n th order in the y direction and z direction, respectively. Eigenvalue, determined by the boundary conditions of the pipe wall. ω is angular frequency, t is time, and c is sound speed. τ mn is a transmission coefficient of a pressure pulsation that forms the (m, n) mode and propagates in the x direction, and is given by the following equation.
ここで、複号−は下流方向への伝播を、+は上流方向
への伝播を表わす。λは波長である。τmnの根号内が正
の場合はx方向に圧力脈動の減衰は無いが、複素数また
は純虚数のときはx方向に減衰する。単位長さ当りの減
衰量Attmnは次式で表わされる。 Here, the double sign-indicates propagation in the downstream direction, and + indicates propagation in the upstream direction. λ is the wavelength. When the root of τ mn is positive, the pressure pulsation is not attenuated in the x direction, but is attenuated in the x direction when it is a complex number or a pure imaginary number. Attenuation Att mn per unit length is expressed by the following equation.
ここで、Im(τmn)はアーキュメントの虚数部を示
す。gym,gznは配管壁の表面インピーダンスを自由境界
面の条件とした次式の解である。 Here, I m (τmn) indicates the imaginary part of the archive. g ym and g zn are the solutions of the following equations where the surface impedance of the pipe wall is a condition of the free boundary surface.
ここで、πは円周率、iは虚数単位、ζy,ζzはそ
れぞれy方向、z方向に垂直な配管壁の表面インピーダ
ンスである。通常の銅製やコンクリート製の剛壁の配管
ではζy,ζz→∞となり、 但し、m,n=0,1,2,3・・・ となる。つまり、m=n=0なる解が存在し、また式
(2)からあらゆる波長(周波数)に対してτ001な
る解が存在し、Im(τ00)=0となって式(3)からAt
t00=0なる解が存在する。即ち、どのような周波数に
対しても配管断面内を平面波(配管断面内で音圧ゲイ
ン、位相が一定な音波モード)として減衰することなく
伝播する。 Here, π is a pi, i is an imaginary unit, and y y and z z are surface impedances of the pipe wall perpendicular to the y direction and the z direction, respectively. With ordinary copper or concrete rigid wall piping, y y , ζ z → 、 However, m, n = 0, 1, 2, 3,... That is, there is a solution where m = n = 0, and from equation (2), there is a solution of τ 00 1 for every wavelength (frequency), and I m (τ 00 ) = 0, and the equation (3) ) To At
There is a solution where t 00 = 0. That is, for any frequency, the wave propagates in the cross section of the pipe without attenuation as a plane wave (a sound wave mode in which the sound pressure gain and the phase are constant in the cross section of the pipe).
液体柱の外側が気体で包まれている場合は、気体の音
響特性インピーダンスは液体の音響特性インピーダンス
に比べて非常に小さく、この場合はζy,ζz≒0とな
る。この関係を式(4),(5)に代入すると、 となり、m=0またはn=0なる解は存在しない。こ
の場合の透過係数は次式のようになる。If the outer liquid column is wrapped with a gas, the acoustic characteristic impedance of the gas is very small compared to the acoustic characteristic impedance of the liquid, in this case zeta y, the zeta z ≒ 0. Substituting this relationship into equations (4) and (5) gives And there is no solution where m = 0 or n = 0. The transmission coefficient in this case is as follows.
但し、fは周波数である。前述のように、根号内が≧
0の場合はIm(τmn)=0となって減衰量=0となる
が、根号内が<0の場合はIm(τmn)>0となって減衰
が生じる。つまり、cut off周波数を とすると、f≧fcmnで(m,n)モードは伝播し、f<f
cmnで(m,n)モードは減衰する。液体柱の周囲が気体の
場合は、fcmnの最小値が となる。つまり、f<fc11以下の周波数はどのような
モードも形成できず、減衰してしまうことになる。これ
に対して、液体柱の外側が剛壁の場合にはm=n=0の
解が存在するため、fcmnの最小値はfc00=0となり、総
ての周波数が伝播モードを形成できる。 Here, f is a frequency. As described above, the root symbol is ≧
In the case of 0, I m (τ mn ) = 0 and the amount of attenuation becomes 0. However, when the value in the root is <0, I m (τ mn )> 0 and attenuation occurs. In other words, cut off frequency Then , the (m, n) mode propagates when f ≧ f cmn and f <f
The (m, n) mode attenuates at cmn . If the liquid column is gaseous, the minimum value of f cmn is Becomes In other words, frequencies below f < fc11 cannot form any mode and are attenuated. In contrast, since the outer liquid pillar in the case of a rigid wall is the presence of a solution of m = n = 0, the minimum value of f cmn is f c00 = 0, and the all of the frequencies to form a propagation mode .
因みに、ly=lz=1mの配管で液体を水とすると、C≒
1500m/secであるのでfc11=1061Hzとなり、これ以下の
周波数の圧力脈動は減衰することになる。f=500Hzの
場合について、式(8),(3)を用いて減衰量を求め
ると、Att11=34db/mとなり、理論的には非常に大きな
減衰効果が得られる。なお、参考までに液体柱の周囲が
剛壁の場合を第6図(a)に、また液体柱の周囲が気体
の場合を同図(b)に、それぞれの内部音圧モードを2
次元表示で示す。前者の場合は壁面で音圧腹のモードで
あるのに対し、後者の場合は壁外面で音圧節のモードが
成り立つ必要があり、これからみてもm=0の解は成り
立たないことが容易に推察される。また、本実施例は配
管の断面が矩形の場合について述べたが、断面が円形、
或いはその他任意の形状の場合でも同様である。By the way, assuming that the liquid is water in a pipe of l y = l z = 1m, C ≒
Since it is 1500 m / sec, f c11 = 1061 Hz, and pressure pulsation at a frequency lower than this is attenuated. When f = 500 Hz, when the amount of attenuation is calculated using Expressions (8) and (3), Att 11 = 34 db / m, and a very large attenuation effect is theoretically obtained. For reference, FIG. 6 (a) shows a case where the periphery of the liquid column is a rigid wall, and FIG. 6 (b) shows a case where the periphery of the liquid column is a gas.
Shown in dimensional representation. In the former case, the sound pressure antinode mode is on the wall surface, whereas in the latter case, the sound pressure node mode needs to be established on the outer wall surface. From this, it is easy to see that the solution of m = 0 does not hold. Inferred. Further, the present embodiment has described the case where the cross section of the pipe is rectangular, but the cross section is circular,
Alternatively, the same applies to other arbitrary shapes.
また、第三および第四の実施例に係る圧力脈動吸収装
置は、ゴムのような柔軟で延性に富んだ材料で作られた
柱状の気体容器3を配管1内に挿入し、その気体容器3
の内部に配管1を通る液体5と圧力がバランスするよう
に気体6を充填することにより、液体柱の一部に必ず圧
縮性に富む気体6が配置され、また気体容器3を多孔板
や通気性を有する多孔質の材料で製られた多孔管4の中
に入れることにより、気体容器3の形状を保つとともに
液体5の内部に気体6が存在して液体5と気体6との間
で直接力が作用し合うようになっている。この場合は、
液体5の周囲が気体6で包まれている場合ほど顕著な圧
力脈動の減衰効果は得られないが、液体5中に気体6が
占める割合いに応じて相当の減衰量が得られる。また、
既存の配管1を変更せずに気体容器3を挿入するだけで
実施が可能である。圧力脈動の減衰量は第一および第二
の実施例の場合と同様に気体容器3の長さに比例し、ま
た多孔管4の作用も同様である。Further, the pressure pulsation absorbing device according to the third and fourth embodiments is such that a columnar gas container 3 made of a flexible and highly ductile material such as rubber is inserted into the pipe 1, and the gas container 3
Is filled with gas 6 so that the pressure is balanced with the liquid 5 passing through the pipe 1, so that the gas 6 with high compressibility is always arranged in a part of the liquid column. By placing the gas container 3 in a porous tube 4 made of a porous material having a property, the shape of the gas container 3 is maintained, and the gas 6 exists inside the liquid 5 so that the gas 5 is directly between the liquid 5 and the gas 6. The forces act on each other. in this case,
Although the effect of attenuating the pressure pulsation is not so remarkable as when the liquid 5 is surrounded by the gas 6, a considerable amount of attenuation is obtained according to the ratio of the gas 6 to the liquid 5. Also,
The present invention can be implemented only by inserting the gas container 3 without changing the existing pipe 1. The attenuation of the pressure pulsation is proportional to the length of the gas container 3 as in the first and second embodiments, and the operation of the perforated tube 4 is also the same.
本発明に係る圧力脈動吸収装置は前記の通り構成され
ており、配管内の液体と気体容器内の気体との力が極く
理想的な自由境界面で相互に作用し合って気体容器内の
気体が配管内における液体の圧力脈動を吸収して減衰さ
せるので、小形で安価であるとともに、最小のカットオ
フ周波数以下の総ての周波数で圧力脈動の減衰が行われ
る。The pressure pulsation absorbing device according to the present invention is configured as described above, and the forces between the liquid in the pipe and the gas in the gas container interact with each other at an extremely ideal free boundary surface, and the pressure in the gas container is reduced. Since the gas absorbs and attenuates the pressure pulsation of the liquid in the pipe, the pressure pulsation is attenuated at all frequencies below the minimum cutoff frequency while being small and inexpensive.
第1図乃至第4図はそれぞれ本発明の第一乃至第四の実
施例に係る圧力脈動吸収装置の断面図で、(b)図はそ
れぞれの(a)図におけるb−b断面図、第5図および
第6図はこれらの作用説明図、第7図(a)〜(d)は
それぞれ従来の圧力脈動吸収装置の断面図である。 1……配管、2……ケーシング、3……気体容器、4…
…多孔管、5……液体、6……気体、7……気体封入
栓。1 to 4 are cross-sectional views of a pressure pulsation absorber according to first to fourth embodiments of the present invention. FIG. 1B is a cross-sectional view taken along line bb in FIG. FIGS. 5 and 6 are explanatory views of these operations, and FIGS. 7 (a) to 7 (d) are sectional views of a conventional pressure pulsation absorber. 1 ... piping, 2 ... casing, 3 ... gas container, 4 ...
... Perforated tube, 5... Liquid, 6... Gas, 7.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 学 兵庫県神戸市兵庫区和田崎町1丁目1番 1号 三菱重工業株式会社神戸造船所内 (56)参考文献 特開 昭56−3394(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Manabu Inoue 1-1-1, Wadazaki-cho, Hyogo-ku, Kobe-shi, Hyogo Prefecture Inside Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (56) References A)
Claims (1)
上記配管内の液体と音響特性インピーダンスが略一致す
る柔軟性を有する材料で造られた気体容器と、該気体容
器の内部に上記配管内の液体と圧力をバランスして封入
された気体と、多孔材により造られて上記気体容器と上
記配管内の液体との間に介装され上記気体容器の形状を
保つ多孔管とを備えたことを特徴とする圧力脈動吸収装
置。1. A gas container which is attached to a pipe in contact with a liquid in the pipe and is made of a flexible material whose acoustic characteristic impedance substantially matches that of the liquid in the pipe. A gas filled with the pressure balanced with the liquid in the pipe, and a perforated pipe made of a porous material and interposed between the gas container and the liquid in the pipe to maintain the shape of the gas container. Pressure pulsation absorber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1309382A JP2734478B2 (en) | 1989-11-30 | 1989-11-30 | Pressure pulsation absorber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1309382A JP2734478B2 (en) | 1989-11-30 | 1989-11-30 | Pressure pulsation absorber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03172698A JPH03172698A (en) | 1991-07-26 |
JP2734478B2 true JP2734478B2 (en) | 1998-03-30 |
Family
ID=17992335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1309382A Expired - Lifetime JP2734478B2 (en) | 1989-11-30 | 1989-11-30 | Pressure pulsation absorber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2734478B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1261305B (en) * | 1993-06-22 | 1996-05-14 | Gevipi Ag | VIBRATION AND NOISE DAMPING DEVICE, FOR HYDRAULIC SYSTEMS |
JPH0814469A (en) * | 1994-07-01 | 1996-01-16 | Hitachi Constr Mach Co Ltd | Hydraulic pulsation reducing device |
JP3310911B2 (en) * | 1997-07-09 | 2002-08-05 | 三菱重工業株式会社 | Fluctuation pressure reduction device |
JPWO2005092515A1 (en) * | 2004-03-25 | 2008-02-07 | 東レ株式会社 | Coating apparatus, coating method, and display member obtained therefrom |
JP2010104883A (en) * | 2008-10-29 | 2010-05-13 | Hitachi Maxell Ltd | Coating apparatus and method of manufacturing functional support using the same |
JP5782172B1 (en) * | 2014-10-29 | 2015-09-24 | 中外炉工業株式会社 | Coating apparatus and coating method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS563394A (en) * | 1979-06-18 | 1981-01-14 | Tonen Sekiyukagaku Kk | Damping device of water hammer |
-
1989
- 1989-11-30 JP JP1309382A patent/JP2734478B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03172698A (en) | 1991-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0196812B1 (en) | Hydraulic noise attenuators | |
US3061039A (en) | Fluid line sound-absorbing structures | |
US5094271A (en) | Expandable hose that reduces the hammering produced in hydraulic system by pumps | |
EP1715238B1 (en) | Double throat pulsation dampener for a compressor | |
JP2734478B2 (en) | Pressure pulsation absorber | |
EP0774581B1 (en) | Compressor equipped with an acoustic outlet piece | |
CN108561669B (en) | Elastic back cavity type pipeline vibration damping and noise eliminating device | |
US8132645B2 (en) | Attenuation device particularly pulsation attenuator | |
US3430659A (en) | Pulsation suppressor | |
CN106090523A (en) | A kind of pipeline pressure pulsation attenuator based on mass-spring system | |
CN116665626A (en) | Sound absorbing device for mobile body | |
FI82738C (en) | Device for vibration insulation and / or heat insulation | |
US5004068A (en) | Muffler | |
JP2007240009A (en) | Pressure pulsation absorption device | |
JPS5919780Y2 (en) | pressure pulsation dampener | |
EP0177548B1 (en) | A pulsation damper for absorbing pressure pulsations in a high pressure hydraulic system. | |
JP7333905B2 (en) | pipe silencer | |
JP2005054850A (en) | Hydraulic pulse reducing device | |
JP3291349B2 (en) | Sonar Baffle | |
RU2101605C1 (en) | Noise silencer | |
SU1117428A1 (en) | Pipeline joint | |
JP2007278517A (en) | Pressure pulsation absorbing device | |
CN110770511A (en) | Split muffler assembly with sound absorbing end sides | |
EP0454601B1 (en) | Process for damping acoustic waves in a circuit of circulating fluid | |
JP2007278516A (en) | Pressure pulsation absorbing device |