JP2713364B2 - Ultra-microcrystalline soft magnetic alloy with excellent heat resistance - Google Patents
Ultra-microcrystalline soft magnetic alloy with excellent heat resistanceInfo
- Publication number
- JP2713364B2 JP2713364B2 JP63113966A JP11396688A JP2713364B2 JP 2713364 B2 JP2713364 B2 JP 2713364B2 JP 63113966 A JP63113966 A JP 63113966A JP 11396688 A JP11396688 A JP 11396688A JP 2713364 B2 JP2713364 B2 JP 2713364B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- atomic
- soft magnetic
- heat resistance
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001004 magnetic alloy Inorganic materials 0.000 title claims description 19
- 229910045601 alloy Inorganic materials 0.000 claims description 39
- 239000000956 alloy Substances 0.000 claims description 39
- 239000013078 crystal Substances 0.000 claims description 11
- 229910052698 phosphorus Inorganic materials 0.000 claims description 11
- 229910052717 sulfur Inorganic materials 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 229910052796 boron Inorganic materials 0.000 claims description 7
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 229910001361 White metal Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 239000010969 white metal Substances 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 239000011162 core material Substances 0.000 description 22
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 21
- 238000010438 heat treatment Methods 0.000 description 17
- 230000035699 permeability Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 6
- 230000004907 flux Effects 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910008423 Si—B Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000005300 metallic glass Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910001021 Ferroalloy Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15308—Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、各種トランス、チョークコイル、磁気ヘッ
ド等各種磁心に用いられる耐熱性に優れた超微結晶軟磁
性合金に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a microcrystalline soft magnetic alloy having excellent heat resistance used for various magnetic cores such as various transformers, choke coils, and magnetic heads.
[従来の技術] 近年、高周波トランス、チョークコイル、磁気ヘッド
等の磁心材料として飽和磁束密度が高く、高周波特性に
優れた材料として、非晶質合金が注目を集め一部実用化
されている。[Related Art] In recent years, amorphous alloys have attracted attention and have been put into practical use as materials having high saturation magnetic flux density and excellent high-frequency characteristics as core materials for high-frequency transformers, choke coils, magnetic heads, and the like.
非晶質合金は主としてFe系とCo系に大別され、Fe系の
非晶質合金は飽和磁束密度が高く、材料コストがCo系に
比べて安くつくという利点がある反面、一般的に高周波
においてCo系非晶質合金よりコア損失が大きく、透磁率
も低いという問題がある。また、Fe系非晶質合金は磁歪
が著しく大きく、磁心として使用する場合、磁心がうな
りを生じたり含浸やコーティング等を行なうと著しく特
性が劣化する欠点がある。Amorphous alloys are mainly classified into Fe-based and Co-based.Fe-based amorphous alloys have the advantage of high saturation magnetic flux density and the material cost is lower than that of Co-based alloys. However, there is a problem that the core loss is larger and the magnetic permeability is lower than that of the Co-based amorphous alloy. Further, the Fe-based amorphous alloy has a remarkably large magnetostriction, and when used as a magnetic core, there is a disadvantage that the magnetic core is beaten or the properties are significantly deteriorated when impregnated or coated.
これに対してCo系非晶質合金は高周波のコア損失が小
さく、透磁率も高いが、コア損失や透磁率の経時変化が
大きく、飽和磁束密度も十分ではない欠点がある。更に
は、高価なCoを主原料とするため価格的な不利は免れな
い。On the other hand, Co-based amorphous alloys have low core loss at high frequencies and high magnetic permeability, but have the disadvantage that the core loss and magnetic permeability change over time and the saturation magnetic flux density is not sufficient. Furthermore, since expensive Co is used as a main raw material, a disadvantage in terms of price is inevitable.
このような条件下でFe基非晶質合金について種々の提
案がなされた。Various proposals have been made for Fe-based amorphous alloys under such conditions.
特公昭60−17019号には、74〜84原子%のFeと、8〜2
4原子%のBと、16原子%以下のSi及び3原子%以下の
Cの内の少なくとも1つとからなる組成を有し、その構
造の少なくとも85%が非晶質金属素地の形を有し、且つ
非晶質金属素地の全体にわたって不連続に分布された結
晶質粒子群の析出物を有しており、結晶質粒子群は0.05
〜1μmの平均粒度及び1〜10μmの平均粒子間距離を
有しており、粒子群は全体の0.01〜0.3の平均容積分率
を占めていることを特徴とする鉄基含硼素磁性非晶質合
金が開示されている。この合金の結晶質粒子群は磁壁の
ピンニング点として作用する不連続な分布のα−(Fe,S
i)粒子群であるとされている。JP-B-60-17019 discloses that 74 to 84 atomic% of Fe and 8 to 2
It has a composition of 4 at% B and at least one of 16 at% or less of Si and 3 at% or less of C, wherein at least 85% of its structure is in the form of an amorphous metal body. , And having a precipitate of crystalline particles that are discontinuously distributed throughout the amorphous metal substrate, and the crystalline particles
An iron-based boron-containing magnetic amorphous material having an average particle size of 1 to 1 μm and an average interparticle distance of 1 to 10 μm, wherein the particle group occupies an average volume fraction of 0.01 to 0.3 in total. An alloy is disclosed. The crystalline particles of this alloy have a discontinuous distribution of α- (Fe, S
i) It is considered to be a particle group.
また、特開昭60−52557号にはFeaCubBcSid(但し、75
≦a≦85,0<b≦0.5,10≦c≦20,d≦10かつc+d≦3
0)からなる低損失非晶質磁性合金が開示されている。
この非晶質合金は結晶化温度以下でかつキュリー温度以
上で熱処理される。Further, in JP-A-60-52557 Fe a Cu b B c Si d ( however, 75
≤a≤85,0 <b≤0.5,10≤c≤20, d≤10 and c + d≤3
No. 0) is disclosed.
This amorphous alloy is heat-treated at a temperature lower than the crystallization temperature and higher than the Curie temperature.
[発明が解決しようとする問題点] 特公昭60−17019号のFe基軟磁性合金からなる磁心は
不連続な結晶質粒子群の存在によりコア損失は減少する
が、それでもコア損失は依然大きく、特に磁歪が大きい
ためうなりを生じたり、含浸コーティングを行なうこと
によりコア損失、透磁率の著しい劣化を招く問題があ
り、カットコア等では高特性のものが得られていない。[Problems to be Solved by the Invention] The core of Fe-based soft magnetic alloy disclosed in JP-B-60-17019 has a reduced core loss due to the presence of discontinuous crystalline particles, but the core loss is still large. In particular, there is a problem that a beat is generated due to a large magnetostriction, and a core loss and a remarkable deterioration of magnetic permeability are caused by performing impregnation coating.
一方、特開昭60−52557号のFe基非晶質合金はCuを含
有しこれを用いた磁心のコア損失は低下しているが、上
記結晶粒子含有Fe基磁性合金を用いた磁心と同様に満足
ではない。更にはコア損失の経時変化、透磁率に関して
も十分でないという問題点がある。On the other hand, the Fe-based amorphous alloy disclosed in JP-A-60-52557 contains Cu and the core loss of the magnetic core using Cu is reduced, but is the same as the magnetic core using the Fe-based magnetic alloy containing crystal grains. Not satisfied. Further, there is a problem that the change with time of the core loss and the magnetic permeability are not sufficient.
このような問題点を解決するべく検討の結果、本発明
者等は、Fe−Cu−Nb−Si−B系合金が超微細な結晶粒組
織からなり、優れた軟磁気特性を示すことを見出し、特
願昭62−317189号等で出願した。As a result of study to solve such problems, the present inventors have found that the Fe-Cu-Nb-Si-B-based alloy has an ultrafine grain structure and exhibits excellent soft magnetic properties. And Japanese Patent Application No. 62-317189.
しかし、これらの合金に上記元素以外の不純物元素が
存在すると、比較的低い温度で軟磁気特性が劣化するよ
うになる。However, if impurity elements other than the above elements are present in these alloys, the soft magnetic properties deteriorate at a relatively low temperature.
このような合金では熱処理温度をあまり高くできず製
造上制約を受けるだけでなく、磁気ヘッドのようにボン
ディングのため再加熱するような場合、工程上大きな制
約を受けることになる。With such an alloy, the heat treatment temperature cannot be too high, which imposes restrictions not only on manufacturing but also on the process of reheating for bonding like a magnetic head, which imposes great restrictions on the process.
本発明の目的は、耐熱性に優れた超微結晶軟磁性合金
を提供することを目的とする。An object of the present invention is to provide a microcrystalline soft magnetic alloy having excellent heat resistance.
[問題点を解決するための手段] 上記目的を達成するために鋭意検討の結果、本発明者
等は、超微結晶軟磁性合金中のC,P,O,S,Nの元素をある
一定量以下にすることにより、特に高温熱処理が可能
で、再加熱しても軟磁気特性の劣化が小さい耐熱性に優
れた超微結晶軟磁性合金が得られることを見出し本発明
に想到した。[Means for Solving the Problems] As a result of earnest studies to achieve the above object, the present inventors have determined that the elements C, P, O, S, and N in the microcrystalline soft magnetic alloy are By making the amount less than the above, it has been found out that an ultra-microcrystalline soft magnetic alloy which can be subjected to high-temperature heat treatment and has a small deterioration of soft magnetic properties even when reheated and has excellent heat resistance can be obtained.
即ち、本願発明は、組織の少なくとも50%が微細な結
晶粒であり、該結晶粒を最大寸法で測定した粒径の平均
が1000Å以下であり、その組成はCuを0.1〜3原子%、
M′を0.1〜30原子%(但し、M′はNb,W,Ta,Zr,Hf,Ti
及びMoからなる群から選ばれた少なくとも1種の元
素)、Bを25原子%以下、Yを合計0.15原子%以下(但
し、YはC,P,O,S,Nからなる群から選ばれた1種以上の
元素)含有し、残部がFeであって耐熱性を有する、耐熱
性に優れた超微結晶軟磁性合金である。That is, in the present invention, at least 50% of the structure is fine crystal grains, and the average of the particle diameters measured at the maximum size of the crystal grains is 1000 ° or less, and the composition is 0.1 to 3 atomic% of Cu,
M 'is 0.1 to 30 atomic% (where M' is Nb, W, Ta, Zr, Hf, Ti
And at least one element selected from the group consisting of Mo), B at 25 atomic% or less, and Y at 0.15 atomic% or less (Y is selected from the group consisting of C, P, O, S, N). And the balance is Fe and has heat resistance, and is a microcrystalline soft magnetic alloy having excellent heat resistance.
この発明において上記超微結晶軟磁性合金は、その組
成成分にSiを30原子%以下(但し、SiとBの合計は5〜
30原子%)、M″(但しM″は、V,Cr,Mn,Al,白金属元
素,Zn,Sn,Ge,Gaからなる群から選ばれた少なくとも1種
の元素)を10原子%以下の一方または両方を含有しても
よい。In the present invention, the ultra-microcrystalline soft magnetic alloy contains 30 atomic% or less of Si in its composition component (provided that the total of Si and B is 5 to 5%).
30 atomic%), M "(where M" is at least one element selected from the group consisting of V, Cr, Mn, Al, a white metal element, Zn, Sn, Ge, Ga) at 10 atomic% or less May be contained.
また、この発明において前記超微結晶軟磁性合金は、
その組成成分のFeをFe1-aMa(但し、MはCo及び/又はN
i、aは0.1以下)に置換してもよい。この場合、前記Si
やM′の有無を問わない。Further, in the present invention, the ultra-microcrystalline soft magnetic alloy,
Fe of the composition component is Fe 1-a M a (where M is Co and / or N
i and a may be 0.1 or less). In this case, the Si
Or M '.
より好ましい軟磁気特性は粒径の平均が500Å以下の
場合であり、特に好ましくは20〜200Å以下の場合で得
られる。More preferred soft magnetic properties are obtained when the average of the particle diameters is 500 ° or less, particularly preferably 20 to 200 ° or less.
本発明のFe基軟磁性合金において、Feは0〜0.1の範
囲でCo及び/又はNiで置換し耐食性を向上することがで
きる。In the Fe-based soft magnetic alloy of the present invention, Fe can be substituted with Co and / or Ni in the range of 0 to 0.1 to improve corrosion resistance.
しかし、良好な磁気特性(低コア損失、低磁歪)とす
るために“a"は0〜0.1に限定される。However, "a" is limited to 0 to 0.1 for good magnetic properties (low core loss, low magnetostriction).
本発明において、Cuは必須元素であり、その含有量x
は0.1〜3原子%の範囲である。0.1原子%より少ないと
Cuの添加によるコア損失低下、透磁率上昇の効果がほと
んどなく、一方、3原子%より多いとコア損失が未添加
のものよりかえって大きくなることがあり、透磁率も劣
化する。本発明において好ましいCuの含有量xは0.5〜
2原子%であり、この範囲ではコア損失が特に小さく透
磁率が高い。また、CuはbccFe固溶体結晶の核を形成す
る効果があり、化合物相形成を抑制する効果もある。In the present invention, Cu is an essential element, and its content x
Ranges from 0.1 to 3 atomic%. If less than 0.1 atomic%
There is almost no effect of lowering the core loss and increasing the magnetic permeability due to the addition of Cu. On the other hand, if it is more than 3 atomic%, the core loss may be larger than that of the non-added one, and the magnetic permeability also deteriorates. Preferred Cu content x in the present invention is 0.5 to
In this range, the core loss is particularly small and the magnetic permeability is high. Further, Cu has an effect of forming nuclei of bccFe solid solution crystals and also has an effect of suppressing the formation of a compound phase.
本発明においてM′はCuとの複合添加により析出する
結晶粒を微細化する作用を有するものであり、Nb,W,Ta,
Zr,Hf,Ti及びMoからなる群から選ばれた少なくとも1種
の元素である。Nb等は合金の結晶化温度を上昇させる作
用を有するが、クラスターを形成し結晶化温度を低下さ
せる作用を有するCuとの相互作用により、結晶粒の成長
を押え、析出する結晶粒が微細化するものと考えられ
る。In the present invention, M ′ has an action of refining the crystal grains precipitated by complex addition with Cu, and Nb, W, Ta,
It is at least one element selected from the group consisting of Zr, Hf, Ti and Mo. Nb and others have the effect of raising the crystallization temperature of the alloy, but the interaction with Cu, which has the effect of forming clusters and lowering the crystallization temperature, suppresses the growth of crystal grains and refines the crystal grains that precipitate. It is thought to be.
M′の含有量αは0.1〜30原子%であり、0.1原子%未
満だと結晶粒微細化の効果が不十分であり、30原子%を
越えると飽和磁束密度の著しい低下を招く。The content α of M ′ is 0.1 to 30 atomic%, and if it is less than 0.1 atomic%, the effect of crystal grain refinement is insufficient, and if it exceeds 30 atomic%, the saturation magnetic flux density is remarkably reduced.
好ましいM′の添加量は2〜8原子%である。Si及び
Bは、合金組成の微細化に特に有用な元素である。本発
明のFe基軟磁性合金は、好ましくは一旦Si,Bの添加効果
により非晶質合金とした後で熱処理により微細結晶粒を
形成させることにより得られる。Si及びBの含有量y及
びzの限定理由は、yが30原子%以下、zが25原子%以
下、y+zが5〜30原子%でないと、合金の飽和磁束密
度の著しい減少があることである。The preferred addition amount of M 'is 2 to 8 atomic%. Si and B are particularly useful elements for refining the alloy composition. The Fe-based soft magnetic alloy of the present invention is preferably obtained by once forming an amorphous alloy by the effect of adding Si and B and then forming fine crystal grains by heat treatment. The reason for limiting the contents y and z of Si and B is that if y is not more than 30 at%, z is not more than 25 at%, and y + z is not 5 to 30 at%, there is a remarkable decrease in the saturation magnetic flux density of the alloy. is there.
V,Cr,Mn,Al,白金属元素,Zn,Sn,Ge,Gaからなる群から
選ばれた少なくとも1種の元素であるM″は耐食性を改
善したり、磁気特性を改善したり、磁歪を調整したりす
る目的のために添加することができるものであるが、そ
の含有量はせいぜい10原子%以下である。それは含有量
が10原子%を越えると著しい飽和磁束密度の低下を招く
ためである。M ″, which is at least one element selected from the group consisting of V, Cr, Mn, Al, a white metal element, Zn, Sn, Ge, and Ga, improves corrosion resistance, improves magnetic characteristics, and improves magnetostriction. Can be added for the purpose of adjusting the content, but the content is not more than 10 atomic% at most. If the content exceeds 10 atomic%, the saturation magnetic flux density is remarkably reduced. It is.
本発明の特徴である、C,P,O,S,Nは原料に不純物とし
て入り易い元素でありフェロアロイ等を原料とした場
合、合金中に多く含まれる可能性がある。C, P, O, S, and N, which are features of the present invention, are elements that easily enter impurities as a raw material, and when ferroalloy or the like is used as a raw material, C, P, O, S, and N may be contained in an alloy in large amounts.
鋭意検討の結果、これらの元素がFe−Cu−Nb−Si−B
系合金の加熱時の軟磁気特性の劣化の原因であることが
わかり、これら元素が総量で0.15原子%以下であり、特
にC;0.2原子%以下,P;0.05原子%以下,O;0.05原子%。
S;0.02原子%以下,N;0.02原子%以下とした場合、これ
らの元素の影響がなく特に耐熱性に優れた超微結晶軟磁
性合金が得られることがわかった。As a result of intensive studies, these elements were found to be Fe-Cu-Nb-Si-B
It was found that this was the cause of the deterioration of the soft magnetic properties during heating of the base alloy, and these elements were 0.15 at% or less in total, especially C: 0.2 at% or less, P: 0.05 at% or less, and O: 0.05 at%. %.
When S: 0.02 atomic% or less and N: 0.02 atomic% or less, it was found that an ultra-microcrystalline soft magnetic alloy excellent in heat resistance was obtained without being affected by these elements.
これらの元素は化合物相を作り易かったり、偏析し易
いため温度を上げると軟磁気特性が劣化し易いと考えら
れる。Since these elements easily form a compound phase or segregate easily, it is considered that when the temperature is increased, the soft magnetic properties are easily deteriorated.
[実施例] 以下本発明を実施例に従って説明するが、本発明はこ
れら実施例の範囲に限定されるものではない。EXAMPLES Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the scope of these examples.
実施例1 純度99.5%以上のB,純度99.99%以上のSi,純度99.5%
以上のNb,純度99.9%以上のCu,純度99.9%以上のFeを用
い、真空溶解を行い母合金を作製した。次にこの母合金
を用い単ロール法により、幅5mm厚さ19μmの合金薄帯
を作製した。Example 1 B having a purity of 99.5% or more, Si having a purity of 99.99% or more, and a purity of 99.5%
Using the above Nb, Cu with a purity of 99.9% or more, and Fe with a purity of 99.9% or more, vacuum melting was performed to prepare a mother alloy. Next, an alloy ribbon having a width of 5 mm and a thickness of 19 μm was produced by a single roll method using the mother alloy.
X線回折及び透過電子顕微鏡による組成観察の結果、
この合金薄帯は非晶質合金であることが確認された。As a result of composition observation by X-ray diffraction and transmission electron microscope,
It was confirmed that this alloy ribbon was an amorphous alloy.
次に、この合金薄帯をロール接触面を内側にして巻回
しトロイダル磁心を作製し、Arガス雰囲気中で熱処理し
た。第1図に本発明合金Aとしてその磁気特性の熱処理
温度依存性を示す。なお、熱処理時間は1時間である。Next, this alloy ribbon was wound with the roll contact surface inside, to produce a toroidal magnetic core, and heat-treated in an Ar gas atmosphere. FIG. 1 shows the heat treatment temperature dependence of the magnetic properties of the alloy A of the present invention. The heat treatment time is one hour.
次に、この合金Aを分析した。その結果、B;7.21at
%,Si;13.61at%,Nb;2.61at%,Cu;1.01at%,C;0.022at
%,P;0.001at%,O;0.005at%,S;0.001at%,N;0.001at%
であった。(各値は重量%の分析値をFe bal.として、
原子%に換算した値である。) 比較例1 比較例として、分析値がB;7.51at%,Si;13.22at%,N
b;2.41at%,Cu;0.99at%,C;0.53at%,P;0.8at%,O;0.06
at%,S;0.03at%,N;0.03at%,残部実質的にFeからなる
合金Bを合金Aと同様の方法により作製し、磁心とした
後、合金Aと同様の熱処理を行なった。この比較合金B
の磁気特性の熱処理温度依存性も第1図に示す。Next, the alloy A was analyzed. As a result, B; 7.21at
%, Si; 13.61at%, Nb; 2.61at%, Cu; 1.01at%, C; 0.022at
%, P; 0.001at%, O; 0.005at%, S; 0.001at%, N; 0.001at%
Met. (Each value is the analysis value of weight% as Fe bal.
It is a value converted to atomic%. Comparative Example 1 As a comparative example, the analysis value is B; 7.51 at%, Si; 13.22 at%, N
b; 2.41at%, Cu; 0.99at%, C; 0.53at%, P; 0.8at%, O; 0.06
At%, S; 0.03 at%, N; 0.03 at%, the balance being substantially Fe, an alloy B was prepared by the same method as that for the alloy A, and the core was subjected to the same heat treatment as the alloy A. This comparative alloy B
FIG. 1 also shows the dependence of the magnetic properties on the heat treatment temperature.
なお、510℃以上の温度で熱処理後は合金A及び合金
Bともに粒径200Å前後の超微細結晶粒が組成の大部分
を占めていた。After the heat treatment at a temperature of 510 ° C. or more, the ultrafine crystal grains having a grain size of about 200 ° occupy most of the composition in both alloys A and B.
図からわかるようにC,P,O,S,N量が少ない本発明合金
の場合、熱処理をより高温で行なえることがわかる。As can be seen from the figure, in the case of the alloy of the present invention having a small amount of C, P, O, S, and N, the heat treatment can be performed at a higher temperature.
次に、550℃1時間熱処理した前記本発明合金Aと比
較合金Bを570℃に加熱し50分保持し室温まで冷却し1kH
zにおける実効透磁率μelkを測定した。Next, the alloy A of the present invention and the comparative alloy B, which were heat-treated at 550 ° C. for 1 hour, were heated to 570 ° C., held for 50 minutes, cooled to room temperature, and cooled to 1 kHz.
The effective magnetic permeability μelk at z was measured.
1kHzにおける実効透磁率μelkの加熱前後の値の比μa
/μbを比較した結果、本発明合金Aは0.97,C,P,O,S,N
量の多い比較合金Bは0.09であり、本発明の方が加熱に
よる軟磁気特性の劣化が少なく、耐熱性に優れているこ
とが確認された。ここで、μaは加熱後のμelkであ
り、μbは加熱前のμelkである。Ratio of effective magnetic permeability μelk at 1kHz before and after heating μ a
/ mu b result of comparison, the present invention alloy A is 0.97, C, P, O, S, N
Comparative alloy B having a large amount was 0.09, and it was confirmed that the present invention exhibited less deterioration of soft magnetic properties due to heating and was excellent in heat resistance. Here, mu a is μelk after heating, the mu b is μelk before heating.
実施例2 第1表に示す分析組成の超微細結晶軟磁性合金からな
る巻磁心を作製し、実施例1と同様に570℃の加熱処理
を行い、実施例1と同様に加熱前後の1kHzにおける実効
透磁率μelkの値の比、μa/μbを求めた。得られた結
果を第1表に示す。Example 2 A wound core made of an ultrafine crystalline soft magnetic alloy having an analytical composition shown in Table 1 was prepared, and was subjected to a heat treatment at 570 ° C. in the same manner as in Example 1, and at 1 kHz before and after heating as in Example 1. The ratio of the value of the effective magnetic permeability μelk, μ a / μ b, was determined. Table 1 shows the obtained results.
第1表からわかるように本発明合金はμa/μbが0.90
以上であり、実質上問題ない劣化であって、耐熱性に優
れた合金であることが確認された。 As can be seen from Table 1, the alloy of the present invention has μ a / μ b of 0.90
As described above, it was confirmed that the alloy was substantially degraded without any problem and was excellent in heat resistance.
一方、本発明で規定したC,O,P,S,Nの範囲を越える比
較合金は、いずれもμa/μbは0.90未満であって、更に
この規定した範囲を越えると急激にμa/μbの値が小さ
くなり、耐熱性が低下することが確認された。On the other hand, C defined in the present invention, O, comparative alloy exceeds P, S, a range of N are all a μ a / μ b is less than 0.90, rapidly further exceeds this provision the range mu a / value of mu b decreases, the heat resistance was confirmed to be reduced.
[発明の効果] 本発明によれば、耐熱性に優れた超微結晶軟磁性合金
を得ることができるためその効果は著しいものがある。[Effects of the Invention] According to the present invention, an ultra-microcrystalline soft magnetic alloy having excellent heat resistance can be obtained, and the effect is remarkable.
【図面の簡単な説明】 第1図は本発明に係る合金及び比較合金の磁気特性の熱
処理温度依存性を示した図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the heat treatment temperature dependence of the magnetic properties of the alloy according to the present invention and a comparative alloy.
Claims (4)
り、該結晶粒の最大寸法で測定した粒径の平均が1000Å
以下であり、その組成はCuを0.1〜3原子%、M′を0.1
〜30原子%(但し、M′はNb,W,Ta,Zr,Hf,Ti及びMoから
なる群から選ばれた少なくとも1種の元素)、Bを25原
子%以下、Yを合計0.15原子%以下(但し、YはC,P,O,
S,Nからなる群から選ばれた1種以上の元素)含有し、
残部がFeであって耐熱性を有することを特徴とする耐熱
性に優れた超微結晶軟磁性合金。At least 50% of the structure is fine grains, and the average of the grain sizes measured at the largest dimension of the grains is 1000 °.
The composition is as follows: Cu is 0.1 to 3 atomic%, M ′ is 0.1
-30 atomic% (M 'is at least one element selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo), B is 25 atomic% or less, and Y is 0.15 atomic% in total. The following (however, Y is C, P, O,
One or more elements selected from the group consisting of S, N)
An ultra-microcrystalline soft magnetic alloy having excellent heat resistance, with the balance being Fe and heat resistance.
計は5〜30原子%であることを特徴とする特許請求の範
囲第1項に記載の耐熱性に優れた超微結晶軟磁性合金。2. The ultra-fine heat-resistant ultra-fine alloy according to claim 1, wherein the content of Si is 30 atomic% or less, and the total of Si and B is 5 to 30 atomic%. Crystal soft magnetic alloy.
n,Al,白金属元素,Zn,Sn,Ge,Gaからなる群から選ばれた
少なくとも1種の元素)を含有することを特徴とする特
許請求の範囲第1項または第2項のいずれかに記載の耐
熱性に優れた超微結晶軟磁性合金。3. M ″ of 10 atomic% or less (where M ″ is V, Cr, M
3. At least one element selected from the group consisting of n, Al, a white metal element, Zn, Sn, Ge, and Ga). 2. A microcrystalline soft magnetic alloy having excellent heat resistance according to 1.).
i、aは0.1以下)に置換したことを特徴とする特許請求
の範囲第1項乃至第3項のいずれか1項に記載の耐熱性
に優れた超微結晶軟磁性合金。(4) Fe is Fe 1-a M a (where M is Co and / or N)
4. The microcrystalline soft magnetic alloy with excellent heat resistance according to claim 1, wherein i and a are each 0.1 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63113966A JP2713364B2 (en) | 1988-05-11 | 1988-05-11 | Ultra-microcrystalline soft magnetic alloy with excellent heat resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63113966A JP2713364B2 (en) | 1988-05-11 | 1988-05-11 | Ultra-microcrystalline soft magnetic alloy with excellent heat resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01287250A JPH01287250A (en) | 1989-11-17 |
JP2713364B2 true JP2713364B2 (en) | 1998-02-16 |
Family
ID=14625673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63113966A Expired - Lifetime JP2713364B2 (en) | 1988-05-11 | 1988-05-11 | Ultra-microcrystalline soft magnetic alloy with excellent heat resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2713364B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2823204B2 (en) * | 1988-05-17 | 1998-11-11 | 株式会社東芝 | Soft magnetic alloy |
JP2823203B2 (en) * | 1988-05-17 | 1998-11-11 | 株式会社東芝 | Fe-based soft magnetic alloy |
JP2713980B2 (en) * | 1988-05-17 | 1998-02-16 | 株式会社東芝 | Fe-based soft magnetic alloy |
JP2778697B2 (en) * | 1988-06-13 | 1998-07-23 | 株式会社東芝 | Fe-based soft magnetic alloy |
JPH0653051A (en) * | 1992-06-17 | 1994-02-25 | Okaya Electric Ind Co Ltd | Noise filter |
JP3389972B2 (en) * | 1993-06-18 | 2003-03-24 | 日立金属株式会社 | Nanocrystalline alloy ribbon with improved asymmetry of BH loop and method for producing magnetic core and nanocrystalline alloy ribbon |
GB9525875D0 (en) * | 1995-12-18 | 1996-02-21 | Telcon Ltd | Soft magnetic alloys |
JP3396455B2 (en) * | 1999-06-22 | 2003-04-14 | アルプス電気株式会社 | Soft magnetic film, method of manufacturing the same, and thin-film magnetic head using the soft magnetic film |
FR2877486B1 (en) * | 2004-10-29 | 2007-03-30 | Imphy Alloys Sa | NANOCRYSTALLINE TORE FOR CURRENT SENSOR, SINGLE AND DOUBLE FLOOR ENERGY METERS AND CURRENT PROBES INCORPORATING SAME |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2667402B2 (en) * | 1987-08-06 | 1997-10-27 | 日立金属株式会社 | Fe-based soft magnetic alloy |
-
1988
- 1988-05-11 JP JP63113966A patent/JP2713364B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01287250A (en) | 1989-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3437573B2 (en) | Fe-Ni based soft magnetic alloy having nanocrystalline structure | |
JPH044393B2 (en) | ||
JP2573606B2 (en) | Magnetic core and manufacturing method thereof | |
JPH03219009A (en) | Production of fe-base soft-magnetic alloy | |
JPH0734207A (en) | Nano-crystal alloy excellent in pulse decay characteristic, choking coil, noise filter using same, and their production | |
JP2672306B2 (en) | Fe-based amorphous alloy | |
JP2710938B2 (en) | High saturation magnetic flux density soft magnetic alloy | |
JP3357386B2 (en) | Soft magnetic alloy, method for producing the same, and magnetic core | |
JP2713364B2 (en) | Ultra-microcrystalline soft magnetic alloy with excellent heat resistance | |
JP3231149B2 (en) | Noise filter | |
JP2667402B2 (en) | Fe-based soft magnetic alloy | |
JPH0711396A (en) | Fe base soft magnetic alloy | |
JPH07103453B2 (en) | Alloy with excellent permeability and method for producing the same | |
JP2713373B2 (en) | Magnetic core | |
JP2000119821A (en) | Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same | |
JPH0768604B2 (en) | Fe-based magnetic alloy | |
JPH0867911A (en) | Method for heat-treating nano-crystalline magnetic alloy | |
JP2713714B2 (en) | Fe-based magnetic alloy | |
JP2934471B2 (en) | Ultra-microcrystalline magnetic alloy and its manufacturing method | |
JPH0570901A (en) | Fe base soft magnetic alloy | |
JPH1046301A (en) | Fe base magnetic alloy thin strip and magnetic core | |
JP2812574B2 (en) | Low frequency transformer | |
JP3228427B2 (en) | Ultra-microcrystalline soft magnetic alloy | |
JPH0499253A (en) | Iron-based soft magnetic alloy | |
JPH0610105A (en) | Fe base soft magnetic alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081031 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081031 Year of fee payment: 11 |