[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2708274B2 - Organic light emitting device and method of manufacturing the same - Google Patents

Organic light emitting device and method of manufacturing the same

Info

Publication number
JP2708274B2
JP2708274B2 JP33590990A JP33590990A JP2708274B2 JP 2708274 B2 JP2708274 B2 JP 2708274B2 JP 33590990 A JP33590990 A JP 33590990A JP 33590990 A JP33590990 A JP 33590990A JP 2708274 B2 JP2708274 B2 JP 2708274B2
Authority
JP
Japan
Prior art keywords
light emitting
organic light
layer
emitting device
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33590990A
Other languages
Japanese (ja)
Other versions
JPH04202394A (en
Inventor
昭雄 滝本
正明 鈴木
道生 岡島
久仁 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33590990A priority Critical patent/JP2708274B2/en
Priority to EP91113370A priority patent/EP0470629B1/en
Priority to DE69118615T priority patent/DE69118615T2/en
Priority to US07/742,421 priority patent/US5331182A/en
Publication of JPH04202394A publication Critical patent/JPH04202394A/en
Application granted granted Critical
Publication of JP2708274B2 publication Critical patent/JP2708274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Optical Communication System (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)
  • Led Devices (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光演算装置または発光型ディスプレイなど
に用いられる空間光変調素子などの発光素子及びその製
造方法に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device such as a spatial light modulator used for an optical operation device or a light emitting display and a method for manufacturing the same.

[従来技術] 近年、有機化合物を構成材料として用いた有機発光素
子の試みが報告された。例えば、ジャパニーズ・ジャー
ナル・オブ・アプライド・フィジックス.(Japanese J
ounal of Applied Phisics)27(2)(1988)L269頁に
記載されている有機発光層および電荷輸送層を積層した
構造の電界発光素子等がある。ガラス基板上に半透明の
Au製の下部電極を設け、その上に、膜厚2000A(オング
ストローム)のN,N′−ジフェニル−N,N′−(3−メチ
ルフェニル)−1、1′−ビフェニル−4、4′−ジア
ミン(以後、TPDと略称する。)よりなる正孔輸送層、
そしていずれも膜厚1000Aの、有機発光層及びペリレン
テトラカルボキシル基誘導体よりなる電子輸送層が構成
されている。上部電極はMg薄膜よりなる。有機発光層の
材料としてフタロペリノン誘導体を用い、静電界を印加
することで明るい電界発光が観測されている(第35回応
用物理学会春期講演会)。有機発光層の材料を選択する
ことで、発光波長を変化させることができる。
[Prior Art] In recent years, attempts have been reported for an organic light emitting device using an organic compound as a constituent material. For example, Japanese Journal of Applied Physics. (Japanese J
ounal of Applied Phisics) 27 (2) (1988), page L269, an electroluminescent device having a structure in which an organic light emitting layer and a charge transporting layer are laminated. Translucent on glass substrate
A lower electrode made of Au was provided, and a 2000A (angstrom) film of N, N'-diphenyl-N, N '-(3-methylphenyl) -1,1'-biphenyl-4,4'- A hole transport layer made of a diamine (hereinafter abbreviated as TPD),
In each case, an organic light emitting layer and an electron transporting layer composed of a perylene tetracarboxyl group derivative having a thickness of 1000 A are formed. The upper electrode is made of a Mg thin film. Bright electroluminescence has been observed when a phthaloperinone derivative is used as the material of the organic light emitting layer and an electrostatic field is applied (35th JSAP Spring Meeting). The emission wavelength can be changed by selecting the material of the organic light emitting layer.

[発明が解決しようとする課題] 電荷輸送層と発光層を積層することで、電極からの電
荷注入を増加し且つ発光効率を従来の有機発光素子に較
べ飛躍的に向上してはいるが、発光効率は0.5%以下と
低く、改良が必要である。また、発光輝度の経時変化も
大きく、特に発光層への電荷注入効率の低下、電荷輸送
層での空間電荷の蓄積が問題となる。
[Problems to be Solved by the Invention] By laminating the charge transport layer and the light emitting layer, the charge injection from the electrode is increased and the luminous efficiency is remarkably improved as compared with the conventional organic light emitting device. The luminous efficiency is as low as 0.5% or less and needs improvement. In addition, the change of the light emission luminance with time is large, and in particular, there is a problem that the charge injection efficiency to the light emitting layer is reduced and the space charge is accumulated in the charge transport layer.

発光輝度の低下は以下の要因が考えられている。 The following factors are considered for the reduction of the light emission luminance.

発光層を形成する分子が結晶化し、消光する。The molecules forming the light emitting layer are crystallized and quenched.

発光層を形成する分子が酸素分子等によって化学反応
して分解する。
The molecules forming the light emitting layer are decomposed by a chemical reaction with oxygen molecules or the like.

膜中に電荷が蓄積され、外部より電荷注入が阻害され
る。
Electric charges are accumulated in the film, and external charge injection is inhibited.

本発明は、前記従来技術の課題を解決するため、高輝
度で発光輝度の経時変化も少ない有機発光素子及びその
製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an organic light emitting device having high luminance and little change in light emission luminance with time, and a method of manufacturing the same, in order to solve the problems of the conventional technology.

[課題を解決するための手段] 前記目的を達成するため、本発明の有機発光素子は、
下記の一般式(A)で示される繰り返し単位を含む高分
子を含有する層を発光層として有するものである。
[Means for Solving the Problems] To achieve the above object, the organic light emitting device of the present invention comprises:
It has a layer containing a polymer containing a repeating unit represented by the following general formula (A) as a light emitting layer.

-Z-(-Y-X-)n- (A) (ただし、n≧2 X:O,S,Se,Teのいずれか Y:芳香族または置換芳香族の基 Z:イミド環を含む基) 前記構成においては、一般式(A)で示される高分子
が他の受光層と積層されてなることが好ましい。
-Z-(-YX-) n- (A) (however, n ≧ 2 X: any of O, S, Se, Te Y: aromatic or substituted aromatic group Z: group containing imide ring) In the structure, it is preferable that the polymer represented by the general formula (A) is laminated on another light receiving layer.

また本発明方法は、前記一般式(A)で表わされる繰
り返し単位を含む高分子を、気液界面展開成膜法によっ
て基板面に積層するものである。
Further, in the method of the present invention, a polymer containing a repeating unit represented by the general formula (A) is laminated on a substrate surface by a gas-liquid interface developing film forming method.

前記本発明の有機発光素子は、基板の上に下部電極を
備え、その上に受光層、発光層、電荷輸送層、透明電極
を順次積層した光ニューラルネットワーク素子に応用す
ることができる。この場合、前記発光層に前記一般式
(A)で示される繰り返し単位を含む高分子を含有する
層を用いる。
The organic light emitting device of the present invention can be applied to an optical neural network device in which a lower electrode is provided on a substrate, and a light receiving layer, a light emitting layer, a charge transport layer, and a transparent electrode are sequentially stacked thereon. In this case, a layer containing a polymer containing a repeating unit represented by the general formula (A) is used for the light emitting layer.

[作用] 前記本発明の構成によれば、前記一般式(A)で示さ
れる繰り返し単位を含む高分子を含有する層を発光層と
して有するので、発光層が耐熱性高分子の主鎖骨格内ま
たは側鎖に組み込まれてなり、発光部である一般式
(A)のZ基は分子レベルで分散されており、互いに凝
集体を形成することはない。この結果、高輝度で発光輝
度の経時変化も少ない有機発光素子とすることができ
る。また膜中を流れる電流によるジュール熱で母体高分
子が融けて結晶化する可能性は低い。さらに、一般式
(A)のY基は膜中の電荷輸送能力に優れている。よっ
て膜中電荷蓄積は少ない。
[Function] According to the configuration of the present invention, since the layer containing the polymer containing the repeating unit represented by the general formula (A) is provided as the light emitting layer, the light emitting layer is formed in the main chain skeleton of the heat resistant polymer. Alternatively, the Z group of the general formula (A), which is incorporated in a side chain and is a light emitting portion, is dispersed at a molecular level and does not form an aggregate with each other. As a result, an organic light-emitting device having high luminance and little change in emission luminance with time can be obtained. Further, the possibility that the base polymer is melted and crystallized by Joule heat caused by the current flowing in the film is low. Furthermore, the Y group of the general formula (A) has excellent charge transport ability in the film. Therefore, charge accumulation in the film is small.

また、一般式(A)で示される高分子が他の受光層と
積層されてなるという本発明の好ましい構成によれば、
発光効率をさらに上げることができる。
According to a preferred configuration of the present invention in which the polymer represented by the general formula (A) is laminated with another light-receiving layer,
Luminous efficiency can be further increased.

また、前記一般式(A)で表わされる繰り返し単位を
含む高分子を、気液界面展開成膜法によって基板面に積
層するという本発明方法によれば、薄くてかつ欠点のな
い膜を得ることができる。発光層の発光部は電極或は他
の電荷輸送層との界面近傍に限られる。よって発光層は
ピンホールの発生しない程度に薄い方が有利である。ま
た駆動電圧を下げる意味においても有利である。とくに
好ましくは、一般式(A)の高分子をラングミュア−ブ
ロジェット法(LB法)により基板面に積層すれば、数原
子層の薄さでピンホールなしの高分子層が得られる。
Further, according to the method of the present invention in which a polymer containing a repeating unit represented by the general formula (A) is laminated on a substrate surface by a gas-liquid interface developing film forming method, a thin film having no defects can be obtained. Can be. The light emitting portion of the light emitting layer is limited to the vicinity of the interface with the electrode or another charge transport layer. Therefore, it is advantageous for the light emitting layer to be thin so as not to generate pinholes. It is also advantageous in terms of lowering the driving voltage. Particularly preferably, when the polymer of the general formula (A) is laminated on the substrate surface by the Langmuir-Blodgett method (LB method), a polymer layer without pinholes with a thickness of several atomic layers can be obtained.

また本発明の、基板の上に下部電極を備え、その上に
受光層、発光層、電荷輸送層、透明電極を順次積層した
光ニューラルネットワーク素子であって、前記発光層に
前記一般式(A)で示される繰り返し単位を含む高分子
を含有する層を有するという光ニューラルネットワーク
素子の構成によれば、正確な認識が可能な素子とするこ
とができる。
The present invention also provides an optical neural network device comprising a substrate, on which a lower electrode is provided, on which a light receiving layer, a light emitting layer, a charge transport layer, and a transparent electrode are sequentially laminated, wherein the light emitting layer has the general formula (A) According to the configuration of the optical neural network element having a layer containing a polymer containing a repeating unit shown in (1), an element capable of accurate recognition can be obtained.

[実施例] 本発明の実施例について、図面を参照しながら説明す
る。
Example An example of the present invention will be described with reference to the drawings.

第1図に本発明の有機発光素子の一実施例の断面図を
示す。素子の構成は、透明絶縁性基板101(例えばガラ
ス)上に透明導電性電極102(例えばITO、SnOX)があ
り、有機発光層103を積層する。次にその上に上部電極1
04を設ける。透明導電性電極102と上部電極104の間に外
部電圧として直流あるいは交流電場を印加する。有機発
光層103の膜厚は5A〜5000Aの範囲であることが好まし
い。
FIG. 1 shows a sectional view of one embodiment of the organic light emitting device of the present invention. The device has a structure in which a transparent conductive electrode 102 (for example, ITO or SnO x ) is provided on a transparent insulating substrate 101 (for example, glass), and an organic light emitting layer 103 is laminated. Next, top electrode 1
04 is provided. A DC or AC electric field is applied between the transparent conductive electrode 102 and the upper electrode 104 as an external voltage. The thickness of the organic light emitting layer 103 is preferably in the range of 5A to 5000A.

第2図に本発明の有機発光素子の一実施例の断面図を
示す。素子の構成は、透明絶縁性基板201(例えばガラ
ス)上に透明導電性電極202(例えばITO、SnOX)があ
り、電荷輸送層203と有機発光層204を積層する。次にそ
の上に上部電極205を設ける。透明導電性電極202と上部
電極205の間に外部電圧として直流あるいは交流電場を
印加する。有機発光層204と上部電極205の間に電荷輸送
層を設けてもよい。電荷輸送層203の膜厚は100A〜5μ
mの範囲が好ましい。
FIG. 2 shows a sectional view of one embodiment of the organic light emitting device of the present invention. Configuration of the device, a transparent insulating substrate 201 (e.g. glass) transparent conductive electrode 202 (e.g. ITO, SnO X) on has, laminated charge transport layer 203 and the organic light emitting layer 204. Next, an upper electrode 205 is provided thereon. A DC or AC electric field is applied between the transparent conductive electrode 202 and the upper electrode 205 as an external voltage. A charge transport layer may be provided between the organic light emitting layer 204 and the upper electrode 205. The thickness of the charge transport layer 203 is 100A to 5μ.
The range of m is preferred.

第3図に素子の構成として有機受光層を有する場合の
一実施例の断面図を示す。絶縁性基板301上に下部電極3
02があり、受光層303と有機発光層304を積層する。さら
に電荷輸送層305を積層し透明電極306を設ける。下部電
極は透明導電性電極であってもよい。透明導電性電極30
6と下部電極306の間に外部電圧として直流あるいは交流
電場を印加する。
FIG. 3 is a cross-sectional view of one embodiment having an organic light-receiving layer as the element configuration. Lower electrode 3 on insulating substrate 301
02 is provided, and the light receiving layer 303 and the organic light emitting layer 304 are laminated. Further, a charge transport layer 305 is laminated, and a transparent electrode 306 is provided. The lower electrode may be a transparent conductive electrode. Transparent conductive electrode 30
A DC or AC electric field is applied between 6 and the lower electrode 306 as an external voltage.

有機発光層304より発光する光を有機受光層303で受光
する場合はメモリー特性を有する発光素子となる。ま
た、下部電極302を透明導電性電極として、外部より下
部電極302を通して光を照射し、有機受光層303で受光す
る場合は発光型の空間光変調素子となる。更に両者を兼
ねることでメモリー性を有する空間光変調素子となる。
When light emitted from the organic light emitting layer 304 is received by the organic light receiving layer 303, the light emitting element has memory characteristics. When the lower electrode 302 is a transparent conductive electrode and light is irradiated from the outside through the lower electrode 302 and the light is received by the organic light receiving layer 303, the light emitting type spatial light modulator is used. Further, by combining both, a spatial light modulator having a memory property is obtained.

本発明の一般式(A)で示される高分子の一例として
次のものがある。
Examples of the polymer represented by the general formula (A) of the present invention include the following.

前記の式においてmの好ましい範囲は10〜10,000であ
る。Arとしては、例えば下記に示すものがある。
In the above formula, a preferable range of m is 10 to 10,000. Examples of Ar include those shown below.

前記A2式において、nは1〜5の範囲が好ましい。 In the formula A2, n is preferably in the range of 1 to 5.

一般式(A)の発光部X基としては代表例として3原
色に対応して、それぞれペリレン(オレンジ色)、コロ
ネン(緑)、アントラセン(青)がある。なお、芳香族
または置換芳香族として以下のものが例として挙げられ
る。アントラセン、ナフタレン、ピレン、ペリレン、ナ
フタセン、ベンゾアントラセン、ベンゾフェナントレ
ン、クリセン、トリフェニレン、フェナントレン等の縮
合多環炭化水素及びその置換誘導体、アントラキノン、
ジベンゾピレンキノン、アントアントロン、イソビオラ
ントロン、ピラントロン等の縮合多環キノン及びその置
換誘導体である。
Typical examples of the light emitting unit X group in the general formula (A) include perylene (orange), coronene (green), and anthracene (blue) corresponding to the three primary colors. The following are examples of the aromatic or substituted aromatic. Condensed polycyclic hydrocarbons such as anthracene, naphthalene, pyrene, perylene, naphthacene, benzoanthracene, benzophenanthrene, chrysene, triphenylene, phenanthrene and substituted derivatives thereof, anthraquinone,
Condensed polycyclic quinones such as dibenzopyrenequinone, anthantrone, isoviolanthrone, and pyranthrone; and substituted derivatives thereof.

一般式(A)のY基としてはその代表例として が挙げられる。As a representative example of the Y group in the general formula (A), Is mentioned.

一般式(A)のZ基として以下の例がある。 Examples of the Z group in the general formula (A) include the following.

実施例1 第1図の有機発光素子において、透明絶縁性基板101
としてガラス基板を使用し、これに透明導電性電極102
として0.1〜0.5μm厚のITOをスパッタリング法により
成膜する。有機発光層103として、アントラセンを発光
部として有する高分子A2を形成した。
Example 1 In the organic light emitting device shown in FIG.
A glass substrate is used as a transparent conductive electrode 102
Is formed to a thickness of 0.1 to 0.5 μm by sputtering. As the organic light-emitting layer 103, a polymer A2 having anthracene as a light-emitting portion was formed.

次に成膜法としては、スピンコートなども使用できる
が、気液界面成膜法の一例としてLB法を用いた。以下、
LB法により膜形成するため手順を説明する。
Next, spin coating or the like can be used as the film forming method, but the LB method was used as an example of the gas-liquid interface film forming method. Less than,
The procedure for forming a film by the LB method will be described.

膜形成に用いたLB法の累積装置の概略図を第4図に示
す。第4図において、401はLB装置、402は純水展開液
槽、403は基板、404は加重である。
FIG. 4 shows a schematic view of the accumulator of the LB method used for film formation. In FIG. 4, reference numeral 401 denotes an LB device, 402 denotes a pure water developing liquid tank, 403 denotes a substrate, and 404 denotes a weight.

アントラセンを発光部として有するジアミン化合物と
芳香族テトラカルボン酸二無水物の無水ピロメリット酸
を1:1の比率で有機溶媒ジメチルアセトアミドに添加
し、ポリアミド酸を重合する。このポリアミド酸をジメ
チルアセトアミド、ベンゼン1:1の混合溶媒で1mmol/Lに
希釈する。一方LB法を適用するためにポリアミド酸を長
鎖アルキルアミンとの塩形成を行なう。すなわちN,N−
ジメチル−n−ヘキサデシルアミン(以下、C16DMAと称
す)をジメチルアセトアミド、ベンゼン1:1の混合溶媒
で1mmol/Lに調整する。LB法で気水界面に展開する直前
にポリアミド酸:C16DMA=1:2に調整し、純水面上に展開
する。LB法におけるポリアミド酸単分子膜の累積条件
は、表面圧25dyn/cm、引き上げ速度3〜10mm/min、室温
20℃とした。20層展開し、積層膜の膜厚を100A(オング
ストローム)とする。最後にポリアミド酸累積膜のイミ
ド化は、化学的イミド化法による。無水酢酸:ピリジ
ン:ベンゼン=1:1:3の混合液に基板を12時間浸漬し、
ポリイミド累積膜とする。その後ベンゼンで洗浄し溶媒
除去する。
A polyamic acid is polymerized by adding a diamine compound having anthracene as a light emitting portion and pyromellitic anhydride of an aromatic tetracarboxylic dianhydride in a ratio of 1: 1 to an organic solvent dimethylacetamide. This polyamic acid is diluted to 1 mmol / L with a mixed solvent of dimethylacetamide and benzene 1: 1. On the other hand, in order to apply the LB method, polyamic acid is subjected to salt formation with a long-chain alkylamine. That is, N, N−
Dimethyl-n-hexadecylamine (hereinafter referred to as C16DMA) is adjusted to 1 mmol / L with a mixed solvent of dimethylacetamide and benzene 1: 1. Immediately before being developed at the air-water interface by the LB method, the polyamic acid: C16DMA is adjusted to 1: 2 and developed on the pure water surface. The conditions for accumulating a polyamic acid monolayer in the LB method are as follows: surface pressure 25 dyn / cm, pulling speed 3-10 mm / min, room temperature
20 ° C. 20 layers are developed and the thickness of the laminated film is set to 100A (angstrom). Finally, imidation of the polyamic acid accumulation film is performed by a chemical imidization method. The substrate was immersed in a mixture of acetic anhydride: pyridine: benzene = 1: 1: 3 for 12 hours,
It is a polyimide accumulation film. After that, the solvent is removed by washing with benzene.

この素子の電気特性、発光特性を調べた。透明導電性
電極102と上部電極104の間に直流電圧を印加する。その
電圧−電流特性を第5図に、電流−発光輝度特性を第6
図に示す。印加直流電圧5v以上で電流密度が100mA/cm2
以上となる。このとき発光輝度は100cd/m2を越え初め、
印加電圧10vでは、およそ500cd/m2の発光輝度が得られ
た。
The electrical characteristics and light emission characteristics of this device were examined. A DC voltage is applied between the transparent conductive electrode 102 and the upper electrode 104. FIG. 5 shows the voltage-current characteristics, and FIG.
Shown in the figure. Current density is 100mA / cm 2 at applied DC voltage of 5V or more
That is all. Emission luminance at this time is initially exceed 100 cd / m 2,
At an applied voltage of 10 v, a light emission luminance of about 500 cd / m 2 was obtained.

また発光部の基をアントラセンの他にナフタレン、ピ
レン、ペリレンを成膜した。その印加電圧10Vでの発光
スペクトルを第7図に示す。
In addition, naphthalene, pyrene, and perylene were formed as a film of the light emitting part in addition to anthracene. The emission spectrum at an applied voltage of 10 V is shown in FIG.

実施例2 第2図の有機発光素子において、透明絶縁性基板201
としてガラス基板を使用し、これに透明導電性電極202
として0.1〜0.5μm厚のITOをスパッタリング法により
成膜し、電荷輸送層203を形成する。電荷輸送層203の材
料にはベンゾフェノンテトラカルボン酸二無水物(以下
BPDAと称する。)とオリゴパラフェニレンスルフィドジ
アミンから重合されるポリイミド(以下、BPDA-nと称す
る)を使った。ポリイミドの前駆体であるポリアミック
酸の合成は、BPDAとオリゴパラフェニレンスルフィドジ
アミンを溶媒ジメチルアセトアミド中で行う。このポリ
アミック酸をスピナーにより前出基板面に500A〜2000A
の範囲で塗布する。塗布後、基板を熱処理炉に入れ、30
0℃2時間の加熱処理を施す。この過程でポリイミド膜
はイミド化と結晶化がなされる。有機発光層204とし
て、実施例1と同様の方法で高分子A2を5原子層成膜し
た。
Example 2 In the organic light emitting device of FIG.
A glass substrate is used as the transparent conductive electrode 202
The charge transport layer 203 is formed by depositing ITO having a thickness of 0.1 to 0.5 μm by a sputtering method. The material of the charge transport layer 203 is benzophenonetetracarboxylic dianhydride (hereinafter
Called BPDA. ) And a polyimide polymerized from oligoparaphenylene sulfide diamine (hereinafter referred to as BPDA-n). The synthesis of polyamic acid, which is a precursor of polyimide, is performed by using BPDA and oligoparaphenylene sulfide diamine in a solvent dimethylacetamide. 500A ~ 2000A of this polyamic acid on the substrate surface by spinner
Apply within the range. After coating, place the substrate in a heat treatment furnace and
A heat treatment is performed at 0 ° C. for 2 hours. In this process, the polyimide film is imidized and crystallized. As the organic light emitting layer 204, a five-atom layer of polymer A2 was formed in the same manner as in Example 1.

この素子の電気特性、発光特性を調べた。透明導電性
電極202と上部電極205の間に直流電圧を印加する。その
電圧−電流特性を第8図に、電流−発光輝度特性を第9
図に示す。印加直流電圧7v以上で電流密度が100mA/cm2
以上となる。このとき発光輝度は100cd/m2を越え初め、
印加電圧10vでは、およそ500cd/m2の発光輝度が得られ
た。
The electrical characteristics and light emission characteristics of this device were examined. A DC voltage is applied between the transparent conductive electrode 202 and the upper electrode 205. The voltage-current characteristics are shown in FIG. 8, and the current-emission luminance characteristics are shown in FIG.
Shown in the figure. Current density is 100 mA / cm 2 at applied DC voltage of 7 V or more
That is all. Emission luminance at this time is initially exceed 100 cd / m 2,
At an applied voltage of 10 v, a light emission luminance of about 500 cd / m 2 was obtained.

実施例3 有機受光層にポリイミドを用いたメモリー特性を有す
る発光素子を製作した。素子構造は第3図に示すもので
ある。下部電極302としてITOを形成したガラス基板301
上に受光層303として実施例2の方法でBPDA-2を2μm
成膜する。発光層には480nmに発光ピーク波長を持つア
ントラセン、460nmに発光ピーク波長を持つナフタレン
を含有する高分子A2,A1を用いた。BPDA-Ph3の感度領域5
50nmより短波長である。透明電極206はITOを室温で成膜
した。
Example 3 A light emitting device having a memory characteristic using polyimide for an organic light receiving layer was manufactured. The element structure is as shown in FIG. Glass substrate 301 with ITO formed as lower electrode 302
BPDA-2 is 2 μm thick on the light receiving layer 303 by the method of the second embodiment.
Form a film. For the light emitting layer, polymers A2 and A1 containing anthracene having an emission peak wavelength at 480 nm and naphthalene having an emission peak wavelength at 460 nm were used. Sensitivity range of BPDA-Ph3 5
The wavelength is shorter than 50 nm. As the transparent electrode 206, ITO was formed at room temperature.

印加電圧−発光輝度特性を第10図に示す。発光特性は
履歴特性を持つ。40v印加で発光状態に移った後は、印
加電圧を20v以下に設定するまで発光状態を保つ。
FIG. 10 shows the applied voltage-emission luminance characteristics. The light emission characteristic has a hysteresis characteristic. After shifting to the light emitting state by applying 40 v, the light emitting state is maintained until the applied voltage is set to 20 v or less.

実施例4 実施例2の有機発光素子構造において、発光層に青色
としてアントラセンを有するA2、緑色としてピレンのA
4、赤色としてペリレンのA3の3原色を画素に展開して
フルカラーディスプレイを作製した。
Example 4 In the organic light emitting device structure of Example 2, A2 having anthracene as blue in the light emitting layer and A of pyrene as green were used.
4. A full-color display was produced by developing the three primary colors of perylene A3 as red.

この画像表示装置は、発光輝度50fL時の半減寿命にお
いて、1000時間以上を達成することができた。また、エ
ネルギー変換効率は、1.0〜3.3%であった。本実施例に
より、長寿命の、低電圧で安定に駆動する、高輝度マル
チカラーディスプレイを実現することができた。
This image display device was able to achieve 1000 hours or more in half-life at a light emission luminance of 50 fL. The energy conversion efficiency was 1.0 to 3.3%. According to this embodiment, a long-life, high-brightness multi-color display that can be driven stably at a low voltage can be realized.

実施例5 発光型の空間光変調素子を製作した。素子構造は実施
例3と同様である。この場合は受光層303はガラス基板3
01からの光入射によって光書き込みされる。入射光は半
導体レーザー(780nm)とした。この波長に対して感度
を有する受光層として無金属フタロシアニンを2重量%
含有するポリイミド膜BPDA-2を実施例3とほぼ同様の方
法で成膜した。発光層304は実施例3と同様な方法で480
nmに発光ピークを有する高分子A2を使った。入射光強度
に対する発光輝度変化を第11図に示す。非線形特性とメ
モリー性が生じる。即ち光書き込みされ発光状態になっ
た部分は入射光が無くなった後も発光を維持する。印加
電圧35vの状態で入射光が照射されると受光層303は電圧
降下し、発光層304に電界が集中し、発光状態となる。
入射光がなくても受光層は発光層からの照射によって低
抵抗な状態を維持し、発光は持続する。印加電圧が5v以
下となって消光状態になり、もとの35v状態に戻っても
受光層203は高抵抗になっているので消光は持続する。
Example 5 A light-emitting spatial light modulator was manufactured. The element structure is the same as that of the third embodiment. In this case, the light receiving layer 303 is a glass substrate 3
Optical writing is performed by light incident from 01. The incident light was a semiconductor laser (780 nm). 2% by weight of metal-free phthalocyanine as a light-receiving layer sensitive to this wavelength
A polyimide film BPDA-2 to be contained was formed in substantially the same manner as in Example 3. The light emitting layer 304 is 480 in the same manner as in the third embodiment.
Polymer A2 having an emission peak at nm was used. FIG. 11 shows the change in emission luminance with respect to the incident light intensity. Non-linear characteristics and memory properties occur. In other words, the portion which has been light-written and turned into a light-emitting state maintains light emission even after the incident light has disappeared. When the incident light is irradiated with the applied voltage of 35 V, the voltage of the light receiving layer 303 drops, and the electric field concentrates on the light emitting layer 304, so that the light emitting layer 304 enters a light emitting state.
Even if there is no incident light, the light receiving layer maintains a low resistance state by irradiation from the light emitting layer, and light emission continues. The extinction state occurs when the applied voltage becomes 5 V or less, and the extinction state continues even after returning to the original 35 V state because the light receiving layer 203 has a high resistance.

この有機発光素子素子を使って光ニューラルネットワ
ークを構成し、その機能動作を確認した。第12図に構成
を示す。直交学習法を用いており、実施例1の発光素子
をもちいた入射画像111、マイクロレンズアレイ112、学
習マスクパターン113、本実施例の有機発光素子による
光しきい値素子114からなる。入力画像111は6×6のマ
トリックスでアルファベット10文字を表示する。画像入
力はメモリー性を使い、各画素に電気的に書き込む。学
習マスクパターン113は36×36のマトリックスからな
り、直交学習法で求めた8階調表示を透過光強度で表現
できるように透過率を変化させたフィルムである。光し
きい値素子114は6×6のマトリックスであり、各画素
にはマイクロレンズアレイ113で6×6ケのマスクパタ
ーンからの透過光が集光されている。第9図に示す光非
線形特性に依って発光する。このシステムを用いてアル
ファベット10文字の完全パターンの自己想起とハミング
距離1の不完全パターンの連想に対して100%の認識率
で回答した。
An optical neural network was constructed using this organic light emitting device, and its functional operation was confirmed. FIG. 12 shows the configuration. The orthogonal learning method is used, and includes an incident image 111 using the light emitting element of the first embodiment, a microlens array 112, a learning mask pattern 113, and a light threshold element 114 using an organic light emitting element of the present embodiment. The input image 111 displays 10 letters of the alphabet in a 6 × 6 matrix. The image input uses a memory property and is electrically written to each pixel. The learning mask pattern 113 is formed of a 36 × 36 matrix, and is a film whose transmittance is changed so that 8-gradation display obtained by the orthogonal learning method can be expressed by transmitted light intensity. The light threshold element 114 is a 6 × 6 matrix, and transmitted light from 6 × 6 mask patterns is condensed on each pixel by the microlens array 113. Light is emitted according to the optical nonlinear characteristic shown in FIG. Using this system, 100% recognition rate was used for self-recall of a complete pattern of 10 letters of the alphabet and association of an incomplete pattern with a Hamming distance of 1.

以上説明した通り上記本発明の実施例によれば、一般
式(A)の高分子を発光層とする有機発光素子を用いた
画像表示装置により、長寿命の、低電圧で安定に駆動す
る、高輝度ディスプレイを実現することができた。また
外部かの光照射で光書き込み可能な空間光変調素子をで
きた。これは光ニューラルネットワークシステムを代表
とする光コンピューティングシステムの構成デバイスに
最適であった。
As described above, according to the embodiment of the present invention, an image display device using an organic light-emitting element having a polymer represented by the general formula (A) as a light-emitting layer can be stably driven at a low voltage with a long service life. A high-brightness display was realized. Also, a spatial light modulator capable of optically writing by external light irradiation was obtained. This was optimal for constituent devices of an optical computing system represented by an optical neural network system.

[発明の効果] 以上説明した通り本発明によれば、前記一般式(A)
で示される繰り返し単位を含む高分子を含有する層を発
光層として有するので、高輝度で発光輝度の経時変化も
少ない有機発光素子とすることができる。
[Effects of the Invention] As described above, according to the present invention, the general formula (A)
Since a layer containing a polymer containing a repeating unit represented by the formula (1) is provided as a light-emitting layer, an organic light-emitting element having high luminance and little change in luminance over time can be obtained.

また、一般式(A)で示される高分子が他の受光層と
積層されてなるという本発明の好ましい構成によれば、
発光効率をさらに上げることができる。
According to a preferred configuration of the present invention in which the polymer represented by the general formula (A) is laminated with another light-receiving layer,
Luminous efficiency can be further increased.

また、前記一般式(A)で表わされる繰り返し単位を
含む高分子を、気液界面展開成膜法によって基板面に積
層するという本発明方法によれば、薄くてかつ欠点のな
い膜を得ることができる。
Further, according to the method of the present invention in which a polymer containing a repeating unit represented by the general formula (A) is laminated on a substrate surface by a gas-liquid interface developing film forming method, a thin film having no defects can be obtained. Can be.

また本発明の、基板の上に下部電極を備え、その上に
受光層、発光層、電荷輸送層、透明電極を順次積層した
光ニューラルネットワーク素子であって、前記発光層に
前記一般式(A)で示される繰り返し単位を含む高分子
を含有する層を有するという光ニューラルネットワーク
素子の構成によれば、正確な認識が可能な素子とするこ
とができる。
The present invention also provides an optical neural network device comprising a substrate, on which a lower electrode is provided, on which a light receiving layer, a light emitting layer, a charge transport layer, and a transparent electrode are sequentially laminated, wherein the light emitting layer has the general formula (A) According to the configuration of the optical neural network element having a layer containing a polymer containing a repeating unit shown in (1), an element capable of accurate recognition can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図、第3図は本発明の有機発光素子の一
実施例の断面図、第4図は本発明の有機発光素子の製造
に用いるLB法の累積装置の概略図、第5図は実施例1に
おける有機発光素子の電圧電流特性を表した図、第6図
は実施例1における有機発光素子の電流発光輝度特性を
表わした図、第7図は有機発光素子の発光スペクトル
図、第8図は実施例2における有機発光素子の電流発光
輝度特性を表した図、第9図は実施例3における有機発
光素子の電圧発光輝度特性を表した図、第10図は実施例
3における有機発光素子のメモリー特性を表した図、第
11図は実施例5における有機発光素子の入射光強度に対
する発光輝度変化を表した図、第12図は実施例5におけ
る光ニューラルネットワークシステムの概略図である。 101……ガラス基板、102……透明電極、103……発光
層、104……上部電極、111……入力画像、112……マイ
クロレンズアレイ、123……学習マスクパターン、124…
…光しきい値特性、201……ガラス基板、202……透明電
極、203……電荷輸送層、204……発光層、205……上部
電極、206……有機発光素子、301……基板、302……下
部電極、303……受光層、304……発光層、305……電荷
輸送層、306……透明電極、307……電荷輸送層、401…
…LB装置、402……純水展開液槽、403……基板、404…
…加重。
1, 2 and 3 are cross-sectional views of one embodiment of the organic light-emitting device of the present invention. FIG. 4 is a schematic diagram of an accumulator of the LB method used for manufacturing the organic light-emitting device of the present invention. FIG. 5 is a diagram showing a voltage-current characteristic of the organic light emitting device in Example 1, FIG. 6 is a diagram showing a current light emission luminance characteristic of the organic light emitting device in Example 1, and FIG. 7 is an emission spectrum of the organic light emitting device. FIG. 8, FIG. 8 is a diagram showing current light emission luminance characteristics of the organic light emitting device in Example 2, FIG. 9 is a diagram showing voltage light emission luminance characteristics of the organic light emitting device in Example 3, and FIG. 3 is a diagram showing the memory characteristics of the organic light emitting device in FIG.
FIG. 11 is a diagram showing a change in light emission luminance with respect to the intensity of incident light of the organic light emitting element in the fifth embodiment. FIG. 12 is a schematic diagram of an optical neural network system in the fifth embodiment. 101: glass substrate, 102: transparent electrode, 103: light emitting layer, 104: upper electrode, 111: input image, 112: microlens array, 123: learning mask pattern, 124 ...
... Light threshold characteristics, 201 ... Glass substrate, 202 ... Transparent electrode, 203 ... Charge transport layer, 204 ... Emitting layer, 205 ... Top electrode, 206 ... Organic light emitting device, 301 ... Substrate, 302 lower electrode, 303 light receiving layer, 304 light emitting layer, 305 charge transport layer, 306 transparent electrode, 307 charge transport layer, 401
… LB device, 402… Pure water developing liquid tank, 403 …… Substrate, 404…
... weighted.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記の一般式(A)で示される繰り返し単
位を含む高分子を含有する層を発光層として有する有機
発光素子。 -Z-(-Y-X-)n- (A) (ただし、n≧2 X:O,S,Se,Teのいずれか Y:芳香族または置換芳香族の基 Z:イミド環を含む基)
1. An organic light-emitting device having, as a light-emitting layer, a layer containing a polymer containing a repeating unit represented by the following general formula (A). -Z-(-YX-) n- (A) (However, n ≧ 2 X: any of O, S, Se, Te Y: aromatic or substituted aromatic group Z: group containing imide ring)
【請求項2】一般式(A)で示される高分子が他の受光
層と積層されてなる請求項1に記載の有機発光素子。
2. The organic light emitting device according to claim 1, wherein the polymer represented by the general formula (A) is laminated on another light receiving layer.
【請求項3】一般式(A)で表される繰り返し単位を含
む高分子を、気液界面展開成膜法によって基板面に積層
する有機発光素子の製造方法。 -Z-(-Y-X-)n- (A) (ただし、n≧2 X:O,S,Se,Teのいずれか Y:芳香族または置換芳香族の基 Z:イミド環を含む基)
3. A method for producing an organic light-emitting device, wherein a polymer containing a repeating unit represented by the general formula (A) is laminated on a substrate surface by a gas-liquid interface development film forming method. -Z-(-YX-) n- (A) (However, n ≧ 2 X: any of O, S, Se, Te Y: aromatic or substituted aromatic group Z: group containing imide ring)
JP33590990A 1990-08-08 1990-11-29 Organic light emitting device and method of manufacturing the same Expired - Fee Related JP2708274B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP33590990A JP2708274B2 (en) 1990-11-29 1990-11-29 Organic light emitting device and method of manufacturing the same
EP91113370A EP0470629B1 (en) 1990-08-08 1991-08-08 Organic light emitting device and preparation and use thereof
DE69118615T DE69118615T2 (en) 1990-08-08 1991-08-08 Organic light-emitting component and its production and use
US07/742,421 US5331182A (en) 1990-08-08 1991-08-08 Organic light emitting device and preparation and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33590990A JP2708274B2 (en) 1990-11-29 1990-11-29 Organic light emitting device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04202394A JPH04202394A (en) 1992-07-23
JP2708274B2 true JP2708274B2 (en) 1998-02-04

Family

ID=18293727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33590990A Expired - Fee Related JP2708274B2 (en) 1990-08-08 1990-11-29 Organic light emitting device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2708274B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408109A (en) 1991-02-27 1995-04-18 The Regents Of The University Of California Visible light emitting diodes fabricated from soluble semiconducting polymers
US5677545A (en) * 1994-09-12 1997-10-14 Motorola Organic light emitting diodes with molecular alignment and method of fabrication
JP3442363B2 (en) * 1997-09-05 2003-09-02 ケンブリッジ ディスプレイ テクノロジー リミテッド Self-assembled transport layer for organic light-emitting devices
JP5168785B2 (en) * 2003-08-21 2013-03-27 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
CN114613928A (en) * 2022-02-28 2022-06-10 复旦大学 OLED optical neural interface based on printed electronic technology and preparation method thereof

Also Published As

Publication number Publication date
JPH04202394A (en) 1992-07-23

Similar Documents

Publication Publication Date Title
US5571626A (en) Electroluminescent devices comprising polymers, and processes for their use
KR100861434B1 (en) Novel compound and organic electronic device using such compound
JP3069139B2 (en) Dispersion type electroluminescent device
US5962967A (en) Electroluminescent device and method of manufacturing same
CN101679714B (en) Hole injection/transport layer compositions and devices
US5705284A (en) Thin film electroluminescence device
US6497969B2 (en) Electroluminescent device having an organic layer including polyimide
EP0470629B1 (en) Organic light emitting device and preparation and use thereof
JP2001143873A (en) Method for manufacturing polarized organic photonics device
JPH0945479A (en) Organic electroluminescence device and manufacture of organic electroluminescence device
JP3881876B2 (en) Polymer compound and organic thin film device using the same
US6603259B1 (en) Electroluminescent device and method of manufacturing same
JPH0794807A (en) Amorphous organic thin film element, amorphous organic polymer compound and amorphous inorganic compound
JP2009079092A (en) Polymer compound and organic electroluminescent element containing the same
JP2002056973A (en) Organic electroluminescent element and photosensitive polymer
JP4406991B2 (en) Thin film EL device and manufacturing method thereof
JP2003277741A (en) Organic el light-emitting element and liquid crystal display device obtained using the same
JP2848189B2 (en) Organic thin film EL device
JP2708274B2 (en) Organic light emitting device and method of manufacturing the same
JP2712784B2 (en) Organic light emitting device
JPH0693258A (en) Organic thin film element
JPH08199161A (en) Organic electroluminescence element
JPH11273870A (en) Organic el element
US5763110A (en) Electroluminescent devices comprising polynuclear arylamines
JPH05271652A (en) Organic thin-film el element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees