[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2707603B2 - Method for producing composite oxide fine powder - Google Patents

Method for producing composite oxide fine powder

Info

Publication number
JP2707603B2
JP2707603B2 JP63133008A JP13300888A JP2707603B2 JP 2707603 B2 JP2707603 B2 JP 2707603B2 JP 63133008 A JP63133008 A JP 63133008A JP 13300888 A JP13300888 A JP 13300888A JP 2707603 B2 JP2707603 B2 JP 2707603B2
Authority
JP
Japan
Prior art keywords
composite oxide
solution
autoclave
fine powder
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63133008A
Other languages
Japanese (ja)
Other versions
JPH01301875A (en
Inventor
昌弘 吉村
重行 宗宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP63133008A priority Critical patent/JP2707603B2/en
Publication of JPH01301875A publication Critical patent/JPH01301875A/en
Application granted granted Critical
Publication of JP2707603B2 publication Critical patent/JP2707603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、電子材料あるいは構造材料用のセラミッ
クスの原料である複合酸化物微粉末の製造方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for producing a composite oxide fine powder which is a raw material of ceramics for electronic materials or structural materials.

(従来の技術及びその問題点) 複合酸化物の微粉末の合成法としては、各酸化物の構
成成分を含有する原料粉末を混合し、高温で合成する固
相反応法による場合が多い。
(Prior Art and Problems Thereof) As a method for synthesizing a fine powder of a composite oxide, a solid phase reaction method in which raw material powders containing the constituent components of each oxide are mixed and synthesized at a high temperature is often used.

このような固相反応法による場合、反応のために多く
の熱エネルギーを消費し、また反応生成物は焼結体の状
態で得られるため、そののちに粉砕工程が必要となる。
In the case of such a solid-phase reaction method, a large amount of heat energy is consumed for the reaction, and a reaction product is obtained in a state of a sintered body. Therefore, a pulverization step is required thereafter.

したがって、複合酸化物を合成するには低温で処理で
きる方法が望まれる。ところが、常温付近における溶液
反応法で合成できる複合酸化物の種類が限定されてお
り、それ以外は前駆体や共沈水酸化物が得られるにすぎ
ない。得られた粉末は均一性と微細性にはすぐれている
ものの、結晶性劣り、複合酸化物とするためには焼成工
程を欠かすことはできない。このため固相反応と同様な
問題点を有する。
Therefore, in order to synthesize a composite oxide, a method that can be processed at a low temperature is desired. However, the types of composite oxides that can be synthesized by a solution reaction method at around room temperature are limited, and other than that, only a precursor or a coprecipitated hydroxide can be obtained. Although the obtained powder is excellent in uniformity and fineness, it is inferior in crystallinity, and a firing step is indispensable for forming a composite oxide. For this reason, it has the same problems as the solid phase reaction.

また、結晶性の複合酸化物を合成する方法としては、
高温の溶液を用いる方法がある。この方法によれば、溶
液の沸点以上の高温で処理するため、溶液の蒸発を防ぐ
ために高圧に保持する容器、つまりオートクレーブを用
いている。この方法によれば、高温になればなるほど高
圧となるので、オートクレーブの材質、容量などの条件
が厳しくなる。例えば、金属を高温高圧の条件で酸化す
る場合、TiやNbでは400〜500℃以上で、圧力が200〜300
気圧以上が必要であるが、このようなオートクレーブに
は特殊な材質で、容量の小さいものが使えるに過ぎな
い。
Further, as a method of synthesizing a crystalline composite oxide,
There is a method using a hot solution. According to this method, since the treatment is performed at a high temperature equal to or higher than the boiling point of the solution, a container which is maintained at a high pressure to prevent evaporation of the solution, that is, an autoclave is used. According to this method, the higher the temperature, the higher the pressure, so that the conditions such as the material and capacity of the autoclave become strict. For example, when oxidizing a metal under conditions of high temperature and high pressure, Ti or Nb is 400 to 500 ° C.
Atmospheric pressure or higher is required, but only a small material with a small capacity can be used for such an autoclave.

一方、金属を水溶液中で電流により電気化学的に酸化
して酸化物を作る方法があり、陽極酸化法として知られ
ている。しかしながら、この陽極酸化法で生成されるも
のは単一酸化物であり、複合酸化物を作ることは困難で
ある。
On the other hand, there is a method in which a metal is electrochemically oxidized by an electric current in an aqueous solution to form an oxide, which is known as an anodization method. However, what is produced by this anodic oxidation method is a single oxide, and it is difficult to produce a composite oxide.

(発明の目的) この発明は水熱条件下での陽極酸化による新しい方法
により、従来の高温高圧条件での水熱合成法にくらべ
て、より低温低圧での複合酸化物微粉末が合成できる方
法を提供することにある。
(Object of the Invention) The present invention provides a new method by which anodic oxidation under hydrothermal conditions enables a composite oxide fine powder to be synthesized at lower temperature and lower pressure than conventional hydrothermal synthesis under high temperature and high pressure conditions. Is to provide.

(問題を解決する手段) つまり、この発明はオートクレーブ中に配置した金属
を溶液中に浸漬し、高温高圧状態の前記溶液中において
前記金属に電流を流すことにより電気化学的に酸化させ
て酸化物とし、同時に前記高温高圧溶液中に含有してい
る溶解成分と反応させることにより複合酸化物微粉末を
得ることを特徴とするものである。
(Means for Solving the Problem) In other words, the present invention immerses a metal arranged in an autoclave in a solution, and electrochemically oxidizes the metal by flowing a current through the metal in the solution in a high-temperature and high-pressure state. And simultaneously reacting with a dissolved component contained in the high-temperature and high-pressure solution to obtain a composite oxide fine powder.

ここで、オートクレーブ中に配置する金属としては、
Al、Ti、Nb、Zr、Hf、W、Mo、V、Sn、Pbなどがあり、
これらの金属はオートクレーブの中では直流電源の陽極
が電気接続される作用電極側となる。また、オートクレ
ーブの中に入れる溶液としては、高温高圧の条件下で前
記金属の陽極酸化により生成された酸化物と反応する成
分を含有するものが使用され、例えば硝酸バリウム、硝
酸リチウムなどが用いられる。このような溶液を入れた
オートクレーブ中には前記作用電極に対向して直流電源
の陰極側に電気接続される対向電極が配置されている。
Here, as the metal to be placed in the autoclave,
Al, Ti, Nb, Zr, Hf, W, Mo, V, Sn, Pb, etc.
These metals are the working electrode side in the autoclave where the anode of the DC power supply is electrically connected. As the solution to be put into the autoclave, one containing a component that reacts with an oxide generated by anodic oxidation of the metal under high-temperature and high-pressure conditions is used, for example, barium nitrate, lithium nitrate, or the like is used. . In the autoclave containing such a solution, a counter electrode electrically connected to the cathode side of the DC power source is disposed so as to face the working electrode.

このような構成において、オートクレーブをヒータで
加熱すると、オートクレーブの中の溶液は高温高圧状態
となり、一方、作用電極と対向電極の間に直流電流を流
すと、作用電極側の金属は陽極酸化状態にされ、溶液中
に溶解するとともに溶液中に含有されている溶解成分と
反応し、複合酸化物が生成されることになる。
In such a configuration, when the autoclave is heated by the heater, the solution in the autoclave is in a high-temperature and high-pressure state. On the other hand, when a direct current is applied between the working electrode and the counter electrode, the metal on the working electrode side is in an anodized state. As a result, the complex oxide is dissolved in the solution and reacts with a dissolved component contained in the solution to form a composite oxide.

なお、複合酸化物の生成にあたっては、金属や溶液の
種類に応じて、温度、圧力、印加電圧、印加電流が相互
に関係しあうが、これら用いる金属、溶液により適宜選
択して条件を決定すればよい。
In the production of the composite oxide, the temperature, pressure, applied voltage, and applied current are mutually related in accordance with the type of the metal or the solution. However, conditions may be determined by appropriately selecting the metal and the solution to be used. I just need.

(効果) この発明の製造方法によれば、従来のオートクレーブ
中での高温高圧溶液反応にくらべて、電流を作用するこ
とによる加速反応効果が加わることにより、比較的低温
低圧で複合酸化物が直接合成できることとなる。
(Effect) According to the production method of the present invention, compared with the conventional high-temperature and high-pressure solution reaction in an autoclave, an accelerated reaction effect by applying an electric current is added, so that the composite oxide can be directly formed at a relatively low temperature and low pressure. It can be synthesized.

第1図は、この発明方法を実施する際に使用する装置
の概略図である。
FIG. 1 is a schematic view of an apparatus used in carrying out the method of the present invention.

この図において、1はオートクレーブの本体を示し、
2は外容器であり、その周囲にヒータ3が配置されてい
る。また、外容器2の内部には内容器4が配置されてお
り、この内部には作用電極5、およびはこの作用電極5
に対向して対向電極6配置されている。また、この内容
器4には、たとえば硝酸バリウム溶液が入れられてい
る。作用電極5と対向電極6は直流電源7に電気接続さ
れており、作用電極5が陽極側に電気接続され、対向電
極6が陰極側に接続されている。8はオートクレーブの
本体1を封止する蓋である。
In this figure, 1 indicates the body of the autoclave,
Reference numeral 2 denotes an outer container, around which a heater 3 is arranged. An inner container 4 is disposed inside the outer container 2, and a working electrode 5 and the working electrode 5 are provided inside the inner container 4.
The counter electrode 6 is arranged to face the counter electrode. The inner container 4 contains, for example, a barium nitrate solution. The working electrode 5 and the counter electrode 6 are electrically connected to a DC power supply 7, the working electrode 5 is electrically connected to the anode side, and the counter electrode 6 is connected to the cathode side. Reference numeral 8 denotes a lid for sealing the main body 1 of the autoclave.

(実施例) 以下に、この発明の複合酸化物微粉末の製造方法につ
いて詳細に説明する。
(Examples) Hereinafter, a method for producing a composite oxide fine powder of the present invention will be described in detail.

実施例1. オートクレーブの内容器の中に0.5規定のBa(NO3
を入れた。次いで、作用電極として純度99.9%の金属Ti
板を用い、対向電極としてPt板を用い、これらの各金属
板を内容器の中に設置した。温度250℃、飽和蒸気圧3.8
MPaの下で、100mA/cm2の直流を流した。通電したのち約
10分後にBaTiO3が生成しはじめた。
Example 1. Ba (NO 3 ) 2 with 0.5 regulation in the inner container of an autoclave
Was put. Next, 99.9% pure metal Ti was used as the working electrode.
Using a plate, a Pt plate was used as a counter electrode, and each of these metal plates was placed in an inner container. Temperature 250 ° C, saturated vapor pressure 3.8
Under MPa, a direct current of 100 mA / cm 2 was passed. About after energizing
After 10 minutes, BaTiO 3 started to form.

作用電極である金属Ti板と対向電極であるPt板との間
に印加される浴の電圧と処理時間との関係を測定したと
ころ、第2図のような結果が得られた。
When the relationship between the bath voltage applied between the metal Ti plate as the working electrode and the Pt plate as the counter electrode and the processing time was measured, the results as shown in FIG. 2 were obtained.

この第2図から、処理中初期の段階では浴の電圧は単
調に増加したのち、急激な増減を繰り返している。これ
は処理の初期の段階で金属Ti板の表面で酸化膜が生成さ
れてから、その後に酸化膜のマクロ的な溶解と成長が繰
り返し起こっていることによるものと推考できる。ま
た、通電したあと10分を経過した段階で浴電圧が±50V
の間を急激に振動している。このような変化は、局部的
な放電による生成酸化膜の絶縁破壊に基づくものである
と考えられる。
As can be seen from FIG. 2, the voltage of the bath monotonously increases at the initial stage during the treatment, and then repeatedly increases and decreases rapidly. This is presumably because the oxide film was formed on the surface of the metal Ti plate in the initial stage of the treatment, and thereafter the macroscopic dissolution and growth of the oxide film were repeatedly occurring. Also, the bath voltage will be ± 50V at the stage when 10 minutes have passed after energization.
It vibrates rapidly between. Such a change is considered to be based on the dielectric breakdown of the oxide film generated by the local discharge.

また、得られた粉末についてX線回折分析を行ったと
ころ、生成するBaTiO3粉末は単一相であり、サブミクロ
ンの粒子が集合した数ミクロンの二次粒子であったが、
分散性は比較的良好であった。
Further, when the obtained powder was analyzed by X-ray diffraction, the resulting BaTiO 3 powder was a single phase, which was secondary particles of several microns in which submicron particles were aggregated.
Dispersibility was relatively good.

第3図はこの実施例で得られたBaTiO3粉末のX線回折
分析を示す図である。
FIG. 3 is a diagram showing an X-ray diffraction analysis of the BaTiO 3 powder obtained in this example.

実施例2. この実施例では、実施例1で使用したBa(NO3
濃度を0.1規定とし、その他の条件を実施例1と同様に
して処理した。
Example 2 In this example, the concentration of Ba (NO 3 ) 2 used in Example 1 was set to 0.1 N, and the other conditions were the same as in Example 1.

得られたBaTiO3粉末はわずかの未知相を含むものの、
ほとんどがBaTiO3の生成物であった。
Although the obtained BaTiO 3 powder contains a few unknown phases,
Most were BaTiO 3 products.

第4図はこの実施例で得られたBaTiO3粉末のX線回折
分析を示す図である。
FIG. 4 is a diagram showing an X-ray diffraction analysis of the BaTiO 3 powder obtained in this example.

実施例3. オートクレーブの内容器の中に0.1規定のLiNbO3を入
れた。次いで、作用電極としてNb板を用い、対向電極と
してPt板を用い、これらの各金属板を内容器の中に設置
した。温度250℃、飽和蒸気圧3.8MPaの下で、100mA/cm2
の直流を流した。通電したのちLiNbO3の粉末が生成され
はじめ、得られた粉末には不純物がほとんど含有されて
いなかった。
Example 3 0.1N LiNbO 3 was placed in the inner container of an autoclave. Next, an Nb plate was used as a working electrode and a Pt plate was used as a counter electrode, and each of these metal plates was placed in an inner container. 100mA / cm 2 under temperature 250 ℃, saturated vapor pressure 3.8MPa
Was passed. After energization, LiNbO 3 powder began to be generated, and the obtained powder contained almost no impurities.

なお、金属のかわりに金属酸化物を用い、これをオー
トクレーブ中で電気化学的に高温高圧溶液中の溶解成分
と反応させることによっても、複合酸化物微粉末を得る
ことが確認できている。
It has been confirmed that a composite oxide fine powder can also be obtained by using a metal oxide instead of a metal and electrochemically reacting it with a dissolved component in a high-temperature and high-pressure solution in an autoclave.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、この発明方法を実施する際に使用するオート
クレーブ装置の概略図である。 第2図は、実施例1において作用電極である金属Ti板と
対向電極であるPt板との間に印加される浴の電圧と処理
時間との関係を測定した図である。 第3図は実施例1で得られたBaTiO3粉末のX線回折分析
を示す図である。 第4図は実施例2で得られたBaTiO3粉末のX線回折分析
を示す図である。 1はオートクレーブの本体、2は外容器、3はヒータ、
4は内容器、5は作用電極、6は対向電極、7は直流電
源、8は蓋。
FIG. 1 is a schematic view of an autoclave device used for carrying out the method of the present invention. FIG. 2 is a diagram showing a relationship between a treatment time and a voltage of a bath applied between a metal Ti plate as a working electrode and a Pt plate as a counter electrode in Example 1. FIG. 3 is a diagram showing an X-ray diffraction analysis of the BaTiO 3 powder obtained in Example 1. FIG. 4 is a diagram showing an X-ray diffraction analysis of the BaTiO 3 powder obtained in Example 2. 1 is an autoclave main body, 2 is an outer container, 3 is a heater,
4 is an inner container, 5 is a working electrode, 6 is a counter electrode, 7 is a DC power supply, and 8 is a lid.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】オートクレーブ中に配置した金属を溶液中
に浸漬し、高温高圧状態の前記溶液中で電気化学的に酸
化させて酸化物とし、同時に前記高温高圧溶液中の溶解
成分と反応させることにより複合酸化物微粉末を得るこ
とを特徴とする複合酸化物微粉末の製造方法。
1. A method in which a metal placed in an autoclave is immersed in a solution and electrochemically oxidized in the solution in a high-temperature and high-pressure state to form an oxide, and simultaneously reacted with a dissolved component in the high-temperature and high-pressure solution. A method for producing a composite oxide fine powder, characterized by obtaining a composite oxide fine powder by the method.
JP63133008A 1988-05-31 1988-05-31 Method for producing composite oxide fine powder Expired - Lifetime JP2707603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63133008A JP2707603B2 (en) 1988-05-31 1988-05-31 Method for producing composite oxide fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63133008A JP2707603B2 (en) 1988-05-31 1988-05-31 Method for producing composite oxide fine powder

Publications (2)

Publication Number Publication Date
JPH01301875A JPH01301875A (en) 1989-12-06
JP2707603B2 true JP2707603B2 (en) 1998-02-04

Family

ID=15094628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63133008A Expired - Lifetime JP2707603B2 (en) 1988-05-31 1988-05-31 Method for producing composite oxide fine powder

Country Status (1)

Country Link
JP (1) JP2707603B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1383943A (en) * 1972-06-29 1974-02-12 Oxydenchemie Ag Fur Electrolytic methods of making intimately admixed metal oxides
JPH0651569B2 (en) * 1986-01-30 1994-07-06 ソニー株式会社 Bi (bottom 2) Ti (bottom 2) O (bottom 7) Method for producing fine particles
US4753787A (en) * 1986-07-18 1988-06-28 Pieter Krijgsman Method and structure for forming a reaction product
JPS6350305A (en) * 1986-08-15 1988-03-03 Nippon Seiko Kk Method and device for producing ultrafine-particle powder

Also Published As

Publication number Publication date
JPH01301875A (en) 1989-12-06

Similar Documents

Publication Publication Date Title
Yoshimura et al. Preparation of BaTiO3 thin film by hydrothermal electrochemical method
US6284216B1 (en) Barium titanate powder
Avila et al. Reactive flash sintering of the complex oxide Li0. 5La0. 5TiO3 starting from an amorphous precursor powder
WO2019189014A1 (en) Method for producing catalyst for air secondary batteries, method for producing air secondary battery, catalyst for air secondary batteries, and air secondary battery
CN111087238B (en) Sodium bismuth titanate based leadless piezoelectric ceramic and preparation method thereof
JPS5915503B2 (en) Method for producing multi-component crystallized fine powder for piezoelectric porcelain containing zircon and lead titanate
CN108823589A (en) A kind of preparation process of solid polymer water electrolysis oxygen-separating catalyst yttrium oxide
Zhitomirsky Electrolytic deposition of niobium oxide films
JPH08208226A (en) Production of complex metal oxide powder
JP2707603B2 (en) Method for producing composite oxide fine powder
Cho et al. Hydrothermal synthesis of PbTiO3 films
JP3007929B2 (en) High density sintering method for oxide fine particles
CN104725041A (en) La-doped lead zirconate stannate titanate anti-ferroelectric ceramics with high energy storage efficiency and preparation method thereof
Cho et al. Hydrothermal, hydrothermal-electrochemical and electrochemical synthesis of highly crystallized barium tungstate films
US5427678A (en) Composite oxide thin film
Gerges et al. Structural, optical and electrical properties of PbTiO3 nanoparticles prepared by Sol-Gel method
Santos et al. Influence of synthesis conditions on the properties of electrochemically synthesized BaTiO3 nanoparticles
Kinemuchi et al. Synthesis of nanosize PZT powders by pulsed wire discharge
Climent et al. Anodic oxidation of titanium up to 100 V
Ando et al. Preparation of Pb (Mg1/3Nb2/3) O3-PbTiO3 powder by a wet chemical process
WO2004065304A1 (en) Method for producing titanium-containing oxide ultrafine particle and titanium-containing oxide ultrafine particle
Gupta et al. Synthesis of perovskite lead magnesium niobate using partial oxalate method
WO2008067156A9 (en) Production of high-purity titanium monoxide and capacitor production therefrom
US4879018A (en) Low voltage anodizing process and apparatus
Hirata et al. Synthesis of Gadolinium‐Doped Ceria Powders by Electrolysis of Aqueous Solutions

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11