JP2710311B2 - Ceramic insulation material - Google Patents
Ceramic insulation materialInfo
- Publication number
- JP2710311B2 JP2710311B2 JP62100268A JP10026887A JP2710311B2 JP 2710311 B2 JP2710311 B2 JP 2710311B2 JP 62100268 A JP62100268 A JP 62100268A JP 10026887 A JP10026887 A JP 10026887A JP 2710311 B2 JP2710311 B2 JP 2710311B2
- Authority
- JP
- Japan
- Prior art keywords
- insulating material
- powder
- weight
- ceramic insulating
- sio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0306—Inorganic insulating substrates, e.g. ceramic, glass
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はセラミック回路基板に使用できるセラミック
絶縁材料に関するものである。
(背景技術)
セラミック回路基板に使用されるセラミック絶縁材料
としては、緻密な焼成体が得られ、かつ優れた物理的特
性を有する高品質のものであることが要求される。具体
的には、演算素子などの信号の伝播時間短縮のために比
誘電率が低いのがよく、またシリコンチップとの間の熱
応力の関係で熱膨張係数がシリコンチップの熱膨張係数
に近いもの程よく、さらには強度上抗折強度の高いもの
がよい等種々の特性が要求される。
従来、セラミック回路基板に使用されるセラミック絶
縁材料としてはアルミナセラミックが一般的であった。
しかし、アルミナは比誘電率が約9(1MHz)と高いた
め、演算素子などの信号の伝播遅延時間が大きい。ま
た、熱膨張係数が7.0×10-6/℃シリコンチップの3.5×
10-6/℃に比して大きく異なるため、シリコンチップと
セラミック基板との間の熱応力によりシリコンチップに
クラックが入ったり、シリコンチップが剥がれたりする
問題点がある。アルミナセラミックに対するこられらの
問題点は、最近の集積回路に要求されている高密度化、
高速化、高信頼性化の障害となっている。
一方、比較的比誘電率及び熱膨張係数とも小さい材料
として、最近注目されているものの1つに、Al2O3とSiO
2の二成分系から成る化合物のムライト(3Al2O3・2Si
O2)がある。ムライトは比誘電率が6.5〜7.0(1MHz)、
熱膨張係数が5.0×10-6/℃という特性を有している。
しかし、従来のムライト原料粉末は粒径が大きく、1600
℃以下の温度では、充分な緻密化は達成されない。
さらに従来のムライトを含むアルミナ−シリカ系原料
粉末は、純度が低く、原料粉末中にNa、K、Li等の不純
物を多く含み、焼結体の絶縁特性、強度および半導体素
子等に悪影響を及ぼしているという問題点がある。
(発明の目的)
本発明は上記問題点を解消すべくなされたものであ
り、その目的とするとことは、集積回路の高速化、高密
度化にともない、従来のムライト質焼結体より低温で焼
成が可能であり、比誘電率が低く、熱膨張係数がシリコ
ンのそれに近く、しかも基板材料として充分な抗折強度
を有するセラミック絶縁材料を提供するにある。
(問題点を解決するための手段)
上記目的を達成すべく検討を重ねた結果、微細なAl2O
3粉末とSiO2粉末とを、ムライト組成よりもSiO2が多く
なるように混合した原料粉末を焼成することによって、
低温焼成で緻密なセラミック絶縁材料を得ることができ
ることを見出し、本発明に到達した。
すなわち、本発明は、平均粒径が4μm以下のAl2O3
粉末とSiO2粉末との混合粉末を1600℃以下で焼成してな
るセラミック絶縁材料であって、前記混合粉末中のAl成
分とSi成分とが、酸化物換算で下記範囲内において実質
的に100重量%となり、かつ前記セラミック絶縁材料の
構成相がムライト相とシリケートガラス相とからなるこ
とを特徴とするセラミック絶縁材料にある。
10重量%≦Al2O3<60重量%
90重量%≧SiO2>40重量%
また、本発明は、平均粒径が4μm以下のAl2O3粉末
とSiO2粉末との混合粉末に、アルカリ土類元素の酸化物
を混合してなる原料粉末をを1550℃以下で焼成して成る
セラミック絶縁材料であって、
前記Al2O3粉末とSiO2粉末との混合粉末中のAl成分とS
i成分とが、酸化物換算で下記範囲内において実質的に1
00重量%となる共に、アルカリ土類元素の酸化物が、前
記Al2O3粉末とSiO2粉末との混合粉末に対し、0.5〜5.0
重量%の範囲で混合され、かつ前記セラミック絶縁材料
の構成相がムライト相とシリケートガラス相とからなる
ことを特徴とするセラミック絶縁材料でもある。
10重量%≦Al2O3<60重量%
90重量%≧SiO2>40重量%
一般にアルミナ(Al2O3)単独の場合の焼成温度は160
0℃よりもかなり高い温度を必要とする。そしてAl2O3に
シリカ(SiO2)を混入させることで焼成温度を低下させ
ることができる。この場合、SiO2が40重量%を超えると
焼成温度低下の幅が大きくなってくる。しかし、従来の
ように粒径が数μm以上と大きく、かつ焼結体の絶縁
性、強度および半導体素子等に悪影響を及ぼす不純物濃
度の高いAl2O3とSiO2とを単に混合させて焼成するので
は反応性に乏しく、1600℃以下の温度で充分な緻密度を
有するセラミックを得ることはできない。
本発明では、Al2O3とSiO2の粒子の平均粒径が4μm
以下、特に好適には1μm以下となるように調整してい
る。このように両粒子をファイン化することで、両粒子
が分子レベルで混在し、反応性が向上する。また、Al2O
3、SiO2粉末を、Al、Si以外のNa、K、Li等の焼結体の
絶縁性、強度および半導体素子等に悪影響を及ぼす元素
の混入量が2500ppm以下、特に好適には100ppm以下とな
るように純度が高いものに調整することが好ましい。
本発明では、Al2O3、SiO2の原料混合粉末を、Al2O3が
10重量%以上で60重量%未満、SiO2が90重量%以下で40
重量%を超える範囲の間の組成のものとし、前記したム
ライトの組成のものよりSiO2の量が多くなるように設定
して、まず組成的に低温焼成がし易くなるようにしてい
る。
そして、単に両粉末を混合しただけで前記したように
緻密、かつ必要な特性を有している焼結体が得られない
ものであるところを、上記のように両粉末の平均粒径が
4μm以下という条件が相乗的に作用することで1600℃
以下の温度で、緻密かつ所望の特性を有するセラミック
絶縁材料(以下、セラミック材料と称することがある)
が得られることを見い出したのである。
本発明では上記の組成範囲内においてAl2O3とSiO2と
が実質的に100重量%となるようにする。 実質的にと
は前記のNa、K、Li等の不純物元素の所定量の混入は許
容するという意味である。
焼成温度的に見れば、本発明においてもやはりAl2O3
が多くなる程焼成温度が高くなり、約60重量%で1600℃
程度の温度が必要となる。Al2O3が少なくなればなる程
度焼成温度が低くてよく、1300℃程度の低温焼成が可能
となる。しかし、Al2O3が10重量%よりも低くなると抗
折強度が低くなるので好ましくない。
なお本発明の化学組成においても、焼成温度が高い
か、温度保持時間が長いなどの焼成条件によっては、Si
O2の一部がクリストバライトとして析出し、みかけの熱
膨張係数を大きくするなどの特性の低下が起こる。
本発明では、焼成条件を適宜設定することにより、ク
リストバライトを析出させることなしに、すなわちムラ
イト相とシリケートガラス相から成る緻密な焼結体を得
ることを可能としたものである。
また、焼成温度の低減を図るため、焼結体の電気的特
性に悪影響を与えないアルカリ土類元素の酸化物(Ba
O、SrO、MgO、CaOなど)を焼結助剤として0.5〜5.0重量
%添加した結果、焼結性が向上し、一層低温での焼成が
可能となると共に焼結助剤を添加しない場合と同様基板
材料として良好な電気的、熱的、機械的特性を有するこ
とを明らかにした。
本発明で提供されるセラミック材料は、後述する実施
例において示すように、比誘電率(1MHz)が6.1以下の
ものが得られる。これは前記したムライトが6.5〜7.0の
範囲であるのに比して優れ、特にSiO2量を増量すること
で比誘電率(1MHz)が5以下のものが得られる。
熱膨張係数も、後述する実施例において示すように、
1.8〜3.8×10-6/℃(30〜400℃)程度となり、シリコ
ンチップの熱膨張係数(3.5×10-6/℃)に可及的に接
近している。
また抗折強度はAl2O3の量が多い程高いものとなる
が、Al2O3が10重量%程度であっても15kg/mm2以上とな
り、実用上全く問題はない。
前記した原料粉末の調整は、金属アルコキシドを出発
原料として調整することができる。なお他の原料を出発
原料として用いても上記と同様の組成および条件が得ら
れれば本発明に包含されることはいうまでもない。
(実施例)
以下には本発明の具体的な実施例を示す。
なお本発明はこれら実施例に限定されないことはもち
ろんである。
実施例1
アルミニウムイソプロポキシドとメチルシリケートに
濃アンモニア水を加え、PH11で加水分解を行い、Al2O3
とSiO2の混合粉末を得た。これら粉末の粒度は平均粒径
1μm以下であり、また、Al、Si、以外の元素の酸化物
混入量は100ppm以下であった。
Al2O3、SiO2の混合比率は出発原料のアルミニウムイ
ソプロポキシドとメチルシリケートの量を調整すること
で種々変えることができる。
上記のようにして得られた混合粉末を1200℃にて1時
間加熱処理した。この加熱処理によりムライトが一部生
成した。
上記加熱処理した粉末に溶媒を加え、振動ミルにて24
時間粉砕後、乾燥、造粒し、静水加圧法により板状の成
形体を作成した。
成形体を酸化性雰囲気中で最高温度1300℃で4時間保
持して焼成した。
本実施例による、Al2O3とSiO2の種々の組成比率にお
ける各焼結体の焼成密度、比誘電率(1MHz)、熱膨張係
数(30〜400℃)および抗析強度を表1に示す。
なお、同じ組成でもより高温で焼成した場合などに
は、クリストバライトが析出する。クリストバライトが
存在する場合には、比誘電率はやや高くなり、熱膨張係
数は200℃付近の体積変化に伴いみかけ上大きくなる。実施例2
アルミニウムイソプロポキシドとメチルシリケートに
濃アンモニア水を加え、PH11で加水分解を行い、Al2O3
とSiO2の混合粉末を得た。これら粉末の粒度は平均粒径
4μm以下であり、また、Al、Si以外のNa、K、Li等の
焼結体の絶縁性、強度および半導体素子等に悪影響を及
ぼす元素の混入量は2500ppm以下であった。
Al2O3、SiO2の混合比率は出発原料のアルミニウムイ
ソプロポキシドとメチルシリケートの量を調整すること
で種々変えることができる。
上記のようにして得られた混合粉末を1200℃にて1時
間加熱処理した。この加熱処理によりムライトが一部生
成した。
上記加熱処理した粉末をボールミルに入れ、さらに有
機溶剤、結合剤、可塑剤、分散剤を加え、72時間混合し
てスラリーを作成した。真空脱気処理により、スラリー
から気泡を除去した。スラリーをドクターブレード法に
より厚さ0.4〜0.8mmのグリーンシートを作成した。
このグリーンシートを酸化性雰囲気中で最高温度1300
℃で4時間保持して焼成した。
本実施例で得られた焼結体の諸特性は、実施例1で示
した値とほぼ同じであった。
実施例3
アルミニウムイソプロポキシドとメチルシリケートに
濃アンモニア水を加え、PH11で加水分解を行い、Al2O3
とSiO2の混合粉末を得た。これら粉末の粒度は平均粒径
1μm以下であり、また、Al、Si以外のNa、K、Li等の
焼結体の絶縁性、強度および半導体素子等に悪影響を及
ぼす元素の混入量が100ppm以下であった。
Al2O3、SiO2の混合比率は出発原料のアルミニウムイ
ソプロポキシドとメチルシリケートの量を調整すること
で種々変えることができる。
上記のようにして得られた混合粉末を1200℃にて1時
間加熱処理した。この加熱処理によりムライトが一部生
成した。
ここで得られた粉末にMgOを0.5、1.0重量%添加し、
溶媒を加え、振動ミルにて24時間粉砕後、乾燥、造粒
し、静水加圧法により板状の成形体を作成した。
成形体を酸化性雰囲気中で最高温度1550、1500℃で2
時間保持して焼成した。
本実施例による、Al2O3 40重量%、SiO2 59.5および5
9.0重量%の各組成焼結体の焼成密度、比誘電率(1MH
z)、熱膨張係数(30〜400℃)及び抗析強度を表2に示
す。
(発明の効果)
本発明により、粒径4μm以下の粉体であって、酸化
物換算でAl2O3が10重量%で60重量%未満、SiO2が90重
量%以下で40重量%を超える範囲の化学組成とすること
により、1600℃以下の低温で焼成可能で、比誘電率が低
く、シリコンに近い熱膨張係数を有し、さらに基板材料
として充分使用可能な抗折強度を有するセラミック絶縁
材料が提供された。
特にクリストバライトが析出しない低温度での焼成が
可能となり、焼成後の構成相がムライト相およびシリケ
ートガラス相からなる緻密な焼結体の提供が可能となっ
た。
本発明によるセラミック絶縁材料は、今後の回路基板
に要求される高速化、高密度化、大型化に充分対応でき
るセラミック絶縁材料として使用できる。
また、上記原料粉末に焼結助剤としてアルカリ土類元
素の酸化物を0.5〜5.0重量%添加し、焼成して得られた
焼結体も上記同様、回路基板用セラミック絶縁材料とし
て有望である。Description: TECHNICAL FIELD The present invention relates to a ceramic insulating material that can be used for a ceramic circuit board. (Background Art) As a ceramic insulating material used for a ceramic circuit board, it is required that a dense fired body be obtained and that the material be of high quality having excellent physical characteristics. Specifically, it is preferable that the relative dielectric constant is low in order to shorten the propagation time of a signal of an arithmetic element or the like, and the coefficient of thermal expansion is close to the coefficient of thermal expansion of the silicon chip due to the thermal stress between the silicon chip. Various characteristics are required, for example, a material having a good bending strength in terms of strength is desirable. Conventionally, alumina ceramic has been generally used as a ceramic insulating material used for a ceramic circuit board.
However, since alumina has a high relative dielectric constant of about 9 (1 MHz), the propagation delay time of signals from arithmetic elements and the like is large. Also, the thermal expansion coefficient is 7.0 × 10 -6 / ° C.
Due to the large difference compared to 10 −6 / ° C., there is a problem that the silicon chip is cracked or the silicon chip is peeled off due to thermal stress between the silicon chip and the ceramic substrate. These problems with alumina ceramics are the higher densities required for recent integrated circuits,
This is an obstacle to high speed and high reliability. On the other hand, one of the materials that has recently attracted attention as a material having relatively small relative dielectric constant and thermal expansion coefficient is Al 2 O 3 and SiO 2.
Compounds comprising two two-component mullite (3Al 2 O 3 · 2Si
O 2 ). Mullite has a relative dielectric constant of 6.5 to 7.0 (1 MHz),
It has a characteristic of a thermal expansion coefficient of 5.0 × 10 −6 / ° C.
However, conventional mullite raw material powder has a large particle size, 1600
At temperatures below ℃, sufficient densification is not achieved. Further, the conventional alumina-silica-based raw material powder containing mullite has a low purity and contains a large amount of impurities such as Na, K, and Li in the raw material powder, and adversely affects the insulating properties, strength, and semiconductor elements of the sintered body. There is a problem that. (Object of the Invention) The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to lower the temperature at a lower temperature than a conventional mullite sintered body with an increase in speed and density of an integrated circuit. An object of the present invention is to provide a ceramic insulating material which can be fired, has a low relative dielectric constant, a thermal expansion coefficient close to that of silicon, and has a sufficient bending strength as a substrate material. (Means for solving the problems) As a result of repeated studies to achieve the above object, fine Al 2 O
By firing a raw material powder obtained by mixing 3 powder and SiO 2 powder so that SiO 2 is greater than the mullite composition,
The present inventors have found that a dense ceramic insulating material can be obtained by low-temperature firing, and have reached the present invention. That is, the present invention relates to Al 2 O 3 having an average particle size of 4 μm or less.
A ceramic insulating material obtained by firing a mixed powder of a powder and a SiO 2 powder at 1600 ° C. or lower, wherein the Al component and the Si component in the mixed powder are substantially 100 in oxide conversion within the following range. %, And the constituent phase of the ceramic insulating material is a mullite phase and a silicate glass phase. 10% by weight ≦ Al 2 O 3 <60% by weight 90% by weight ≧ SiO 2 > 40% by weight Further, the present invention relates to a mixed powder of Al 2 O 3 powder having an average particle diameter of 4 μm or less and SiO 2 powder, A ceramic insulating material obtained by calcining a raw material powder obtained by mixing an oxide of an alkaline earth element at 1550 ° C. or lower, and an Al component in a mixed powder of the Al 2 O 3 powder and the SiO 2 powder. S
i component is substantially 1 in the following range in terms of oxide.
00 wt% and the oxide of the alkaline earth element is 0.5 to 5.0 with respect to the mixed powder of the Al 2 O 3 powder and the SiO 2 powder.
It is a ceramic insulating material which is mixed in a range of weight%, and wherein a constituent phase of the ceramic insulating material comprises a mullite phase and a silicate glass phase. 10% by weight ≦ Al 2 O 3 <60% by weight 90% by weight ≧ SiO 2 > 40% by weight Generally, the firing temperature for alumina (Al 2 O 3 ) alone is 160
Requires temperatures much higher than 0 ° C. By mixing silica (SiO 2 ) into Al 2 O 3 , the firing temperature can be lowered. In this case, if the content of SiO 2 exceeds 40% by weight, the range of decrease in the firing temperature becomes large. However, as before, Al 2 O 3 and SiO 2 , which have a large particle size of several μm or more and have a high impurity concentration that adversely affects the insulation properties, strength, and semiconductor elements of the sintered body, are simply mixed and fired. In this case, the reactivity is poor, and a ceramic having a sufficient density cannot be obtained at a temperature of 1600 ° C. or less. In the present invention, the average particle size of the particles of Al 2 O 3 and SiO 2 is 4 μm.
Hereinafter, it is particularly preferably adjusted to 1 μm or less. By making both particles fine in this way, both particles are mixed at the molecular level, and the reactivity is improved. Also, Al 2 O
3 , the SiO 2 powder, the mixing amount of elements that adversely affect the insulating properties, strength and semiconductor elements of the sintered body such as Na, K, and Li other than Al and Si are 2500 ppm or less, particularly preferably 100 ppm or less. It is preferable to adjust the purity to be as high as possible. In the present invention, the Al 2 O 3, the SiO 2 raw material mixed powder, the Al 2 O 3
Less than 60 wt% 10 wt% or more, of SiO 2 is 90 wt% or less 40
The composition of the mullite has a composition in the range exceeding the weight%, and the amount of SiO 2 is set to be larger than that of the composition of the mullite described above, so that the composition can be easily fired at low temperature first. Then, as described above, the sintered body having the required properties is not obtained simply by mixing both powders, but the average particle size of both powders is 4 μm as described above. The following conditions act synergistically to make 1600 ° C
Ceramic insulating material having the following characteristics at a dense temperature (hereinafter, may be referred to as a ceramic material).
Was obtained. In the present invention, Al 2 O 3 and SiO 2 are made to be substantially 100% by weight within the above composition range. Substantially means that a predetermined amount of the impurity element such as Na, K, or Li is allowed to be mixed. From the viewpoint of the firing temperature, in the present invention, Al 2 O 3
The higher the temperature, the higher the firing temperature, 1600 ° C at about 60% by weight
Temperature is required. The firing temperature may be as low as the amount of Al 2 O 3 is reduced, and firing at a low temperature of about 1300 ° C. is possible. However, if the Al 2 O 3 content is less than 10% by weight, the transverse rupture strength is undesirably low. In the chemical composition of the present invention, depending on the firing conditions such as a high firing temperature or a long temperature holding time,
A part of O 2 is precipitated as cristobalite, which causes a decrease in properties such as an increase in apparent thermal expansion coefficient. In the present invention, by appropriately setting the firing conditions, it is possible to obtain a dense sintered body composed of a mullite phase and a silicate glass phase without depositing cristobalite. In order to reduce the firing temperature, an oxide of an alkaline earth element (Ba
O, SrO, MgO, CaO, etc.) added as a sintering agent in an amount of 0.5 to 5.0% by weight, resulting in improved sinterability, enabling sintering at a lower temperature and without adding a sintering agent. Similarly, it has been revealed that it has good electrical, thermal, and mechanical properties as a substrate material. The ceramic material provided by the present invention has a relative dielectric constant (1 MHz) of 6.1 or less, as shown in Examples described later. This is superior to the above-mentioned mullite having a range of 6.5 to 7.0. In particular, by increasing the amount of SiO 2 , a material having a relative dielectric constant (1 MHz) of 5 or less can be obtained. Thermal expansion coefficient, as shown in the examples described below,
It is about 1.8 to 3.8 × 10 −6 / ° C. (30 to 400 ° C.), which is as close as possible to the coefficient of thermal expansion (3.5 × 10 −6 / ° C.) of the silicon chip. The transverse rupture strength is higher as the amount of Al 2 O 3 is larger, but it is 15 kg / mm 2 or more even when Al 2 O 3 is about 10% by weight, and there is no practical problem at all. The adjustment of the raw material powder described above can be performed using a metal alkoxide as a starting material. It goes without saying that the present invention is included in the present invention as long as the same composition and conditions as described above can be obtained even when other starting materials are used as starting materials. (Examples) Specific examples of the present invention will be described below. The present invention is, of course, not limited to these examples. Example 1 Concentrated aqueous ammonia was added to aluminum isopropoxide and methyl silicate, and the mixture was hydrolyzed with PH11 to obtain Al 2 O 3
And a mixed powder of SiO 2 was obtained. The average particle diameter of these powders was 1 μm or less, and the content of oxides of elements other than Al and Si was 100 ppm or less. The mixing ratio of Al 2 O 3 and SiO 2 can be variously changed by adjusting the amounts of aluminum isopropoxide and methyl silicate as starting materials. The mixed powder obtained as described above was heated at 1200 ° C. for 1 hour. Mullite was partially generated by this heat treatment. A solvent was added to the heat-treated powder, and the mixture was
After pulverization for an hour, drying and granulation were performed, and a plate-like molded body was prepared by a hydrostatic pressing method. The compact was fired in an oxidizing atmosphere at a maximum temperature of 1300 ° C. for 4 hours. Table 1 shows the firing density, relative dielectric constant (1 MHz), coefficient of thermal expansion (30 to 400 ° C.), and anti-deposition strength of each sintered body at various composition ratios of Al 2 O 3 and SiO 2 according to this example. Show. In addition, cristobalite precipitates when the same composition is fired at a higher temperature. When cristobalite is present, the relative permittivity is slightly increased, and the coefficient of thermal expansion is apparently increased with a volume change near 200 ° C. Example 2 Aqueous ammonia was added to aluminum isopropoxide and methyl silicate, and the mixture was hydrolyzed with PH11 to obtain Al 2 O 3
And a mixed powder of SiO 2 was obtained. The particle size of these powders is 4 μm or less in average particle size, and the mixing amount of elements that adversely affect the insulating properties, strength, semiconductor elements, etc. of sintered bodies such as Na, K and Li other than Al and Si is 2500 ppm or less. Met. The mixing ratio of Al 2 O 3 and SiO 2 can be variously changed by adjusting the amounts of aluminum isopropoxide and methyl silicate as starting materials. The mixed powder obtained as described above was heated at 1200 ° C. for 1 hour. Mullite was partially generated by this heat treatment. The heat-treated powder was placed in a ball mill, and an organic solvent, a binder, a plasticizer, and a dispersant were further added and mixed for 72 hours to prepare a slurry. Bubbles were removed from the slurry by vacuum degassing. A green sheet having a thickness of 0.4 to 0.8 mm was prepared from the slurry by a doctor blade method. This green sheet is heated to a maximum temperature of 1300 in an oxidizing atmosphere.
C. for 4 hours and baked. Various characteristics of the sintered body obtained in this example were almost the same as the values shown in Example 1. Example 3 Aqueous ammonia was added to aluminum isopropoxide and methyl silicate, and the mixture was hydrolyzed with PH11 to obtain Al 2 O 3
And a mixed powder of SiO 2 was obtained. The average particle diameter of these powders is 1 μm or less, and the amount of elements that adversely affect the insulating properties, strength, semiconductor elements, etc. of sintered bodies other than Al and Si, such as Na, K, and Li, is 100 ppm or less. Met. The mixing ratio of Al 2 O 3 and SiO 2 can be variously changed by adjusting the amounts of aluminum isopropoxide and methyl silicate as starting materials. The mixed powder obtained as described above was heated at 1200 ° C. for 1 hour. Mullite was partially generated by this heat treatment. MgO was added to the obtained powder at 0.5 or 1.0% by weight,
The solvent was added, and the mixture was pulverized with a vibration mill for 24 hours, dried and granulated, and a plate-like molded body was prepared by a hydrostatic pressing method. The molded body is heated at a maximum temperature of 1550 and 1500 ° C in an oxidizing atmosphere.
Hold for a time and fire. According to this example, Al 2 O 3 40% by weight, SiO 2 59.5 and 5
The firing density and relative dielectric constant (1MH
Table 2 shows z), the coefficient of thermal expansion (30 to 400 ° C.), and the precipitation strength. (Effect of the Invention) According to the present invention, it is a powder having a particle size of 4 μm or less, and in terms of oxide, Al 2 O 3 is less than 60% by weight at 10% by weight, and SiO 2 is less than 40% by weight at 90% by weight or less. Ceramics that can be fired at a low temperature of 1600 ° C or less, have a low dielectric constant, have a thermal expansion coefficient close to that of silicon, and have a sufficient bending strength that can be used as a substrate material by using a chemical composition exceeding the range An insulating material was provided. In particular, firing at a low temperature at which cristobalite does not precipitate can be performed, and a dense sintered body whose constituent phase after firing has a mullite phase and a silicate glass phase can be provided. INDUSTRIAL APPLICABILITY The ceramic insulating material according to the present invention can be used as a ceramic insulating material that can sufficiently cope with high-speed, high-density, and large-sized circuits required in the future. Further, a sintered body obtained by adding 0.5 to 5.0% by weight of an oxide of an alkaline earth element as a sintering aid to the raw material powder and firing the same is also promising as a ceramic insulating material for a circuit board, as described above. .
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大橋 優喜 愛知県名古屋市西区庄内通5―6 コー ポ庄内102 (72)発明者 栗原 孝 長野県長野市大字栗田字舎利田711番地 新光電気工業株式会社内 (72)発明者 岩井 昇一 長野県長野市大字栗田字舎利田711番地 新光電気工業株式会社内 合議体 審判長 松本 悟 審判官 高梨 操 審判官 山田 勇毅 (56)参考文献 特開 昭61−36168(JP,A) 特開 昭62−17005(JP,A) 特開 昭61−281013(JP,A) 特開 昭57−175724(JP,A) 特開 昭62−72555(JP,A) ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yuki Ohashi 5-6 Shonai-dori, Nishi-ku, Nagoya-shi, Aichi Po Shonai 102 (72) Inventor Takashi Kurihara Nagano Prefecture Nagano City Shinko Electric Industry Co., Ltd. (72) Inventor Shoichi Iwai Nagano Prefecture Nagano City Shinko Electric Industry Co., Ltd. Panel Referee Satoru Matsumoto Judge Takanashi Referee Yuki Yamada (56) References JP-A-61-36168 (JP, A) JP-A-62-17005 (JP, A) JP-A-61-281013 (JP, A) JP-A-57-175724 (JP, A) JP-A-62-72555 (JP, A)
Claims (1)
混合粉末を1600℃以下で焼成してなるセラミック絶縁材
料であって、 前記混合粉末中のAl成分とSi成分とが、酸化物換算で下
記範囲内において実質的に100重量%となり、 かつ前記セラミック絶縁材料の構成相がムライト相とシ
リケートガラス相とからなることを特徴とするセラミッ
ク絶縁材料。 10重量%≦Al2O3<60重量% 90重量%≧SiO2>40重量% 2.Al,Si以外の元素の不純物濃度が2500ppm以下である
特許請求の範囲第1項記載のセラミック絶縁材料。 3.Al成分が酸化物換算で10重量%Al2O3≦50重量%の
範囲内にある混合粉末を1400℃以下の温度で焼成してな
るセラミック絶縁材料である特許請求の範囲第1項また
は第2項記載のセラミック絶縁材料。 4.比誘電率が6.1(1MHz)以下である特許請求の範囲
第1〜3項のいずれか一項記載のセラミック絶縁材料。 5.熱膨張係数が1.8〜3.8×10-6/℃(30〜400℃)で
ある特許請求の範囲第1〜4項のいずれか一項記載のセ
ラミック絶縁材料。 6.抗折強度が15Kg/mm2以上である特許請求の範囲第1
〜5項のいずれか1項記載のセラミック絶縁材料。 7.平均粒径が4μm以下のAl2O3粉末とSiO2粉末との
混合粉末に、アルカリ土類元素の酸化物を混合して成る
原料粉末を1550℃以下で焼成してなるセラミック絶縁材
料であって、 前記Al2O3粉末とSiO2粉末との混合粉末中のAl成分とSi
成分とが、酸化物換算で下記範囲内において実質的に10
0重量%となる共に、 10重量%≦Al2O3<60重量% 90重量%≧SiO2>40重量% アルカリ土類元素の酸化物が、Al2O3粉末とSiO2粉末と
の混合粉末に対し、0.5〜5.0重量%の範囲で混合され、 かつ前記セラミック絶縁材料の構成相がムライト相とシ
リケートガラス相とからなることを特徴とするセラミッ
ク絶縁材料。 8.比誘電率が6.1(1MHz)以下である特許請求の範囲
第7項記載のセラミック絶縁材料。 9.熱膨張係数が1.8〜3.8×10-6/℃(30〜400℃)で
ある特許請求の範囲第7項又は第8項記載のセラミック
絶縁材料。 10.抗折強度が15Kg/mm2以上である特許請求の範囲第
7〜9項のいずれか一項記載のセラミック絶縁材料。(57) [Claims] A ceramic insulating material obtained by firing a mixed powder of Al 2 O 3 powder and SiO 2 powder having an average particle size of 4 μm or less at 1600 ° C. or less, wherein the Al component and the Si component in the mixed powder are oxidized. A ceramic insulating material characterized by being substantially 100% by weight in the following range in terms of material, and wherein the constituent phases of the ceramic insulating material include a mullite phase and a silicate glass phase. 10% by weight ≦ Al 2 O 3 <60% by weight 90% by weight ≧ SiO 2 > 40% by weight 2. The ceramic insulating material according to claim 1, wherein an impurity concentration of an element other than Al and Si is 2500 ppm or less. 3. The ceramic insulating material according to claim 1 or claim 2, wherein the ceramic component is a ceramic insulating material obtained by firing a mixed powder having an Al component in the range of 10% by weight Al 2 O 3 ≦ 50% by weight in terms of oxide at a temperature of 1400 ° C or less. 3. The ceramic insulating material according to claim 2. 4. The ceramic insulating material according to any one of claims 1 to 3, wherein a relative dielectric constant is 6.1 (1 MHz) or less. 5. The ceramic insulating material according to any one of claims 1 to 4, wherein the coefficient of thermal expansion is 1.8 to 3.8 x 10-6 / C (30 to 400C). 6. Claim 1 wherein the transverse rupture strength is 15 kg / mm 2 or more.
Item 6. The ceramic insulating material according to any one of Items 5 to 5. 7. A ceramic insulating material obtained by firing a raw material powder obtained by mixing an alkaline earth element oxide with a mixed powder of an Al 2 O 3 powder and an SiO 2 powder having an average particle diameter of 4 μm or less at 1550 ° C. or less. The Al component in the mixed powder of the Al 2 O 3 powder and the SiO 2 powder and Si
The component is substantially 10 in the following range in terms of oxide.
0% by weight, 10% by weight ≦ Al 2 O 3 <60% by weight 90% by weight ≧ SiO 2 > 40% by weight Alkaline earth element oxide mixed with Al 2 O 3 powder and SiO 2 powder A ceramic insulating material which is mixed in a range of 0.5 to 5.0% by weight with respect to a powder, and wherein the constituent phases of the ceramic insulating material include a mullite phase and a silicate glass phase. 8. 8. The ceramic insulating material according to claim 7, wherein the relative dielectric constant is 6.1 (1 MHz) or less. 9. 9. The ceramic insulating material according to claim 7, wherein the thermal expansion coefficient is 1.8 to 3.8 × 10 −6 / ° C. (30 to 400 ° C.). 10. Ceramic insulating material according to one of the range the 7-9 wherein claims flexural strength of 15 Kg / mm 2 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62100268A JP2710311B2 (en) | 1987-04-23 | 1987-04-23 | Ceramic insulation material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62100268A JP2710311B2 (en) | 1987-04-23 | 1987-04-23 | Ceramic insulation material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63265859A JPS63265859A (en) | 1988-11-02 |
JP2710311B2 true JP2710311B2 (en) | 1998-02-10 |
Family
ID=14269455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62100268A Expired - Lifetime JP2710311B2 (en) | 1987-04-23 | 1987-04-23 | Ceramic insulation material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2710311B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013082670A1 (en) * | 2011-12-09 | 2013-06-13 | Newsouth Innovations Pty Limited | Percolated mullite and a method of forming same |
JPWO2015040949A1 (en) * | 2013-09-20 | 2017-03-02 | 株式会社村田製作所 | Alumina ceramic wiring board and manufacturing method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6052083B2 (en) * | 1981-04-23 | 1985-11-18 | 日本碍子株式会社 | Manufacturing method of high purity ceramic powder |
JPS6136168A (en) * | 1984-07-27 | 1986-02-20 | 株式会社日立製作所 | Ceramic insulative substrate |
JPS61281013A (en) * | 1985-06-05 | 1986-12-11 | Chichibu Cement Co Ltd | Production of mullite powder of high purity |
JPS6217005A (en) * | 1985-07-15 | 1987-01-26 | Showa Denko Kk | Preparation of mullite powder having high purity |
JPS6272555A (en) * | 1985-09-27 | 1987-04-03 | 株式会社日立製作所 | Powder composition for sintering mullite substrate |
-
1987
- 1987-04-23 JP JP62100268A patent/JP2710311B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63265859A (en) | 1988-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4861646A (en) | Co-fired metal-ceramic package | |
EP0219807A2 (en) | Low temperature fired ceramics | |
JP3419291B2 (en) | Low-temperature sintered ceramic composition and multilayer ceramic substrate using the same | |
US3627547A (en) | High alumina bodies comprising anorthite gehlenite and spinel | |
WO1989001461A1 (en) | Co-sinterable metal-ceramic packages and materials therefor | |
JP2710311B2 (en) | Ceramic insulation material | |
JPS62278145A (en) | Sintered material of glass ceramic | |
JP3087656B2 (en) | Low temperature sintering inorganic composition | |
JPH02225339A (en) | Calcined body of glass ceramics | |
JPS63295473A (en) | Dielectric material for circuit board | |
US5786288A (en) | Low dielectric ceramic compositions for multilayer ceramic package | |
JPS6049149B2 (en) | Manufacturing method of white alumina/ceramic for electronic parts | |
JPH0617250B2 (en) | Glass ceramic sintered body | |
JPH0617249B2 (en) | Glass ceramic sintered body | |
JPH0881267A (en) | Aluminum nitride sintered compact, its production, aluminum nitride circuit board and its production | |
JP2566183B2 (en) | Glass powder capable of producing a sintered glass ceramic containing hexagonal cordierite as the main crystal phase by crystallization | |
JP3117535B2 (en) | Manufacturing method of alumina substrate | |
JPS6011259A (en) | Ceramic composition | |
JPH04114931A (en) | Production of sintered glass ceramic compact | |
JP3149613B2 (en) | Ceramic substrate and method of manufacturing the same | |
JP2686446B2 (en) | Low temperature firing ceramic sintered body | |
JP3515867B2 (en) | Low temperature firing ceramic composition | |
JPS61286267A (en) | Manufacture of aluminum nitride base sintered body | |
JP3631589B2 (en) | Dielectric porcelain composition and laminate | |
JP2000063182A (en) | Production of ceramic raw material capable of being sintered at low temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |