JP2712631B2 - Soft magnetic thin film and magnetic head - Google Patents
Soft magnetic thin film and magnetic headInfo
- Publication number
- JP2712631B2 JP2712631B2 JP24833389A JP24833389A JP2712631B2 JP 2712631 B2 JP2712631 B2 JP 2712631B2 JP 24833389 A JP24833389 A JP 24833389A JP 24833389 A JP24833389 A JP 24833389A JP 2712631 B2 JP2712631 B2 JP 2712631B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- film
- thin film
- layer
- grain size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、磁気記録装置等に使用される磁気ヘッド及
びその磁気ヘッドに用いられる軟磁性薄膜に関するもの
である。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic head used for a magnetic recording device or the like and a soft magnetic thin film used for the magnetic head.
従来の技術 近年、磁気記録装置の小型化、大容量化にともない、
高密度化の要求が高く種々の開発がなされている。媒体
は、高保磁力で高飽和磁束密度化が必要である。この条
件にかなうものとして、酸化物の微粒子を塗布した媒体
から、磁束密度の高い強磁性薄膜を真空装置にて作製し
た媒体へ移行しつつある。この様な媒体を十分に記録す
る能力をもつ磁気ヘッドは、磁気的に飽和することなく
高い記録磁界を出す必要がある。この為には、磁気ヘッ
ドが出来るだけ高い飽和磁束密度を持つ材料から構成さ
れる必要がある。一般に、磁気ヘッドは、軟磁性材料で
あるフェライトから構成され、媒体対抗面に磁気ギャッ
プを有し、この磁気ギャップにて記録再生を行ってい
る。高密度媒体を記録する場合、磁気飽和を防ぐため、
フェライトより飽和磁束密度高い軟磁性薄膜を少なくと
も磁気コアの一部に用いることが進められている。磁気
ヘッドの磁気回路全てを軟磁性薄膜にて構成した薄膜磁
気ヘッドや、飽和の起こりやすいギャップ近傍のみに軟
磁性薄膜を用いた磁気ヘッドの開発が精力的に進められ
ている。この時、磁気ヘッドの特性を左右する要因は、
この軟磁性薄膜の特性である。この薄膜は、高飽和磁束
密度を有するとともに、高い初透磁率を有する事が求め
られる。軟磁性薄膜として、非晶質合金、Ni−Fe、Fe−
Al−Si等のFe系合金の開発が進められ、特性向上が図ら
れつつある。2. Description of the Related Art In recent years, as magnetic recording devices have become smaller and larger in capacity,
There is a high demand for higher density and various developments have been made. The medium needs to have a high coercive force and a high saturation magnetic flux density. In order to satisfy this condition, the medium is shifting from a medium coated with oxide fine particles to a medium in which a ferromagnetic thin film having a high magnetic flux density is manufactured by a vacuum apparatus. A magnetic head capable of sufficiently recording such a medium needs to output a high recording magnetic field without being magnetically saturated. For this purpose, the magnetic head must be made of a material having a saturation magnetic flux density as high as possible. Generally, a magnetic head is made of ferrite, which is a soft magnetic material, has a magnetic gap on a surface facing a medium, and performs recording and reproduction using this magnetic gap. When recording high-density media, to prevent magnetic saturation,
The use of a soft magnetic thin film having a higher saturation magnetic flux density than ferrite for at least a part of a magnetic core has been promoted. The development of a thin-film magnetic head in which the entire magnetic circuit of the magnetic head is formed of a soft magnetic thin film and a magnetic head using a soft magnetic thin film only in the vicinity of a gap where saturation is likely to occur are being vigorously pursued. At this time, the factors that affect the characteristics of the magnetic head are:
This is a characteristic of the soft magnetic thin film. This thin film is required to have a high saturation magnetic flux density and a high initial magnetic permeability. As soft magnetic thin film, amorphous alloy, Ni-Fe, Fe-
The development of Fe-based alloys such as Al-Si has been promoted, and their properties are being improved.
これらの軟磁性薄膜の中で飽和磁束密度が10kGと高
く、しかも耐摩耗性、耐熱性に優れているFe−Ai−Si系
軟磁性薄膜が、最近多用されつつある。この軟磁性薄膜
の磁気特性は、従来より膜組成によって決定される結晶
磁気異方性や磁歪に強く影響されることが知られてい
る。よって、優れた磁気特性を得るためには、結晶磁気
異方性や磁歪を小さくする組成を決定することが必要で
ある。Among these soft magnetic thin films, Fe-Ai-Si-based soft magnetic thin films having a high saturation magnetic flux density of 10 kG and excellent wear resistance and heat resistance have recently been widely used. It has been known that the magnetic properties of this soft magnetic thin film are conventionally strongly influenced by crystal magnetic anisotropy and magnetostriction determined by the film composition. Therefore, in order to obtain excellent magnetic properties, it is necessary to determine a composition that reduces crystal magnetic anisotropy and magnetostriction.
膜組成を最適化すると共に、結晶構造も考慮する必要
がある。Fe−Al−Si系軟磁性薄膜は、結晶質材料である
ため下地の影響が強く、基板を選択することにより結晶
構造を制御し、その磁気特性を改善することが図られて
いる。本出願人は、Fe−Al−Si系軟磁性薄膜の特性改善
を図るため、例えば、特願昭60−241320 または、63−
241315等を開示してきた。これによると、(211)面が
優先配向した膜ほど優れた磁気特性の膜が得られてい
る。In addition to optimizing the film composition, it is necessary to consider the crystal structure. Since the Fe-Al-Si soft magnetic thin film is a crystalline material, the influence of the underlayer is strong, and the crystal structure is controlled by selecting a substrate to improve its magnetic properties. The present applicant has proposed, for example, Japanese Patent Application No. 60-241320 or 63-63 to improve the characteristics of Fe-Al-Si soft magnetic thin films.
241315 etc. have been disclosed. According to this, a film having excellent magnetic properties is obtained as the film in which the (211) plane is preferentially oriented.
発明が解決しようとする課題 しかしながら従来の軟磁性薄膜では形成した作成条件
等によって初透磁率に大きなばらつきが生じ、この従来
の軟磁性薄膜を磁気ヘッドの媒体対向面に用いたりまた
は、全ての薄膜に形成された磁気ヘッドのコアに用いた
場合、磁気特性のばらつきが生じるという問題点を有し
ていた。Problems to be Solved by the Invention However, in the conventional soft magnetic thin film, the initial magnetic permeability greatly varies depending on the forming conditions and the like, and the conventional soft magnetic thin film is used for the medium facing surface of the magnetic head, or all the thin films are used. When used for the core of the magnetic head formed in the above, there is a problem that the magnetic characteristics vary.
課題を解決するための手段 Fe−Al−Siを(211)面または(110)面に優先配向さ
せ、しかも、その結晶粒径をそれぞれ250Å以下及び290
Å以上310Å以下にした。Means for Solving the Problems Fe-Al-Si is preferentially oriented to the (211) plane or the (110) plane, and its crystal grain size is 250 ° or less and 290 or less, respectively.
It was set to more than Å and less than 310Å.
作用 この構成により、薄膜の結晶構造をよくする事ができ
るとともに、薄膜に応力が発生しない。。Operation With this configuration, the crystal structure of the thin film can be improved, and no stress is generated in the thin film. .
実 施 例 以下に、本発明の実施例を挙げ詳細に説明する。Examples Hereinafter, examples of the present invention will be described in detail.
Fe−Al−Si系軟磁性薄膜は、スパッターリング法によ
り成膜した。Fe−Al−Si薄膜は、膜組成以外に結晶構造
に依っても、その磁気特性は影響される。故に、結晶構
造の変化をもたらす成膜条件、及び、装置の種類によ
り、磁気特性は影響をうける。第1図は、様々な成膜条
件、装置により成膜した膜に於て、x線回折により求め
た(211)面の配向度と初透磁率の関係を示す。ここで
横軸には(211)面の配向度、縦軸には初透磁率をとっ
ている。配向度とはX線回折によって求めた(211)面
のX線強度をM(211)とし、(110)面のX強度をM
(110)とした時に次式によって表される。ここで配向
度をZとすると、 Z=M(211)/(M(211)+M(110)) ここで配向度Zが0というのは(110)面が優先配向し
てできた膜である事を意味し、配向度Mが1という事は
(211)面が優先は移行しているという事を意味してい
る。(211)面に優先配向するほど、初透磁率は、高く
なっている。しかし、優先配向した膜でもその初透磁率
は、1300から5000まで非常に大きくバラつきを生じてい
る。その原因は、成膜条件、または、装置の種類に大き
く依存している。The Fe-Al-Si soft magnetic thin film was formed by a sputtering method. The magnetic properties of the Fe—Al—Si thin film are affected not only by the film composition but also by the crystal structure. Therefore, the magnetic characteristics are affected by the film formation conditions that cause a change in the crystal structure and the type of the apparatus. FIG. 1 shows the relationship between the degree of orientation of the (211) plane and initial magnetic permeability obtained by x-ray diffraction in films formed under various film forming conditions and apparatuses. Here, the horizontal axis indicates the degree of orientation of the (211) plane, and the vertical axis indicates the initial magnetic permeability. The degree of orientation means that the X-ray intensity of the (211) plane obtained by X-ray diffraction is M (211), and the X intensity of the (110) plane is M
When (110) is used, it is expressed by the following equation. Here, when the degree of orientation is Z, Z = M (211) / (M (211) + M (110)) Here, the case where the degree of orientation Z is 0 is a film formed by preferentially orienting the (110) plane. This means that the orientation degree M of 1 means that the (211) plane has shifted priority. As the (211) plane is preferentially oriented, the initial magnetic permeability increases. However, the initial magnetic permeability of the preferentially oriented film varies greatly from 1300 to 5000. The cause largely depends on the film forming conditions or the type of the apparatus.
上記の種々の膜について、X線回折の半値幅により結
晶粒径を測定し、初透磁率との関係を調べたところ、第
2図のようになった。With respect to the various films described above, the crystal grain size was measured based on the half width of X-ray diffraction, and the relationship with the initial magnetic permeability was examined. The result was as shown in FIG.
(211)面が優先配向した膜では、結晶粒径の微細化
と共に初透磁率は高くなっている。一方、(110)面が
優先配向した膜では、結晶粒径が300Åで最大の初透磁
率を示している。この事は(211)面が優先配向した膜
と(110)面が優先配向した膜では膜最も良好な磁気特
性を示す結晶粒径に違いがある事を示している。磁気ヘ
ッド効率の面から考えると、初透磁率が高いほど効率が
高く、高い出力を得る事ができる。90以上の効率を得る
ためには初透磁率が2000以上必要である。この初透磁率
を得るためには、(211)優先配向膜では250Å以下、
(110)優先配向膜では、290Å以上310Å以下の膜を作
製することが、高い初透磁率をもたらし効率の良い磁気
ヘッドを作成する事ができる。In the film in which the (211) plane is preferentially oriented, the initial magnetic permeability increases with the refinement of the crystal grain size. On the other hand, in the film in which the (110) plane is preferentially oriented, the maximum initial magnetic permeability is shown at a crystal grain size of 300 °. This indicates that there is a difference in the crystal grain size showing the best magnetic properties between the film in which the (211) plane is preferentially oriented and the film in which the (110) plane is preferentially oriented. Considering the magnetic head efficiency, the higher the initial magnetic permeability, the higher the efficiency and the higher the output. To obtain an efficiency of 90 or more, an initial magnetic permeability of 2000 or more is required. In order to obtain this initial magnetic permeability, the (211) preferred orientation film should be 250 ° or less,
For the (110) preferential orientation film, producing a film having a thickness of 290 ° or more and 310 ° or less provides a high initial magnetic permeability and can produce an efficient magnetic head.
結晶粒径と格子定数の関係を第3図に示す。上記結晶
粒径であるならば、各々の膜の格子定数は、バルクセン
ダスト材料のそれに等しくなっている。このバルクセン
ダスト材料は、十分に熱処理されており応力が非常に小
さいものとなっている。この様に(211)面が優先配向
した膜での結晶粒径を150Å以下、(110)面が優先配向
した膜での結晶粒径が290Å以上310Å以下のとき応力が
非常に小さい物となる。第4図はこの様に形成された軟
磁性薄膜を用いた磁気ヘッドを示す斜視図である。第4
図において、1,2はそれぞれフェライト等の磁性材料に
よって構成されたコアで、コア2には巻線溝2aが設けら
れている。3はコア1の上に形成され金属磁性膜で、金
属磁性膜3はFe−Al−Siによって形成されている。また
金属磁性膜3は(211)面が優先配向し、結晶粒径を150
Å以下になるように作成した。またこの金属磁性膜3は
前述したように、(110)面が優先配向し、結晶粒径が2
90Å以上310Å以下になるように形成しても同様な効果
が得られる。4は磁気ギャップとなる非磁性物である。
この様に形成された磁気ヘッドは、金属磁性膜3の初透
磁率が良くなり、しかもコアに加える応力が小さくな
り、しかも出力が大きくなり磁気特性が良くなる。また
疑似ギャップによる疑似出力もあまりでなかった。FIG. 3 shows the relationship between the crystal grain size and the lattice constant. Given the above grain size, the lattice constant of each film is equal to that of the bulk sendust material. This bulk sendust material has been sufficiently heat treated and has very low stress. As described above, when the crystal grain size of the film with the (211) plane preferentially oriented is 150 mm or less, and the crystal grain size of the film with the (110) plane preferentially oriented is 290 mm or more and 310 mm or less, the stress becomes very small. . FIG. 4 is a perspective view showing a magnetic head using the soft magnetic thin film thus formed. 4th
In the figure, reference numerals 1 and 2 denote cores each made of a magnetic material such as ferrite, and the core 2 is provided with a winding groove 2a. Reference numeral 3 denotes a metal magnetic film formed on the core 1, and the metal magnetic film 3 is formed of Fe-Al-Si. The metal magnetic film 3 has the (211) plane preferentially oriented and has a crystal grain size of 150 mm.
し た Created as below. As described above, the (110) plane is preferentially oriented and the crystal grain size of the metal magnetic film 3 is 2 as described above.
The same effect can be obtained even if it is formed to be 90 ° or more and 310 ° or less. Numeral 4 is a non-magnetic material serving as a magnetic gap.
In the magnetic head formed as described above, the initial magnetic permeability of the metal magnetic film 3 is improved, the stress applied to the core is reduced, and the output is increased, and the magnetic characteristics are improved. Also, the pseudo output by the pseudo gap was not so much.
そこで、(211)優先配向膜の中で、結晶粒径の異な
る3種のFe−Al−Si膜を用いて、第4図に示す構造の磁
気ヘッドを3種類作成して評価した。第1の磁気ヘッド
は、粒径150Åの金属磁性膜を、第2の磁気ヘッドは粒
径250Åの金属磁性膜を、第3の磁気ヘッドは、350Åの
金属磁性膜を用いている。これら3種の磁気ヘッド出力
を比較すると、第1の磁気ヘッドのそれを1とすると、
第2の磁気ヘッドは、0.92、第3の磁気ヘッドは、0.55
となる。この様に、最適な結晶粒径を持つ薄膜を用いヘ
ッドを作製すれば、高い効率つまり高い出力を得る事が
できる磁気ヘッドを作製することが出来る。また第1の
磁気ヘッド、及び第2の磁気ヘッドはフェライトとFe−
Al−Si薄膜の界面に発生し易い疑似出力は、殆ど検出さ
れない。なぜならば、使用される薄膜が応力が小さく磁
気特性が良好であり、さらに金属磁性膜の応力によるフ
ェライトへのダメージも少ないためである。この様にFe
−Al−Siでできた磁性薄膜の結晶粒径を適正化する事に
より、第4図に示すような磁気ヘッドの出力だけでなく
磁気ヘッドに発生し易い疑似出力をも低減する事ができ
る。Therefore, three types of magnetic heads having the structure shown in FIG. 4 were prepared and evaluated by using three types of Fe—Al—Si films having different crystal grain sizes in the (211) preferred orientation film. The first magnetic head uses a metal magnetic film having a particle size of 150 °, the second magnetic head uses a metal magnetic film having a particle size of 250 °, and the third magnetic head uses a metal magnetic film having a particle size of 350 °. Comparing these three types of magnetic head outputs, assuming that that of the first magnetic head is 1,
The second magnetic head is 0.92 and the third magnetic head is 0.55
Becomes As described above, if a head is manufactured using a thin film having an optimum crystal grain size, a magnetic head that can obtain high efficiency, that is, a high output, can be manufactured. The first magnetic head and the second magnetic head are made of ferrite and Fe-
Almost no pseudo output easily generated at the interface of the Al-Si thin film is detected. The reason for this is that the thin film used has a small stress and good magnetic properties, and furthermore, damage to the ferrite due to the stress of the metal magnetic film is small. Fe
By optimizing the crystal grain size of the magnetic thin film made of -Al-Si, it is possible to reduce not only the output of the magnetic head as shown in FIG.
また他の実施例を第5図に示す。第5図は全てを薄膜
によって構成た磁気ヘッドである。第5図において5は
非磁性物によって出来た基板、6は基板5の上に形成さ
れ、Fe−Al−Siによって構成された下部磁性層で、下部
磁性層6は(211)面が優先配向し、結晶粒径を150Å以
下になるように作成した。またこの下部磁性層6は前述
したように、(110)面が優先配向し、結晶粒径が290Å
以上310Å以下になるように形成しても同様な効果が得
られる。7は下部磁性層6の上に形成されたギャップ
層、8はギャップ層7の上に形成された絶縁膜、9は絶
縁膜8の上に形成されたコイル層、10はコイル層9をお
応用に絶縁膜8の上に形成された絶縁膜、11は絶縁膜9
の上に形成され、Fe−Al−Siによって形成された上部磁
性層で、上部磁性層11は(211)面が優先配向し、結晶
粒径を150Å以下になるように作成した。またこの上部
磁性層11は前述したように、(110)面が優先配向し、
結晶粒径が290Å以上310Å以下になるように形成しても
同様な効果が得られる。12は上部磁性層11の上に形成さ
れた保護層である。この様に形成された磁気ヘッドは上
部磁性層11及び下部磁性層6を(211)面が優先配向
し、結晶粒径を150Å以下になるように作成したので初
透磁率が大きく出力を大きくできる。また、下部磁性層
6及び上部磁性層11を(110)面が優先配向し、結晶粒
径が290Å以上310Å以下になるように形成しても同様な
効果が得られる。Another embodiment is shown in FIG. FIG. 5 shows a magnetic head composed entirely of thin films. In FIG. 5, 5 is a substrate made of a nonmagnetic material, 6 is a lower magnetic layer formed on the substrate 5 and made of Fe-Al-Si, and the lower magnetic layer 6 has a (211) plane preferential orientation. Then, the crystal grain size was made to be 150 ° or less. As described above, the lower magnetic layer 6 has the (110) plane preferentially oriented and has a crystal grain size of 290Å.
The same effect can be obtained even if it is formed to be not less than 310 °. 7 is a gap layer formed on the lower magnetic layer 6, 8 is an insulating film formed on the gap layer 7, 9 is a coil layer formed on the insulating film 8, and 10 is a coil layer 9. An insulating film formed on the insulating film 8 for application, 11 is an insulating film 9
The upper magnetic layer 11 was formed so that the (211) plane was preferentially oriented and the crystal grain size was 150 ° or less. As described above, the upper magnetic layer 11 has the (110) plane preferentially oriented,
Similar effects can be obtained even if the crystal grain size is formed to be 290 ° or more and 310 ° or less. Reference numeral 12 denotes a protective layer formed on the upper magnetic layer 11. In the magnetic head thus formed, the upper magnetic layer 11 and the lower magnetic layer 6 are formed such that the (211) plane is preferentially oriented and the crystal grain size is 150 ° or less, so that the initial magnetic permeability is large and the output can be increased. . Similar effects can be obtained by forming the lower magnetic layer 6 and the upper magnetic layer 11 such that the (110) plane is preferentially oriented and the crystal grain size is 290 ° or more and 310 ° or less.
発明の効果 Fe−Al−Si薄膜を(211)面優先配向膜の場合250Å以
下、(110)面優先配向膜の場合290Å以上310Å以下の
結晶粒径にすることにより、応力が小さく磁気特性の良
い膜を提供することが出来る。Effects of the Invention By making the Fe-Al-Si thin film a crystal grain size of 250 ° or less for the (211) plane preferred orientation film and 290 ° or more and 310 ° or less for the (110) plane preferred orientation film, the stress is small and the magnetic properties are reduced. Good film can be provided.
第1図は配向度と初透磁率の関係示すグラフ、第2図は
結晶粒径と初透磁率の関係を示すグラフ、第3図は格子
定数と結晶粒径の関係を示すグラフ第4図は本発明の一
実施例における磁気ヘッドの斜視図、第5図は他の実施
例を示す断面図である。 1,……コア 2a……巻線溝 3……金属磁性膜 4……非磁性物 5……基板 6……下部磁性層 7……ギャップ層 8……絶縁膜 9……コイル層 10……絶縁膜 11……上部磁性層 12……保護層1 is a graph showing the relationship between the degree of orientation and the initial magnetic permeability, FIG. 2 is a graph showing the relationship between the crystal grain size and the initial magnetic permeability, and FIG. 3 is a graph showing the relationship between the lattice constant and the crystal grain size. FIG. 5 is a perspective view of a magnetic head according to one embodiment of the present invention, and FIG. 5 is a sectional view showing another embodiment. 1, core 2a winding groove 3 metal magnetic film 4 non-magnetic material 5 substrate 6 lower magnetic layer 7 gap layer 8 insulating film 9 coil layer 10 ... insulating film 11 ... upper magnetic layer 12 ... protective layer
Claims (4)
1)面が優先配向した結晶構造を有し、結晶粒径が250Å
以下である事を特徴とする軟磁性薄膜。(1) The material is formed of an Fe-Al-Si-based material,
1) It has a crystal structure with preferentially oriented planes and a crystal grain size of 250 mm
A soft magnetic thin film characterized by the following.
0)面が優先配向した結晶構造を有し、結晶粒径が290Å
以上310Å以下である事を特徴とする軟磁性薄膜。2. The method according to claim 1, which is formed of a Fe--Al--Si based material.
0) It has a crystal structure in which the plane is preferentially oriented, and the crystal grain size is 290 mm
A soft magnetic thin film characterized by being not less than 310 mm.
第1項又は請求項第2項記載の軟磁性薄膜と、前記軟磁
性薄膜に磁気ギャップとなる非磁性物を介して付き合わ
された他のコアを備えた事を特徴とする磁気ヘッド。3. A soft magnetic thin film according to claim 1 formed on said core, said soft magnetic thin film being formed on said core via a non-magnetic material serving as a magnetic gap. A magnetic head characterized by having another core formed.
性層と、前記下部磁性膜の上に形成され、磁気ギャップ
となるギャップ層と、前記ギャップ層の上に設けられ、
絶縁層ではさまれたコイル層と、前記コイルそうの上に
形成され、前記下部磁性層とともに磁気回路を構成する
様に設けられた上部磁性層を備え、前記下部磁性層及び
前記上部磁性層のうち少なくとも一方を請求項第1項又
は請求項第2項記載の軟磁性薄膜によって構成した事を
特徴とする磁気ヘッド。4. A substrate, a lower magnetic layer formed on the substrate, a gap layer formed on the lower magnetic film and serving as a magnetic gap, and provided on the gap layer;
A coil layer sandwiched between insulating layers, and an upper magnetic layer formed on the coil coil and provided so as to form a magnetic circuit with the lower magnetic layer, wherein the lower magnetic layer and the upper magnetic layer 3. A magnetic head comprising at least one of the soft magnetic thin films according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24833389A JP2712631B2 (en) | 1989-09-25 | 1989-09-25 | Soft magnetic thin film and magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24833389A JP2712631B2 (en) | 1989-09-25 | 1989-09-25 | Soft magnetic thin film and magnetic head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03109703A JPH03109703A (en) | 1991-05-09 |
JP2712631B2 true JP2712631B2 (en) | 1998-02-16 |
Family
ID=17176529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24833389A Expired - Fee Related JP2712631B2 (en) | 1989-09-25 | 1989-09-25 | Soft magnetic thin film and magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2712631B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2769403B2 (en) * | 1992-02-21 | 1998-06-25 | シーケーディ株式会社 | Magnetoresistive element |
MY119423A (en) * | 1993-01-15 | 2005-05-31 | Hitachi Global Storage Tech Nl | Layered magnetic structure for use in a magnetic head |
JPH10320714A (en) * | 1997-05-16 | 1998-12-04 | Tdk Corp | Thin film magnetic head |
-
1989
- 1989-09-25 JP JP24833389A patent/JP2712631B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03109703A (en) | 1991-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6157526A (en) | Magnetoresistive head and magnetic disk apparatus | |
JP4317717B2 (en) | Magnetic disk drive using thin film magnetic head for perpendicular recording | |
US5126907A (en) | Thin film magnetic head having at least one magnetic core member made at least partly of a material having a high saturation magnetic flux density | |
US5920979A (en) | Method of forming an inductive magnetic head with approximate zero magnetostriction | |
EP0584768B1 (en) | Method for making soft magnetic film | |
US5068147A (en) | Soft magnetic thin film comprising alternate layers of iron carbide with either iron, iron nitride or iron carbon-nitride | |
US6210543B1 (en) | Combination magnetoresistive/inductive thin film magnetic head and its manufacturing method | |
JP3612087B2 (en) | Magnetic recording medium | |
US5900323A (en) | Magnetic recording medium and magnetic recording drive | |
JP2712631B2 (en) | Soft magnetic thin film and magnetic head | |
JP2007335788A (en) | Magnetic shield and manufacturing method thereof, and thin-film magnetic head | |
JP2003203322A (en) | Information recording medium and information storage device | |
JPS60132305A (en) | Iron-nitrogen laminated magnetic film and magnetic head using the same | |
JPH0498608A (en) | Magnetic head | |
JP3232592B2 (en) | Magnetic head | |
JPH06200364A (en) | Magnetic multilayer film and magneto-resistance effect element | |
JP4286792B2 (en) | Magnetic head | |
JPH05258272A (en) | Prependicular magnetic recording medium and its production | |
JPH05325135A (en) | Thin film magnetic head | |
WO2004001779A1 (en) | Method of producing nife alloy films having magnetic anisotropy and magnetic storage media including such films | |
JPH0532809B2 (en) | ||
US20070188917A1 (en) | Layered magnetic film and magnetic head | |
JPH03203008A (en) | Production of laminated film of fe-si-al ferromagnetic alloy for magnetic head | |
JP3653039B2 (en) | Magnetic recording / reproducing device | |
JPH07153020A (en) | Magnetic head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |