【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、比較的低い温度で高密度の焼結体を得るこ
とを可能としたフェライトの製造方法に関する。
(従来の技術)
従来から、硬質磁性材料として、あるいは軟質磁性材
料として各種用途に多用されているフェライトの製造方
法としては、次のような粉末治金的方法が一般的であ
る。
すなわちまず、目的とするフェライトによって選択さ
れた出発原料となる酸化物や加熱により酸化物となる水
酸化物、炭酸塩、シュウ酸塩等を所定の比率となるよう
に秤量、混合し、この混合粉末のままあるいは成形体を
形成した後に仮焼する。次いで、この仮焼物を粗粉砕
し、さらに微粉砕する。この後、この微粉末と適当な結
合剤とを混合して所定の形状に成形し、所定の温度で焼
成することによりフェライト焼結体を製造する。
(発明が解決しようとする問題点)
ところで、上述したようなフェライトの製造方法にお
ける仮焼物の微粉砕工程は、現状、ステンレス鋼ボール
やアルミナボール等を使用したボールミルによって行わ
れているが、、これらボールは耐摩耗性に難点があり、
これらボールの摩耗粉が不純物として混入する恐れがあ
るという難点があった。このため、粉砕効率が低く、ま
た長時間にわたる粉砕は焼成物の特性劣化を招くことと
なり、通常数μm程度の粉末から成形、焼成を行ってい
る。したがって、最終焼成段階で約1200℃以上の高温で
焼結を行わなければ、充分な特性を有する理論密度近傍
の高密度焼結体は得られないとされている。
しかし、工業的な製造方法としては、焼成温度が下が
ればそれだけ製造コストが低減でき非常に有効であり、
また不純物の混入を極力防止することにより、特性の向
上とともに焼結体密度の向上も期待できる。
本発明はこのような事情に対処すべくなされたもの
で、不純物の混入が極めて少なく、かつ約1000℃程度の
比較的低い温度によっても充分にその特性を発揮する高
密度の焼結体が得られるフェライトの製造方法を提供す
ることを目的とする。
[発明の構成]
(問題点を解決するための手段と作用)
本発明のフェライトの製造方法は、所要のフェライト
を構成する各元素を所定の比率で含有する原料粉末を仮
焼する工程と、この仮焼により得られた焼成物を微粉砕
する工程と、この微粉砕工程により得られた粉末を所要
の形状に成形した後、焼成する工程とを有するフェライ
トの製造方法において、前記微粉砕工程を直径0.5mm〜3
mmのジルコニアボールを用いて行うことを特徴としてい
る。
本発明の微粉砕工程において使用するボールは、硬度
が大きく耐摩耗性に優れ、またセラミックス部材の中で
は破壊靭性値に優れた材質として知られている安定化ジ
ルコニア(FSZ)や部分安定化ジルコニア(PSZ)からな
る直径0.5〜3mmのボールであり、このような特性を有す
るジルコニアボールを用いることにより、高効率でかつ
不純物の混入を極力防止して、仮焼した焼成物を微粉砕
することが可能となる。なお、当然ながらこの微粉砕工
程に先立って、ロールクラッシャやジョークラッシャ等
の公知の手段により粗粉砕を行うことは有効である。こ
のジルコニアボールを用いた微粉砕工程は、ボールミ
ル、サンドミル、振動ミル等のボール使用の各種粉砕装
置を使用することが可能である。使用するジルコニアボ
ールの直径は0.5mm〜3mmが適しており、この直径が0.5m
m未満であると粉砕効率が低下し、3mmを超えると得られ
る粉末の粒径を充分に微細化できず、焼成温度の低温化
効果が充分に得られなくなる。また、粉砕時間はフェラ
イトの種類や粗粉砕の程度、また粉砕方法等によって異
なるが、約2時間〜約240時間程度が適当である。そし
て、このような方法により仮焼物の微粉砕を行うことに
より、平均粒径0.1μm〜0.5μm程度の微粉末を得るこ
とが可能となる。
次に、このような微粉末を用いて所要の形状に成形し
た後、仮焼することにより、粒子間の反応性が大幅に向
上することや不純物の混入が極めて少ないこと等から、
本発明においては従来の1200℃以上という仮焼温度に対
して約100℃〜200℃程度低温で焼結させても理論密度近
傍の高密度焼結体を得ることが可能となる。
本発明の方法は、
一般式:MO・nFe2O3
(式中、MはBa、Sr、Pbから選ばれた少なくとも1種、
nは4.5〜6.2の数を表し、Feの一部はIn、Ti、Co、Zn、
V、Geの少なくと1種で置換可能。)で代表されるよう
な硬質磁性材料としてのフェライトおよび
一般式:M′O・Fe2O3
(式中、M′はMn、Zn、Ni、Cu等から選ばれた1種また
は2種以上の組合せを表す。)で代表されるような軟質
磁性材料としてのフェライトのいずれの製造にも適用可
能である。
(実施例)
次に、本発明の製造方法をMn−Zn系フェライトの製造
に適用した一例について説明する。
実施例1〜3、比較例1〜3
まず、目的とするMn−Zn系フェライトを(Mn054,Zn
046)Fe2O4とし、出発原料としてFe2O3、MnOおよびZnO
を各々所定量秤量し、これらを充分に混合した後、この
混合物を約900℃で2時間仮焼した。次いで、この仮焼
によって得られた焼成物を−325メッシュ程度まで乾式
にて粗粉砕した。
次に、この粗粉砕物を第1表に示す直径を有するジル
コニアボール・Z100(商品名、新日本製鉄(株)製)を
用いて、各々約192時間の条件でボールミルにより湿式
で微粉砕した。
各々の条件によって得られた微粉末の平均粒径および
微粉末中の不純物混入量は第1表に示したとおりであ
る。
一方、本発明との比較のために、直径5mmの同素材の
ジルコニアボール、直径2mmのアルミナボールを各々用
いて、実施例と同一条件により仮焼物の微粉砕を行い、
これらについても実施例と同様にしてその特性を測定し
た。
第1表の結果から、この実施例の直径0.5mm〜3mmのジ
ルコニアボールを用いたボールミル粉砕によれば、サブ
ミクロンの単位まで微粉末化することが可能であり、ま
た不純物の混入も極めて少ないことが明らかである。
この後、これら各微粉末にPVA系バインダを加えて充
分に混合した後、プレス成形(プレス圧1500kg/cm2)に
より所定形状に成形し、次いで各々950℃、1000℃、105
0℃、1100℃、1200℃の各温度条件によって2時間焼成
してフェライト焼結体を得た。
このようにして得たフェライト焼結体について、密
度、透磁率、磁束飽和密度を測定した。その結果、焼結
体密度について第1図ないし第5図に示した。また、透
磁率は実施例によるものは6000〜7000であり、磁束飽和
密度(Bs)は4000〜4500Gであった。
第1図〜第5図の結果から、この実施例によるフェラ
イト焼結体は、不純物の混入が極めて少ない微粉末より
焼結体を作製しているので、1000℃〜1100℃程度の比較
的低い温度条件によっても理論密度近傍の高密度焼結体
が得られ、またその特性も従来法による1200℃程度の温
度での焼結体と同等なものであった。
[発明の効果]
以上の実施例からも明らかなように、本発明のフェラ
イトの製造方法によれば、直径0.5mm〜3mmのジルコニア
ボールを用いて仮焼物の微粉砕を行っているので、1000
℃前後の比較的低い温度によっても特性に優れた理論密
度近傍の高密度フェライト焼結体を容易に得ることが可
能となり、工業的価値は大きい。[Detailed Description of the Invention] [Object of the Invention] (Industrial application field) The present invention relates to a method for producing ferrite which enables a high-density sintered body to be obtained at a relatively low temperature. (Prior Art) Conventionally, as a method for producing ferrite which has been frequently used as a hard magnetic material or a soft magnetic material for various uses, the following powder metallurgy method is generally used. That is, first, an oxide serving as a starting material selected by a target ferrite or a hydroxide, a carbonate, an oxalate, etc., which becomes an oxide by heating are weighed and mixed so as to have a predetermined ratio. The powder is calcined as it is or after forming a molded body. Next, the calcined product is coarsely pulverized and further finely pulverized. Thereafter, the fine powder and an appropriate binder are mixed, molded into a predetermined shape, and fired at a predetermined temperature to produce a ferrite sintered body. (Problems to be Solved by the Invention) By the way, the process of finely pulverizing the calcined material in the method for producing ferrite as described above is currently performed by a ball mill using stainless steel balls or alumina balls. These balls have difficulty in abrasion resistance,
There is a problem that the wear powder of these balls may be mixed as impurities. For this reason, the pulverization efficiency is low, and the pulverization over a long period of time leads to deterioration of the properties of the baked product, and the powder is usually molded and baked from a powder of about several μm. Therefore, it is said that unless sintered at a high temperature of about 1200 ° C. or more in the final firing stage, a high-density sintered body having a sufficient characteristic near the theoretical density cannot be obtained. However, as an industrial manufacturing method, if the firing temperature is lowered, the manufacturing cost can be reduced accordingly and it is very effective,
In addition, by minimizing the contamination of impurities, it is expected that the properties and the density of the sintered body can be improved. The present invention has been made in order to cope with such a situation, and has obtained a high-density sintered body that has extremely low impurity contamination and sufficiently exhibits its characteristics even at a relatively low temperature of about 1000 ° C. It is an object of the present invention to provide a method for producing ferrite. [Structure of the Invention] (Means and Actions for Solving the Problems) The method for producing ferrite of the present invention includes a step of calcining a raw material powder containing a predetermined ratio of each element constituting the required ferrite; The method for producing a ferrite, comprising: a step of finely pulverizing the calcined product obtained by the calcining; and a step of forming the powder obtained by the fine pulverization into a required shape and then calcining the ferrite. The diameter 0.5mm-3
It is characterized by using a zirconia ball of mm. The ball used in the pulverization step of the present invention has high hardness and excellent wear resistance, and among the ceramic members, stabilized zirconia (FSZ) and partially stabilized zirconia known as materials having excellent fracture toughness values. (PSZ) is a ball with a diameter of 0.5 to 3 mm. By using zirconia balls having such characteristics, it is possible to pulverize the calcined calcined material with high efficiency and minimizing contamination of impurities. Becomes possible. Note that it is naturally effective to carry out coarse pulverization by a known means such as a roll crusher or a jaw crusher prior to the fine pulverization step. In the fine pulverization step using the zirconia balls, it is possible to use various types of pulverizers using balls, such as a ball mill, a sand mill, and a vibration mill. The diameter of the zirconia ball to be used is suitably 0.5mm ~ 3mm, this diameter is 0.5m
If it is less than m, the pulverization efficiency decreases, and if it exceeds 3 mm, the particle size of the obtained powder cannot be sufficiently reduced, and the effect of lowering the firing temperature cannot be sufficiently obtained. The pulverization time varies depending on the type of ferrite, the degree of coarse pulverization, the pulverization method and the like, but about 2 hours to about 240 hours is appropriate. Then, by finely pulverizing the calcined material by such a method, it becomes possible to obtain a fine powder having an average particle size of about 0.1 μm to 0.5 μm. Next, after forming into a required shape using such a fine powder, by calcining, since the reactivity between the particles is significantly improved and the contamination with impurities is extremely small,
In the present invention, it is possible to obtain a high-density sintered body near the theoretical density even when sintering at a low temperature of about 100 ° C. to 200 ° C. lower than the conventional calcination temperature of 1200 ° C. or more. The method of the present invention comprises a general formula: MO · nFe 2 O 3 (wherein M is at least one selected from Ba, Sr, and Pb;
n represents a number of 4.5 to 6.2, and part of Fe is In, Ti, Co, Zn,
Replaceable with at least one of V and Ge. Ferrite and formulas as hard magnetic material, such as represented by): M'O · Fe 2 O 3 ( where, M 'is Mn, Zn, Ni, 1 kind or 2 or more selected from Cu, The present invention is applicable to any production of ferrite as a soft magnetic material as represented by (Example) Next, an example in which the production method of the present invention is applied to production of a Mn-Zn ferrite will be described. Examples 1 to 3 and Comparative Examples 1 to 3 First, a target Mn-Zn-based ferrite was prepared (Mn 054 , Zn
046 ) Fe 2 O 4 and Fe 2 O 3 , MnO and ZnO as starting materials
After weighing each in a predetermined amount and mixing them sufficiently, the mixture was calcined at about 900 ° C. for 2 hours. Next, the calcined product obtained by this calcining was roughly pulverized in a dry system to about -325 mesh. Next, the coarsely pulverized product was finely pulverized by a ball mill using a zirconia ball Z100 (trade name, manufactured by Nippon Steel Corporation) having a diameter shown in Table 1 under a condition of about 192 hours in each case. . The average particle size of the fine powder obtained under each condition and the amount of impurities mixed in the fine powder are as shown in Table 1. On the other hand, for comparison with the present invention, zirconia balls of the same material having a diameter of 5 mm, alumina balls having a diameter of 2 mm, respectively, by using the same conditions as in the example, finely pulverized calcined material,
The characteristics of these were measured in the same manner as in the examples. From the results shown in Table 1, according to the ball mill pulverization using zirconia balls having a diameter of 0.5 mm to 3 mm in this example, it is possible to pulverize to submicron units, and the contamination with impurities is extremely small. It is clear that. Thereafter, a PVA-based binder was added to each of these fine powders, mixed well, and then formed into a predetermined shape by press molding (press pressure: 1500 kg / cm 2 ).
It was fired for 2 hours under each temperature condition of 0 ° C, 1100 ° C, and 1200 ° C to obtain a ferrite sintered body. The density, magnetic permeability, and magnetic flux saturation density of the thus obtained ferrite sintered body were measured. As a result, the sintered body densities are shown in FIG. 1 to FIG. The magnetic permeability according to the example was 6000 to 7000, and the magnetic flux saturation density (Bs) was 4000 to 4500G. From the results shown in FIGS. 1 to 5, the ferrite sintered body according to this embodiment is manufactured from a fine powder containing very little impurities, so that the ferrite sintered body is relatively low at about 1000 ° C. to 1100 ° C. Depending on the temperature conditions, a high-density sintered body near the theoretical density was obtained, and its properties were equivalent to those of the conventional method at a temperature of about 1200 ° C. [Effects of the Invention] As is clear from the above examples, according to the ferrite production method of the present invention, since the calcined material is finely pulverized using zirconia balls having a diameter of 0.5 mm to 3 mm,
Even at a relatively low temperature of about ° C, it is possible to easily obtain a high-density ferrite sintered body having excellent properties near the theoretical density, and has a great industrial value.
【図面の簡単な説明】
第1図ないし第3図は本発明の実施例における焼結温度
と焼結体密度との関係を示すグラフ、第4図および第5
図は本発明との比較のために掲げた例の焼結温度と焼結
体密度との関係を示すグラフである。BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 3 are graphs showing a relationship between a sintering temperature and a sintered body density in an embodiment of the present invention, FIGS. 4 and 5;
The figure is a graph showing the relationship between the sintering temperature and the sintered body density of the examples listed for comparison with the present invention.
─────────────────────────────────────────────────────
フロントページの続き
(72)発明者 朴木 秀明
群馬県山田郡大間々町1727―3
(72)発明者 一ノ瀬 昇
神奈川県横浜市金沢区東朝比奈1―34―
12
(56)参考文献 特開 昭57−64903(JP,A)
特開 昭52−52911(JP,A)
────────────────────────────────────────────────── ───
Continuation of front page
(72) Inventor Hideaki Parkki
1727-3 Oma-machi, Yamada-gun, Gunma
(72) Inventor Noboru Ichinose
1-34 Higashi Asahina, Kanazawa-ku, Yokohama-shi, Kanagawa
12
(56) References JP-A-57-64903 (JP, A)
JP-A-52-52911 (JP, A)