JP2731257B2 - Manufacturing method of film capacitor - Google Patents
Manufacturing method of film capacitorInfo
- Publication number
- JP2731257B2 JP2731257B2 JP21670089A JP21670089A JP2731257B2 JP 2731257 B2 JP2731257 B2 JP 2731257B2 JP 21670089 A JP21670089 A JP 21670089A JP 21670089 A JP21670089 A JP 21670089A JP 2731257 B2 JP2731257 B2 JP 2731257B2
- Authority
- JP
- Japan
- Prior art keywords
- film capacitor
- film
- electrode lead
- jig
- capacitor body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電子機器,電気機器に用いられるポリプ
ロピレンフィルムコンデンサ等のフィルムコンデンサの
製造方法に関するものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a film capacitor such as a polypropylene film capacitor used for electronic equipment and electric equipment.
近年、電子機器,電気機器に用いられる電子部品は、
小型化,高性能化,低価格化が要望されている。フィル
ムコンデンサにおいてもこれらの要望に対応すべくチッ
プ化,高信頼性化,低価格化のための開発が行われてい
る。In recent years, electronic devices used in electronic devices and electrical devices
There is a demand for miniaturization, high performance, and low cost. In order to meet these demands, film capacitors are also being developed for chip formation, high reliability, and low cost.
従来のフィルムコンデンサの製造方法の一例を第6図
および第7図に示す。有機フィルム21表裏に溶融接着層
22のみ形成した保護フィルム23を平板ボビン24に巻取積
層して保護巻部Bを形成し、つぎに有機フィルム21の表
裏に蒸着した電極金属25の表面に溶融接着層22を有する
両面金属化フィルム26を保護巻部Bにつづけて巻取積層
して容量部Cを形成し、さらに前述の保護フィルム23を
巻取積層して保護巻部B′を形成して積層体27を得る。
上記の方法で平板ボビン24に巻取積層した積層体27を平
板ボビン24の片面において巻取方向と直角に切断したフ
ィルムコンデンサ素子板28の拡大断面図を第7図に示
す。保護部B,容量部C,保護部B′が平板ボビン24の片面
側より順に巻取積層されている。図中Dの一点鎖線の位
置で切断分割したものがフィルムコンデンサ素体31とな
り、切断分割された面が電極引き出し部となる。また切
断分割された両側の部分は、製品となるフィルムコンデ
ンサの容量に寄与しない非容量部29で、この非容量部29
には積層された電極金属25の端部が露出し、電極を引き
出すために有機フィルム21上の溶融接着層22に隙間30が
形成してある。この隙間30の幅は製造技術上、最小でも
1mm幅となり、各フィルムコンデンサ素体31の中に非容
量部29の占める幅寸法が必然的に2mm以上となる。また
フィルムコンデンサ素子板28の分割幅を小さくして製品
の小型化を図っても、フィルムコンデンサ素体31の中に
占める非容量部29の幅が小さくならず製品小型化の障害
となっていた。また非容量部29の幅を小さく形成するに
は、製造設備の高精度化が不可欠であり技術的難易度が
高く、巻取積層の精度不良により歩留が低下して生産性
が悪く、設備コストが高くなるという問題が有る。6 and 7 show an example of a conventional method for manufacturing a film capacitor. Fused adhesive layer on both sides of organic film 21
A protective film 23 formed only by 22 is wound and laminated on a flat bobbin 24 to form a protective winding portion B, and then a double-sided metallization having a molten adhesive layer 22 on the surface of an electrode metal 25 deposited on the front and back of the organic film 21 is formed. The film 26 is wound and laminated following the protective winding portion B to form the capacitance portion C, and the above-described protective film 23 is rolled and laminated to form the protective winding portion B ', thereby obtaining the laminate 27.
FIG. 7 is an enlarged cross-sectional view of the film capacitor element plate 28 obtained by cutting the laminated body 27 wound and laminated on the flat bobbin 24 by the above-described method on one surface of the flat bobbin 24 at right angles to the winding direction. The protection portion B, the capacitance portion C, and the protection portion B 'are sequentially wound and laminated from one side of the flat bobbin 24. The one cut and divided at the position of the dashed line D in the figure becomes the film capacitor body 31, and the cut and divided surface becomes the electrode lead portion. The portions on both sides cut and divided are non-capacitance portions 29 that do not contribute to the capacity of the film capacitor to be a product.
The end of the laminated electrode metal 25 is exposed, and a gap 30 is formed in the molten adhesive layer 22 on the organic film 21 to extract the electrode. The width of the gap 30 is at least the minimum in terms of manufacturing technology.
The width is 1 mm, and the width occupied by the non-capacitance portion 29 in each film capacitor body 31 is necessarily 2 mm or more. Also, even if the division width of the film capacitor element plate 28 is reduced to reduce the size of the product, the width of the non-capacitance portion 29 occupying the film capacitor body 31 is not reduced, which is an obstacle to miniaturization of the product. . In addition, in order to form the non-capacitance portion 29 with a small width, it is essential to increase the precision of the manufacturing equipment, and the technical difficulty is high. There is a problem that the cost increases.
そこで、フィルムコンデンサ素体31の電極引き出し部
32の有機材料を化学的に選択除去処理した後、電極を形
成する方法が提案されている。第8図から第11図にその
提案例のフィルムコンデンサの製造方法の一例を示す。
有機フィルムの片面に電極金属を蒸着し、その上に溶融
接着層を有する片面金属化フィルム26′を平板ボビン24
に巻取積層する(第8図(a))。つぎに得られた片面
金属化フィルム26′の積層体27′を熱板によりヒートプ
レスし、片面金属化フィルム26′の層間は溶融接着層に
より密着される(第8図(b))。片面金属化フィルム
26′の積層体27′は刃物等により平板ボビン24からボビ
ン分離され、表裏2枚のフィルムコンデンサ素子板28′
が得られる(第8図(c))。さらに得られたフィルム
コンデンサ素子板28′は巻取時の長手方向に所定の寸法
に刃物等により分割スリットされ、フィルムコンデンサ
素体31′を得る(第8図(d))。Therefore, the electrode lead-out part of the film capacitor body 31
There has been proposed a method of forming electrodes after chemically removing 32 organic materials. 8 to 11 show an example of a method of manufacturing the proposed film capacitor.
Electrode metal is vapor-deposited on one side of the organic film, and a single-sided metallized film 26 'having a molten adhesive layer
(FIG. 8 (a)). Next, the obtained laminated body 27 'of the single-sided metallized film 26' is heat-pressed with a hot plate, and the interlayers of the single-sided metallized film 26 'are adhered to each other by a molten adhesive layer (FIG. 8 (b)). Single-sided metallized film
The laminate 27 'of 26' is bobbin separated from the flat bobbin 24 by a cutter or the like, and the two film capacitor element plates 28 '
Is obtained (FIG. 8 (c)). Further, the obtained film capacitor element plate 28 'is slit into predetermined lengths by a knife or the like in the longitudinal direction at the time of winding to obtain a film capacitor element body 31' (FIG. 8 (d)).
上記の方法で得られたフィルムコンデンサ素子板28′
の拡大断面図を第9図に示す。21は有機フィルム、25は
有機フィルム21に蒸着した電極金属、33は有機フィルム
21の長さ方向に伸びる筋状のマージン、22は溶融接着
層、29′は非容量部である。巻取積層されたフィルムコ
ンデンサ素子板28′の下部3層と上部2層の片面金属化
フィルム26′は、マージン33が厚さ方向の同一位置に形
成してあり製品となるフィルムコンデンサの容量には寄
与しない部分の層でフィルムコンデンサ素体31′の補強
層となる。また図中の一点鎖線Eはフィルムコンデンサ
素体31′に分割するスリット位置である。第9図(b)
はこれにより分割されたフィルムコンデンサ素体31′の
拡大断面図である。図中矢印面がフィルムコンデンサ素
体31′の電極引き出し部32である。Film capacitor element plate 28 'obtained by the above method
9 is an enlarged sectional view of FIG. 21 is an organic film, 25 is an electrode metal deposited on the organic film 21, 33 is an organic film
A streak-like margin extending in the length direction of 21, 22 is a fusion bonding layer, and 29 ′ is a non-capacity part. The single-sided metallized film 26 'of the lower three layers and the upper two layers of the rolled and laminated film capacitor element plate 28' has a margin 33 formed at the same position in the thickness direction, so that the capacity of the film capacitor becomes a product. Is a layer of a portion that does not contribute and becomes a reinforcing layer of the film capacitor body 31 '. The dashed-dotted line E in the figure is a slit position for dividing the film capacitor body 31 '. FIG. 9 (b)
Is an enlarged sectional view of the film capacitor body 31 'divided by this. The arrow face in the figure is the electrode lead-out portion 32 of the film capacitor body 31 '.
つぎにフィルムコンデンサ素体31′の電極引き出し部
32の有機フィルム21と溶融接着層22で構成される誘電体
膜34の化学的選択除去処理方法を第10図(a),(b)
に示す。マスク35によりマスキングされたフィルムコン
デンサ素体31′は、減圧保持可能でアース接地された真
空容器36内に配置され、この真空容器36には高周波を印
加する電極37、高周波電源38、石英窓39、ガス導入装置
40、真空排気装置41が配置されている。この装置により
フィルムコンデンサ素体31′の電極引き出し部32の誘電
体膜34を、有機材料と反応するガスに高周波を印加する
ことにより発生するプラズマにより引き出された酸素ラ
ジカルで、化学的に選択除去処理して電極金属25を端面
に露出させる。誘電体膜34の除去量は、約50〜100μm
(図中Fの寸法)で、除去量のバラツキは約20〜30μm
(図中Gの寸法)であり、電極引き出し部32の非容量部
29′の寸法300μmと比べ十分に小さい寸法で製造可能
である。またマスク35によりマージン33や誘電体膜34に
生じているピンホール等の欠陥部が誘電体膜34の化学的
選択除去処理時に反応性ガスと接触しないように遮蔽さ
れる。Next, the electrode lead-out part of the film capacitor body 31 '
FIGS. 10 (a) and 10 (b) show a method of chemically removing a dielectric film 34 composed of a 32 organic film 21 and a molten adhesive layer 22.
Shown in The film capacitor body 31 'masked by the mask 35 is disposed in a vacuum vessel 36 which can be maintained under reduced pressure and is grounded, and the vacuum vessel 36 has an electrode 37 for applying high frequency, a high frequency power supply 38, and a quartz window 39. , Gas introduction device
40, a vacuum exhaust device 41 is provided. This device chemically removes the dielectric film 34 of the electrode lead portion 32 of the film capacitor body 31 'by oxygen radicals extracted by plasma generated by applying high frequency to a gas reacting with the organic material. Processing is performed to expose the electrode metal 25 to the end face. The removal amount of the dielectric film 34 is about 50 to 100 μm
(Dimension F in the figure), the variation of the removal amount is about 20 ~ 30μm
(Dimension G in the figure), and the non-capacity part of the electrode lead-out part 32
It can be manufactured in a size sufficiently smaller than the 29 'size of 300 μm. Further, a defect such as a pinhole generated in the margin 33 or the dielectric film 34 is shielded by the mask 35 so as not to come into contact with the reactive gas during the chemical selective removal processing of the dielectric film 34.
つぎに上記の化学的選択除去処理からフィルムコンデ
ンサ素子43の完成までの工程を第11図に示す。メタリコ
ン工程により電極引き出し部32の誘電体膜34を選択的に
除去した端面に金属溶射装置により金属材料を溶射して
端面に露出している蒸着金属25の電気的接続を成し、フ
ィルムコンデンサ素体31′と付着力の十分な外部電極42
を形成する(第11図(a))。つぎに必要により電極面
切削工程で外部電極42を切削整形し(第11図(b))、
切断段工程でフィルムコンデンサ素体31′を一定寸法に
切断してフィルムコンデンサ素子43が得られる。Next, FIG. 11 shows steps from the above-described chemical selective removal processing to completion of the film capacitor element 43. A metal material is sprayed on the end face of the electrode lead portion 32 from which the dielectric film 34 has been selectively removed by the metallicon process to form an electrical connection with the vapor-deposited metal 25 exposed on the end face, thereby forming a film capacitor element. Body 31 'and external electrode 42 with sufficient adhesion
Is formed (FIG. 11 (a)). Next, if necessary, the external electrode 42 is cut and shaped in an electrode surface cutting step (FIG. 11 (b)).
In the cutting step, the film capacitor body 31 'is cut into a predetermined size to obtain the film capacitor element 43.
しかしながら上記のような製造方法では、誘電体膜34
を化学的に選択除去処理する工程において、フィルムコ
ンデンサ素体31′がプラズマエネルギーにさらされた
り、誘電体膜34の構成分子が酸素ラジカルにより灰化さ
れる時の反応熱を受け、フィルムコンデンサ素体31′の
温度が高くなり誘電体膜34を形成する有機フィルム21や
溶融接着層22が熱により劣化して製品となるフィルムコ
ンデンサの特性が低下するという問題を有していた。However, in the above manufacturing method, the dielectric film 34
In the step of chemically selective removal of the film capacitor element, the film capacitor element 31 'is exposed to plasma energy, or receives the reaction heat when the constituent molecules of the dielectric film 34 are ashed by oxygen radicals. There has been a problem that the temperature of the body 31 'is increased, and the organic film 21 and the molten adhesive layer 22 forming the dielectric film 34 are deteriorated by heat, and the characteristics of a film capacitor as a product are deteriorated.
この発明の目的は、誘電体膜を化学的に選択除去処理
する工程において耐熱性の低い有機フィルムが熱劣化す
ることがないフィルムコンデンサの製造方法を提供する
ことである。An object of the present invention is to provide a method of manufacturing a film capacitor in which an organic film having low heat resistance is not thermally deteriorated in a step of selectively removing a dielectric film.
この発明のフィルムコンデンサの製造方法は、複数枚
の電極金属とこの電極金属間に配置された有機材料から
なる誘電体膜とを持つフィルムコンデンサ素体を熱伝導
により冷却しながら、前記フィルムコンデンサ素体の端
面となる電極引き出し部の誘電体膜を有機材料と反応す
るガスと接触させ、誘電体膜の端部を化学的に選択除去
することを特徴とするものである。The method for manufacturing a film capacitor according to the present invention is characterized in that the film capacitor element having a plurality of electrode metals and a dielectric film made of an organic material disposed between the electrode metals is cooled by heat conduction, The method is characterized in that a dielectric film of an electrode lead-out portion serving as an end face of a body is brought into contact with a gas reacting with an organic material, and an end of the dielectric film is chemically selectively removed.
請求項(2)のフィルムコンデンサの製造方法は、請
求項(1)の記載のフィルムコンデンサの製造方法にお
いて、フィルムコンデンサ素体の電極引き出し部以外の
全表面をマスキングする工程と、マスキングされたフィ
ルムコンデンサ素体の1個ないし複数個を電極引き出し
部を同方向として積層するとともに治具を用いて加圧保
持する工程と、この治具を介して前記フィルムコンデン
サ素体を熱伝導により冷却しながら前記電極引き出し部
の誘電体膜を有機材料と反応するガスに接触させて化学
的な選択除去する工程とを含むことを特徴とするもので
ある。According to a second aspect of the present invention, there is provided a method of manufacturing a film capacitor according to the first aspect, further comprising: masking the entire surface of the film capacitor body other than the electrode lead portions; A step of laminating one or more of the capacitor bodies with the electrode lead-out portions in the same direction and pressing and holding using a jig, and cooling the film capacitor body by heat conduction through the jig. A step of bringing the dielectric film of the electrode lead-out portion into contact with a gas reacting with an organic material to chemically remove it selectively.
請求項(3)のフィルムコンデンサの製造方法は、請
求項(1)または(2)のフィルムコンデンサの製造方
法において、フィルムコンデンサ素体を熱伝導により始
めに一定の温度まて加熱し、所定の温度到達後は冷却し
ながら誘電体膜の電極引き出し部を化学的に選択除去処
理することを特徴とするものである。According to a third aspect of the invention, there is provided a method of manufacturing a film capacitor according to the first or second aspect, wherein the film capacitor body is first heated to a certain temperature by heat conduction to obtain a predetermined temperature. After reaching the temperature, the electrode lead portion of the dielectric film is chemically removed selectively while cooling.
この発明の構成によると、誘電体膜の電極引き出し部
の端面を化学的に選択除去処理するときに、フィルムコ
ンデンサ素体が受ける熱を熱伝導により冷却することが
できる。According to the configuration of the present invention, when the end face of the electrode lead portion of the dielectric film is chemically selectively removed, the heat received by the film capacitor body can be cooled by heat conduction.
請求項(2)の構成によると、フィルムコンデンサ素
体のマージンや有機フィルムのピンホール等による欠陥
部を反応性ガスと接触しないように遮蔽し、フィルムコ
ンデンサ素体が受ける熱を治具を介して熱伝導により除
去しながら誘電体の電極引き出し部の端面を化学的に選
択除去処理することができる。According to the structure of claim (2), a defect caused by a margin of the film capacitor body or a pinhole of the organic film is shielded from contact with the reactive gas, and heat received by the film capacitor body is passed through the jig. The end face of the electrode lead portion of the dielectric can be chemically selectively removed while being removed by heat conduction.
請求項(3)の構成によると、始めにフィルムコンデ
ンサ素体を熱伝導により所定の温度まで温度上昇速度を
高めて加熱した後、冷却しながら誘電体の電極引き出し
部の端面を化学的に選択除去処理することができる。According to the configuration of claim (3), first, the film capacitor body is heated to a predetermined temperature by heat conduction at a high temperature rising rate, and then the end face of the electrode lead portion of the dielectric is chemically selected while cooling. It can be removed.
この発明の第1の実施例を第1図から第3図に基づい
て説明する。提案されているフィルムコンデンサの製造
方法と同様に巻取積層,スリットを行い、第1図(c)
に示すフィルムコンデンサ素体1を得た後、そのフィル
ムコンデンサ素体1の矢印で示す2面にある電極引き出
し部2の有機フィルムと溶融接着層よりなる誘電体膜5
の有機材料を化学的に選択除去処理するためにフィルム
コンデンサ素体1を治具4に加圧保持する。第1図
(c)はフィルムコンデンサ素体1を加圧保持した治具
14の側面図(第1図(b))のA−A′部の拡大図であ
る。フィルムコンデンサ素体1の電極引き出し部2を同
方向として、それぞれのフィルムコンデンサ素体1の間
にマスク17を介して3層積層して積層体6を形成する。
この積層体6の5層を平行な2面を持つ平板18を積層体
6間にそれぞれ介して重ね、治具14により加圧保持す
る。治具14,平板18,マスク17の材質は、この実施例では
ステンレス材を用いたが、金属や無機材料からなるもの
で、化学的に選択除去処理する反応に対して安定で、か
つ熱伝導の良い材質であれば良い。第2図の11はアース
接地された真空容器で、内部の上下2箇所に高周波を印
加する電極12および高周波電源13が配置されている。治
具14はホルダ15により固定され、ホルダ15内部には冷媒
流路16が設けられており誘電体膜5の電極引き出し部2
を化学的に選択除去処理する工程中に、冷媒流路16に冷
媒を循環させて治具14およびホルダ15を熱伝導により冷
却してフィルムコンデンサ素体1が装置内部で受けた熱
を真空容器11の外部の熱交換器(図示せず)により排熱
する。また平板18とマスク17は兼用可能であり、平板18
に直接冷媒を循環させ、冷却能力を高めた第3図に示す
治具14′を用いても良い。A first embodiment of the present invention will be described with reference to FIGS. Winding, laminating and slitting are performed in the same manner as in the proposed method for manufacturing a film capacitor, and FIG.
After obtaining the film capacitor body 1 shown in FIG. 1, the dielectric film 5 composed of the organic film of the electrode lead-out portion 2 and the fusion bonding layer on the two surfaces of the film capacitor body 1 indicated by arrows.
The film capacitor body 1 is pressed and held on a jig 4 in order to chemically selectively remove the organic material. FIG. 1 (c) shows a jig holding the film capacitor body 1 under pressure.
FIG. 14 is an enlarged view of an AA ′ part of a side view of FIG. 14 (FIG. 1B). With the electrode lead portions 2 of the film capacitor body 1 in the same direction, three layers are laminated between the respective film capacitor bodies 1 via a mask 17 to form a laminate 6.
The five layers of the laminated body 6 are stacked with two parallel flat plates 18 interposed between the laminated bodies 6, and are held under pressure by a jig 14. The jig 14, the flat plate 18, and the mask 17 are made of stainless steel in this embodiment. However, they are made of metal or inorganic material, and are stable to the reaction of chemical selective removal and have heat conduction. Any material can be used if it is good. In FIG. 2, reference numeral 11 denotes a vacuum vessel grounded to ground, in which electrodes 12 for applying a high frequency and a high frequency power supply 13 are arranged at two upper and lower locations inside. The jig 14 is fixed by a holder 15, and a coolant channel 16 is provided inside the holder 15.
During the step of chemical selective removal of water, the jig 14 and the holder 15 are cooled by heat conduction by circulating the refrigerant through the refrigerant flow path 16 so that the heat received by the film capacitor The heat is exhausted by an external heat exchanger (not shown). Also, the flat plate 18 and the mask 17 can be used alternately.
Alternatively, a jig 14 'shown in FIG. 3 may be used in which the refrigerant is circulated directly to increase the cooling capacity.
前述のようにフィルムコンデンサ素体1の電極引き出
し部2の誘電体膜5を化学的に選択除去処理したフィル
ムコンデンサ素体1は、第11図に示す提案例と同様にメ
タリコン工程,電極面切削工程,切断工程を行いフィル
ムコンデンサ素子を得る。As described above, the film capacitor body 1 in which the dielectric film 5 of the electrode lead-out portion 2 of the film capacitor body 1 has been chemically selectively removed is subjected to a metallikon process and an electrode surface cutting process as in the proposed example shown in FIG. Steps and cutting steps are performed to obtain a film capacitor element.
つぎにこの発明の第2実施例について説明する。第1
の実施例において、冷媒流路16に供給される冷媒を精製
油とし、この精製油の温度を8℃から150℃に温度設定
が可変制御できるようにして、化学的選択除去処理の開
始から20分間は冷媒流路16中に150℃の精製油を流し治
具14を加熱して熱伝導によりフィルムコンデンサ素体1
を加熱し、その後は約10分かけて精製油の温度を8℃ま
でさげて治具14を冷却して電極引き出し部2の誘電体膜
5を化学的に選択除去した。Next, a second embodiment of the present invention will be described. First
In the embodiment of the present invention, the refrigerant supplied to the refrigerant passage 16 is refined oil, and the temperature of the refined oil can be variably controlled from 8 ° C. to 150 ° C., so that the temperature of the refined oil can be controlled from 20 ° C. The refined oil of 150 ° C. is flowed through the coolant channel 16 for a minute, the jig 14 is heated, and the film capacitor element 1 is thermally conductive.
Then, the temperature of the refined oil was lowered to 8 ° C. over about 10 minutes to cool the jig 14, and the dielectric film 5 of the electrode lead portion 2 was selectively removed chemically.
なお、この実施例では温度設定の媒体として精製油を
用いたが他の流動性の良い媒体でもよく、また加熱から
冷却への温度制御も低温度と高温度の媒体の切り換えに
よって行ってもよい。In this embodiment, the refined oil is used as the medium for setting the temperature. However, another medium having good fluidity may be used, and the temperature control from heating to cooling may be performed by switching the medium between the low temperature and the high temperature. .
第4図は、化学的選択除去処理時に冷却のみとした第
1の実施例のフィルムコンデンサ素体1を組み込んだ治
具14の温度と誘電体膜5の除去量との関係をグラフ化し
たものである。治具14の温度はフィルムコンデンサ素体
1の温度を相対的に示すものである。この図から明らか
なように、治具14の温度が約150℃を超えると誘電体膜
5の除去量が急激に増えている。FIG. 4 is a graph showing the relationship between the temperature of the jig 14 incorporating the film capacitor body 1 of the first embodiment in which only the cooling is performed during the chemical selective removal process and the removal amount of the dielectric film 5. It is. The temperature of the jig 14 relatively indicates the temperature of the film capacitor body 1. As is apparent from this figure, when the temperature of the jig 14 exceeds about 150 ° C., the removal amount of the dielectric film 5 sharply increases.
第5図は、化学的選択除去処理時に治具14を冷却のみ
とした第1の実施例のフィルムコンデンサ素体1を組み
込んだ治具14の処理時間にともなう温度変化を○で、化
学的選択除去処理時にフィルムコンデンサ素体を始めに
150℃の精製油を冷媒流路16に20分間供給して加熱し、
約10分かけて精製油の温度を8℃まで冷却した第2の実
施例のフィルムコンデンサ素体1を組み込んだ治具14の
時間にともなう温度変化を●でグラフ化したものであ
る。なお第4図と同様に、治具14の温度はフィルムコン
デンサ素体1の温度を相対的に示すものである。この図
から明らかなように、第1の実施例の治具14を冷却のみ
の場合では、約60分かかって治具温度が約180℃に達す
るが、第2の実施例のように始めに治具14を加熱すると
により約45分で治具温度が180℃に達する。そして、第
1の実施例の60分経過後の誘電体膜5の除去量と第2の
実施例の45分経過後の誘電体膜5の除去量とは、略同等
であり、第2の実施例の方が短時間で誘電体膜5の除去
処理が行え生産性を高めることができる。FIG. 5 shows the temperature change with the processing time of the jig 14 incorporating the film capacitor element body 1 of the first embodiment in which only the jig 14 was cooled during the chemical selective removal processing, First, remove the film capacitor body during the removal process
Supply refined oil at 150 ° C to the refrigerant channel 16 for 20 minutes and heat it.
The temperature change over time of the jig 14 incorporating the film capacitor body 1 of the second embodiment, in which the temperature of the refined oil was cooled down to 8 ° C. over about 10 minutes, is plotted with a black circle. As in FIG. 4, the temperature of the jig 14 indicates the temperature of the film capacitor body 1 relatively. As is clear from this figure, when the jig 14 of the first embodiment is only cooled, the jig temperature reaches about 180 ° C. in about 60 minutes. When the jig 14 is heated, the jig temperature reaches 180 ° C. in about 45 minutes. The removal amount of the dielectric film 5 after elapse of 60 minutes in the first embodiment is substantially equal to the removal amount of the dielectric film 5 after elapse of 45 minutes in the second embodiment. In the embodiment, the removal processing of the dielectric film 5 can be performed in a shorter time, and the productivity can be improved.
このように始めに治具14を冷媒流路16に150℃の精製
油を供給して熱伝導により加熱した後、冷媒流路16を流
れる精製油の温度を8℃まで下げて熱伝導により冷却し
ながら化学的な選択除去処理を行うことにより除去処理
時間を短くして生産性を高めることができるとともに、
誘電体膜5が過剰な熱を受け劣化するのを防止すること
ができる。In this way, first, the jig 14 is supplied with the refined oil of 150 ° C. to the refrigerant flow path 16 and heated by heat conduction, and then the temperature of the refined oil flowing through the refrigerant flow path 16 is reduced to 8 ° C. and cooled by the heat conduction. While performing the chemical selective removal processing while shortening the removal processing time and improving the productivity,
It is possible to prevent the dielectric film 5 from being deteriorated due to excessive heat.
この発明のフィルムコンデンサの製造方法は、フィル
ムコンデンサ素体を熱伝導により冷却しながら電極引き
出し部の誘電体膜を化学的に選択除去処理することによ
り誘電体膜の熱劣化がなく、高性能のフィルムコンデン
サを得ることができる。The method for manufacturing a film capacitor according to the present invention is characterized in that the dielectric film of the electrode lead-out portion is chemically and selectively removed while cooling the film capacitor body by heat conduction, so that the dielectric film is not thermally degraded and has a high performance. A film capacitor can be obtained.
請求項(2)のフィルムコンデンサの製造方法は、マ
ージンやピンホールによる欠陥部を反応性ガスと接触し
ないように遮蔽し、フィルムコンデンサ素体を熱伝導に
より冷却しながら電極引き出し部の誘電体膜を化学的に
選択除去処理することにより誘電体膜の熱劣化がなく、
欠陥部の電極金属が露出することがない高性能で信頼性
の高いフィルムコンデンサを得ることができる。According to a second aspect of the present invention, there is provided a method of manufacturing a film capacitor, wherein a defect caused by a margin or a pinhole is shielded from contact with a reactive gas, and a dielectric film of an electrode lead portion is cooled while cooling the film capacitor body by heat conduction. No chemical degradation by heat treatment of the dielectric film,
It is possible to obtain a high-performance and highly reliable film capacitor in which the electrode metal of the defective portion is not exposed.
請求項(3)のフィルムコンデンサの製造方法は、フ
ィルムコンデンサ素体を熱伝導により始めに所定温度ま
で加熱し、温度到達後は熱伝導により冷却しながら電極
引き出し部の誘電体膜を化学的に選択除去処理すること
により誘電体膜の熱劣化がなく、高性能で信頼性の高い
フィルムコンデンサを化学的選択除去処理時間を短縮し
生産性を向上して生産することができる。According to a third aspect of the present invention, there is provided a method for manufacturing a film capacitor, wherein a film capacitor body is first heated to a predetermined temperature by heat conduction, and after the temperature reaches the temperature, the dielectric film of the electrode lead portion is chemically cooled while cooling by heat conduction. By performing the selective removal process, a high-performance and highly reliable film capacitor without thermal degradation of the dielectric film can be manufactured with a shortened chemical selective removal process time and improved productivity.
第1図(a)はこの発明のフィルムコンデンサの製造方
法の一実施例の治具に保持されたフィルムコンデンサ素
体の正面図、第1図(b)はその側面図、第1図(c)
はそのA−A′部の拡大図、第2図は化学的選択除去処
理装置の縦断面図、第3図は冷却能力を高めた他の治具
の斜視図、第4図は第1の実施例における治具温度と誘
電体膜除去量との関係を示すグラフ、第5図は第1およ
び第2の実施例における処理時間と治具温度との関係を
示すグラフ、第6図は従来のフィルムコンデンサの製造
方法の工程説明図、第7図はそのフィルムコンデンサ素
子板の拡大断面図、第8図は提案例のフィルムコンデン
サの製造方法の工程説明図、第9図(a)はそのフィル
ムコンデンサ素子板の拡大断面図、第9図(b)はその
フィルムコンデンサ素体の拡大断面図、第10図(a)は
その化学的選択除去処理装置の縦断面図、第10図(b)
はその化学的処理されたフィルムコンデンサ素体の縦断
面図、第11図(a)はそのメタリコン工程の説明図、第
11図(b)はその電極面切削工程の説明図、第11図
(c)はその切削工程の説明図である。 1……フィルムコンデンサ素体、2……電極引き出し
部、5……誘電体膜、6……積層体、14,14′……治具FIG. 1 (a) is a front view of a film capacitor body held by a jig according to an embodiment of the method for manufacturing a film capacitor of the present invention, FIG. 1 (b) is a side view thereof, and FIG. )
FIG. 2 is an enlarged view of the AA 'part, FIG. 2 is a longitudinal sectional view of the chemical selective removal processing apparatus, FIG. 3 is a perspective view of another jig having increased cooling capacity, and FIG. FIG. 5 is a graph showing the relationship between the jig temperature and the dielectric film removal amount in the embodiment, FIG. 5 is a graph showing the relationship between the processing time and the jig temperature in the first and second embodiments, and FIG. 7 is an enlarged cross-sectional view of the film capacitor element plate, FIG. 8 is a process explanatory diagram of the method of manufacturing the film capacitor of the proposed example, and FIG. FIG. 9 (b) is an enlarged sectional view of the film capacitor element body, FIG. 10 (a) is a longitudinal sectional view of the chemical selective removal processing apparatus, FIG. 10 (b) )
Is a longitudinal sectional view of the chemically treated film capacitor body, FIG. 11 (a) is an explanatory view of the metallikon process, and FIG.
FIG. 11 (b) is an explanatory view of the electrode surface cutting step, and FIG. 11 (c) is an explanatory view of the cutting step. DESCRIPTION OF SYMBOLS 1 ... Film capacitor body, 2 ... Electrode lead-out part, 5 ... Dielectric film, 6 ... Laminated body, 14, 14 '... Jig
Claims (3)
された有機材料からなる誘電体膜とを持つフィルムコン
デンサ素体を熱伝導により冷却しながら、前記フィルム
コンデンサ素体の端面となる電極引き出し部の誘電体膜
を有機材料と反応するガスに接触させ、誘電体膜の端部
を化学的に選択除去することを特徴とするフィルムコン
デンサの製造方法。1. An end face of a film capacitor body while cooling by heat conduction a film capacitor body having a plurality of electrode metals and a dielectric film made of an organic material disposed between the electrode metals. A method of manufacturing a film capacitor, comprising: bringing a dielectric film of an electrode lead-out portion into contact with a gas that reacts with an organic material to chemically selectively remove an end of the dielectric film.
以外の全表面をマスキングする工程と、マスキングされ
たフィルムコンデンサ素体の1個ないし複数個を電極引
き出し部を同方向として積層するとともに治具を用いて
加圧保持する工程と、この治具を介して前記フィルムコ
ンデンサ素体を熱伝導により冷却しながら前記電極引き
出し部の誘電体膜を有機材料と反応するガスに接触させ
て化学的に選択除去する工程とを含むフィルムコンデン
サの製造方法。2. A step of masking the entire surface of the film capacitor body other than the electrode lead-out part, and laminating one or more of the masked film capacitor bodies with the electrode lead-out part in the same direction and a jig. And pressurizing and holding the film capacitor element through the jig while cooling the film capacitor body by heat conduction to bring the dielectric film of the electrode lead-out portion into contact with a gas reacting with an organic material and chemically selecting the film. Removing the film capacitor.
めに一定の温度まで加熱し、所定の温度到達後は冷却し
ながら誘電体膜の電極引き出し部を化学的に選択除去処
理することを特徴とする請求項(1)または(2)記載
のフィルムコンデンサの製造方法。3. The method according to claim 1, wherein the film capacitor body is first heated to a certain temperature by heat conduction, and after reaching the predetermined temperature, the electrode lead portion of the dielectric film is chemically selectively removed while cooling. The method for producing a film capacitor according to claim 1 or 2, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21670089A JP2731257B2 (en) | 1989-08-22 | 1989-08-22 | Manufacturing method of film capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21670089A JP2731257B2 (en) | 1989-08-22 | 1989-08-22 | Manufacturing method of film capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0379011A JPH0379011A (en) | 1991-04-04 |
JP2731257B2 true JP2731257B2 (en) | 1998-03-25 |
Family
ID=16692554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21670089A Expired - Lifetime JP2731257B2 (en) | 1989-08-22 | 1989-08-22 | Manufacturing method of film capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2731257B2 (en) |
-
1989
- 1989-08-22 JP JP21670089A patent/JP2731257B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0379011A (en) | 1991-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4790901A (en) | Laminating device for manufacturing identification cards | |
JPH0817143B2 (en) | Film capacitor and manufacturing method thereof | |
JP2985448B2 (en) | Lamination method of ceramic green sheet | |
JP2002343342A (en) | Secondary battery electrode and its manufacturing method | |
JP2000124003A (en) | Chip-type ptc thermistor and its manufacture | |
JP2731257B2 (en) | Manufacturing method of film capacitor | |
US3616039A (en) | Method of making a laminated capacitor | |
US6413456B1 (en) | Method for manufacturing electronic parts | |
JP3237621B2 (en) | Photoelectric conversion device and method of manufacturing the same | |
CN114725247A (en) | Preparation method of electrode structure and preparation method of battery string | |
JP2648200B2 (en) | Manufacturing method of film capacitor | |
JP2658614B2 (en) | Manufacturing method of metallized film capacitor | |
JPS596498B2 (en) | Manufacturing method of multilayer capacitor | |
JPS63220734A (en) | Flat coil | |
JPH0379012A (en) | Manufacture of film capacitor | |
JPH0361539B2 (en) | ||
JP2001085274A (en) | Electronic double layer capacitor and its manufacture | |
JPH0787159B2 (en) | Method for manufacturing single-sided metallized organic film capacitor | |
JPH0556679B2 (en) | ||
JPH02129906A (en) | Manufacture of film capacitor | |
JP2742818B2 (en) | Manufacturing method of multilayer film capacitor | |
JP3208219B2 (en) | Photovoltaic device | |
JPS6354205B2 (en) | ||
JPH0262883B2 (en) | ||
JPH04243111A (en) | Metallized film capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071219 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081219 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20091219 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20091219 |