JP2702121B2 - Semiconductor storage device - Google Patents
Semiconductor storage deviceInfo
- Publication number
- JP2702121B2 JP2702121B2 JP62043472A JP4347287A JP2702121B2 JP 2702121 B2 JP2702121 B2 JP 2702121B2 JP 62043472 A JP62043472 A JP 62043472A JP 4347287 A JP4347287 A JP 4347287A JP 2702121 B2 JP2702121 B2 JP 2702121B2
- Authority
- JP
- Japan
- Prior art keywords
- capacitor
- insulating film
- electrode
- region
- isolation region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 19
- 239000003990 capacitor Substances 0.000 claims description 37
- 239000011229 interlayer Substances 0.000 claims description 9
- 238000002955 isolation Methods 0.000 claims description 8
- 239000000758 substrate Substances 0.000 description 17
- 210000004027 cell Anatomy 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 210000000352 storage cell Anatomy 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 230000010354 integration Effects 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/31—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は半導体記憶装置に係り、特にダイナミック型
半導体記憶装置の記憶セルの構造に関する。
[従来の技術]
一般に、ダイナミック型半導体記憶装置の記憶セルと
しては、1トランジスタ・1キャパシタ構造のものが知
られており、記憶動作の正確さを保障するためにキャパ
シタは250fc程度の電荷を蓄積可能に設計されている。
かかる記憶セルの代表的構造としては、基板の表面部
にキャパシタの下部電極を平面的に形成したもの、キャ
パシタの電極対を二層構造にしてキャパシタの占有面積
を減少させたもの、更に半導体基板にはほぼ垂直に溝を
形成し該溝の表面を電極として利用したものがある。
[発明が解決しようとする問題点]
しかしながら、上記従来のキャパシタの構造にはそれ
ぞれ以下に説明する問題点があった。
まず、半導体基板の表面部にキャパシタの下部電極を
平面的に形成した構造では上記250fc程度の電荷量を蓄
積するのに少なくとも15平方ミクロンの基板面積を必要
としているので、1つの記憶セルの占有面積が広くな
り、記憶セルの集積度が向上しないという問題点があっ
た。
一方、キャパシタを二重構造にした記憶セルでは上記
従来例に比べれば1つの記憶セルの占有面積を減少させ
られるものの、それでも250fc程度の電荷量を蓄積する
には8平方ミクロン程度の基板面積が消費され、記憶セ
ルの集積度を十分に向上させられないという問題点があ
った。
これに対して、溝型のキャパシタを採用した場合には
1つの記憶セルにより消費される基板面積はかなり減少
するものの、半導体基板の表面からほぼ垂直に溝を形成
しなければならず、かかる溝の形成に製造上の困難を伴
うという問題点があった。
従って、本発明の目的は1記憶セル当りの基板占有面
積を減少させることができ、しかも製造容易な記憶セル
構造の半導体記憶装置を提供することである。
[問題点を解決するための手段]
本発明の半導体記憶装置は、素子分離領域で囲まれた
一区画の素子領域にドレインを共通とする2個のスイッ
チングトランジスタを設け、共通ドレイン領域にコンタ
クトされたビット線が配線され、ビット線を覆う層間絶
縁膜上の前記素子分離領域で画定される素子領域上に前
記素子分離領域のほぼ内側全体を用いて形成された2個
の容量体を各トランジスタの上に独立に設け、各容量体
の下部電極は対応する直下のトランジスタのソースとコ
ンタクトホールを介して接続され、前記下部電極を覆う
ように容量絶縁膜と上部電極が形成され、かつ、各容量
体は側面容量成分が平面容量成分よりも大きくなる形状
を有していることを特徴とする
[発明の作用]
上記構成に係る半導体記憶装置の記憶セルでは、容量
体の側壁による側壁容量成分がその平面容量成分より大
きいので、容量体の合計容量値は半導体基板表面に平面
的に容量体を形成した場合に比べ2倍を超える。しか
も、半導体基板にほぼ垂直に微細な溝を形成する必要も
ないので、製造工程も容易になる。
[実施例]
以下、本発明の実施例を図面を参照して説明する。
第1図乃至第3図は本発明の第1実施例の構造を示し
ており、第1図は第1実施例に係る半導体記憶装置の2
ビット分の記憶セルを示す平面図、第2図は第1図のA
−A′断面図、第3図は第1図のB−B′断面図であ
る。
図に於て、1は半導体基板、2は分離領域、3は基板
1とは逆導電型の拡散層、4は半導体基板1の表面上を
延在するワード線、5はワード線4を被う絶縁層を貫通
するビット線コンタクト、6は図示されている2ビット
分の記憶セルに対して共通なビット線、7はビット線6
を被う絶縁性の層間膜、8は層間膜7とワード線4を被
う絶縁膜とを貫通する容量電極コンタクト、9は層間膜
7上に形成され容量電極コンタクト8に接触する第1容
量電極、10は第1容量電極9を被う容量絶縁膜、11は容
量絶縁膜10を被う第2容量電極である。従って分離領域
2に囲まれた基板表面には2個のMOS型トランジスタが
1つのビット線用の拡散層を共有して形成されている。
MOSトランジスタのソース・ドレイン電極容量電極コン
タクト8を介して第1容量電極9に接続されている。上
記構造の記憶セルにあっては、セル面積を10平方ミクロ
ン、容量絶縁膜を10nm厚の二酸化シリコンとすると、容
量体の平面寸法が2×2.5平方ミクロンになるので、第
1容量電極9の高さは1ミクロンで足りる。しかしなが
ら、かかる寸法におけるキャパシタでは側面において約
30fF、平面において17fFの容量を得ることができ、合計
47fFとなり、情報を電荷の形で蓄積することができる。
しかも、上記実施例ではMOSトランジスタを形成した
後に、換言すれば記憶セルや周辺回路を作成した後に層
間膜7を被着し、その上にキャパシタを形成することが
できるので、ワード線5とビット線6とに耐熱性の材料
を用いれば、容量電極9や容量絶縁膜10に通常の多結晶
シリコンや二酸化シリコンを使用することができ、本実
施例では容量体に高温に耐えられない酸化タンタル(Ta
2O5)を使用している。
第4図は本発明の第2実施例の断面図である。第2実
施例では第1実施例と同様の容量体の第1容量電極9に
溝を12を形成して容量体の表面積を増加させている。例
えば、容量絶縁膜を10nm厚の二酸化シリコンとし、平面
寸法を2×2平方ミクロンとし、その高さを3ミクロン
とし、溝12の開口面積を1×1平方ミクロン、溝12の深
さを2ミクロンとすると、溝12を形成しない場合の容量
値は96fFであるが、溝12を形成すると124fFに増加す
る。
[発明の効果]
以上説明してきたように、本発明は半導体基板上に上
記トランジスタに接続される配線を形成し、該配線を被
う層間絶縁膜と、該層間絶縁膜上に形成された容量体と
を有し、該容量体は側面容量成分が平面容量成分より大
きくなるような形状にしたので、半導体基板の表面に容
量体を平面的に形成した場合はもとより、容量体を二層
構造にした場合よりも容量値を増加させることができ、
従って、同一の容量値の容量体を形成するなら占有面積
を減少させることができ、記憶セルの密度を向上させる
ことができる。その上、微細な溝を正確な位置に形成す
る必要もないので、製造が容易になる。Description: BACKGROUND OF THE INVENTION The present invention relates to a semiconductor memory device, and more particularly, to a structure of a memory cell of a dynamic semiconductor memory device. [Prior Art] Generally, a memory cell of a dynamic semiconductor memory device has a one-transistor / one-capacitor structure, and a capacitor stores a charge of about 250 fc in order to guarantee the accuracy of a memory operation. Designed to be possible. Typical structures of such a memory cell include a structure in which a lower electrode of a capacitor is formed in a plane on the surface of a substrate, a structure in which a capacitor electrode pair is formed in a two-layer structure to reduce the area occupied by a capacitor, and a semiconductor substrate. There is a type in which a groove is formed almost vertically and the surface of the groove is used as an electrode. [Problems to be Solved by the Invention] However, each of the above-described conventional capacitor structures has the following problems. First, in the structure in which the lower electrode of the capacitor is formed in a plane on the surface of the semiconductor substrate, a substrate area of at least 15 square microns is required to accumulate the electric charge of about 250 fc, so that one memory cell is occupied. There is a problem that the area is increased and the degree of integration of the memory cells is not improved. On the other hand, in a storage cell having a double-structured capacitor, although the area occupied by one storage cell can be reduced as compared with the above conventional example, a substrate area of about 8 square microns still needs to store a charge of about 250 fc. There is a problem in that the memory cells are consumed and the degree of integration of the memory cells cannot be sufficiently improved. On the other hand, when a trench-type capacitor is employed, the substrate area consumed by one storage cell is considerably reduced, but the trench must be formed almost perpendicularly from the surface of the semiconductor substrate, and such a trench must be formed. However, there is a problem that formation of the film involves manufacturing difficulties. Accordingly, it is an object of the present invention to provide a semiconductor memory device having a memory cell structure which can reduce the substrate occupation area per memory cell and is easy to manufacture. [Means for Solving the Problems] In a semiconductor memory device of the present invention, two switching transistors having a common drain are provided in one section of an element region surrounded by an element isolation region, and the switching transistor is in contact with a common drain region. A capacitor line formed by using substantially the entire inside of the element isolation region on an element region defined by the element isolation region on the interlayer insulating film covering the bit line. And a lower electrode of each capacitor is connected to a source of a corresponding transistor directly below via a contact hole, a capacitor insulating film and an upper electrode are formed so as to cover the lower electrode, and The capacitor has a shape in which the lateral capacitance component is larger than the planar capacitance component. [Operation of the Invention] In the storage cell of the semiconductor memory device according to the above configuration, Since sidewall capacity component by the side wall of the dimer is greater than the plane capacitance component, the total capacitance value of the capacitor body than twice than in the case of forming a planar capacitive element on the semiconductor substrate surface. In addition, since it is not necessary to form fine grooves almost vertically in the semiconductor substrate, the manufacturing process is also facilitated. [Example] Hereinafter, an example of the present invention will be described with reference to the drawings. 1 to 3 show the structure of a first embodiment of the present invention, and FIG. 1 shows the structure of a semiconductor memory device according to the first embodiment.
FIG. 2 is a plan view showing a memory cell for bits, and FIG.
FIG. 3 is a sectional view taken along the line BB 'of FIG. In the drawing, 1 is a semiconductor substrate, 2 is an isolation region, 3 is a diffusion layer of a conductivity type opposite to that of the substrate 1, 4 is a word line extending on the surface of the semiconductor substrate 1, and 5 is a word line. A bit line contact penetrating the insulating layer, 6 is a bit line common to the two-bit storage cells shown, and 7 is a bit line 6
An insulating film covering the insulating film; 8, a capacitor electrode contact penetrating the interlayer film 7 and the insulating film covering the word line 4; 9, a first capacitor formed on the interlayer film 7 and in contact with the capacitor electrode contact 8 The electrode 10 is a capacitive insulating film covering the first capacitive electrode 9, and the numeral 11 is a second capacitive electrode covering the capacitive insulating film 10. Therefore, two MOS transistors are formed on the surface of the substrate surrounded by the isolation region 2 while sharing one bit line diffusion layer.
The MOS transistor is connected to the first capacitor electrode 9 via the source / drain electrode capacitor electrode contact 8. In the memory cell having the above structure, if the cell area is 10 square microns and the capacitance insulating film is 10 nm thick silicon dioxide, the planar dimension of the capacitor becomes 2 × 2.5 square microns. One micron is enough. However, for a capacitor of such dimensions, about
30fF, 17fF capacitance in plane, total
47 fF, and information can be stored in the form of electric charges. Moreover, in the above embodiment, after forming the MOS transistor, in other words, after forming the memory cell and the peripheral circuit, the interlayer film 7 can be deposited and a capacitor can be formed thereon, so that the word line 5 and the bit If a heat-resistant material is used for the wire 6, ordinary polycrystalline silicon or silicon dioxide can be used for the capacitor electrode 9 and the capacitor insulating film 10. In this embodiment, the capacitor is made of tantalum oxide that cannot withstand high temperatures. (Ta
2 O 5 ) is used. FIG. 4 is a sectional view of a second embodiment of the present invention. In the second embodiment, a groove 12 is formed in the first capacitor electrode 9 of the same capacitor as in the first embodiment to increase the surface area of the capacitor. For example, the capacitance insulating film is made of silicon dioxide having a thickness of 10 nm, the plane size is set to 2 × 2 square microns, the height is set to 3 microns, the opening area of the groove 12 is set to 1 × 1 square microns, and the depth of the groove 12 is set to 2 Assuming a micron, the capacitance value when the groove 12 is not formed is 96 fF, but increases to 124 fF when the groove 12 is formed. [Effects of the Invention] As described above, the present invention forms a wiring connected to the above-mentioned transistor on a semiconductor substrate, an interlayer insulating film covering the wiring, and a capacitor formed on the interlayer insulating film. The capacitor has a shape such that the side surface capacitance component is larger than the plane capacitance component. Therefore, the capacitor is formed in a two-layer structure in addition to the case where the capacitor is planarly formed on the surface of the semiconductor substrate. The capacity value can be increased as compared to
Therefore, if capacitors having the same capacitance value are formed, the occupied area can be reduced, and the density of the memory cells can be improved. In addition, since it is not necessary to form fine grooves at precise positions, manufacturing is facilitated.
【図面の簡単な説明】
第1図は本発明の第1実施例の構成を示す平面図、
第2図は第1図のA−A′断面図、
第3図は第1図のB−B′断面図、
第4図は本発明の第2実施例の構成を示す断面図であ
る。
1……半導体基板、
3……拡散層、
4……ワード線(配線)、
6……ビット線(配線)、
7……層間膜(層間絶縁膜)、
9……第1容量電極、
10……容量絶縁膜、
11……第2容量電極。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view showing the structure of a first embodiment of the present invention, FIG. 2 is a sectional view taken along line AA 'of FIG. 1, and FIG. FIG. 4 is a sectional view showing the structure of the second embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 3 ... Diffusion layer, 4 ... Word line (wiring), 6 ... Bit line (wiring), 7 ... Interlayer film (interlayer insulating film), 9 ... First capacitance electrode, 10 …… Capacitive insulating film, 11 …… Second capacitive electrode.
Claims (1)
ンを共通とする2個のスイッチングトランジスタを設
け、共通ドレイン領域にコンタクトされたビット線が配
線され、ビット線を覆う層間絶縁膜上の前記素子分離領
域で画定される素子領域上に前記素子分離領域のほぼ内
側全体を用いて形成された2個の容量体を各トランジス
タの上に独立に設け、各容量体の下部電極は対応する直
下のトランジスタのソースとコンタクトホールを介して
接続され、前記下部電極を覆うように容量絶縁膜と上部
電極が形成され、かつ、各容量体は側面容量成分が平面
容量成分よりも大きくなる形状を有していることを特徴
とする半導体記憶装置。(57) [Claims] Two switching transistors having a common drain are provided in one section of an element region surrounded by an element isolation region, and a bit line in contact with a common drain region is wired, and the element on an interlayer insulating film covering the bit line is provided. Two capacitors formed using substantially the entire inside of the device isolation region on the device region defined by the isolation region are provided independently on each transistor, and the lower electrode of each capacitor is provided directly below the corresponding transistor. A capacitor insulating film and an upper electrode are formed so as to be connected to the source of the transistor via a contact hole, cover the lower electrode, and each capacitor has a shape in which a side capacitance component is larger than a plane capacitance component. A semiconductor memory device characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62043472A JP2702121B2 (en) | 1987-02-25 | 1987-02-25 | Semiconductor storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62043472A JP2702121B2 (en) | 1987-02-25 | 1987-02-25 | Semiconductor storage device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63209157A JPS63209157A (en) | 1988-08-30 |
JP2702121B2 true JP2702121B2 (en) | 1998-01-21 |
Family
ID=12664662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62043472A Expired - Fee Related JP2702121B2 (en) | 1987-02-25 | 1987-02-25 | Semiconductor storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2702121B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2741857B2 (en) * | 1987-05-11 | 1998-04-22 | 株式会社日立製作所 | Semiconductor storage device |
US20010008288A1 (en) | 1988-01-08 | 2001-07-19 | Hitachi, Ltd. | Semiconductor integrated circuit device having memory cells |
JP2755591B2 (en) * | 1988-03-25 | 1998-05-20 | 株式会社東芝 | Semiconductor storage device |
JP2754642B2 (en) * | 1988-12-28 | 1998-05-20 | 富士通株式会社 | Dynamic semiconductor memory device |
JPH02310959A (en) * | 1989-05-25 | 1990-12-26 | Nec Corp | Semiconductor device and its manufacture |
JPH03116965A (en) * | 1989-09-29 | 1991-05-17 | Mitsubishi Electric Corp | Memory cell structure |
JP2528719B2 (en) * | 1989-12-01 | 1996-08-28 | 三菱電機株式会社 | Semiconductor memory device |
DD299990A5 (en) * | 1990-02-23 | 1992-05-14 | Dresden Forschzentr Mikroelek | One-transistor memory cell arrangement and method for its production |
KR930009593B1 (en) * | 1991-01-30 | 1993-10-07 | 삼성전자 주식회사 | Lsi semiconductor memory device and manufacturing method thereof |
JP2846286B2 (en) * | 1996-05-20 | 1999-01-13 | 株式会社日立製作所 | Method for manufacturing semiconductor memory device |
JP2839874B2 (en) * | 1996-09-17 | 1998-12-16 | 株式会社日立製作所 | Semiconductor storage device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58134458A (en) * | 1982-02-04 | 1983-08-10 | Toshiba Corp | Manufacture of capacitor in semiconductor device |
JPS59231851A (en) * | 1983-06-14 | 1984-12-26 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor memory cell |
JPS61222255A (en) * | 1985-03-28 | 1986-10-02 | Fujitsu Ltd | Manufacture of semiconductor memory device |
JPS61258467A (en) * | 1985-05-13 | 1986-11-15 | Hitachi Ltd | Semiconductor memory device |
-
1987
- 1987-02-25 JP JP62043472A patent/JP2702121B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS63209157A (en) | 1988-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5281837A (en) | Semiconductor memory device having cross-point DRAM cell structure | |
US5047817A (en) | Stacked capacitor for semiconductor memory device | |
US5028990A (en) | Semiconductor memory device having improved dynamic memory cell structure | |
US4751558A (en) | High density memory with field shield | |
US5032882A (en) | Semiconductor device having trench type structure | |
US5089869A (en) | Semiconductor memory device | |
US5381365A (en) | Dynamic random access memory having stacked type capacitor and manufacturing method therefor | |
US5181089A (en) | Semiconductor memory device and a method for producing the same | |
KR20100087915A (en) | Semiconductor memory device with cylinder type storage node and method of fabricating the same | |
JPH0682800B2 (en) | Semiconductor memory device | |
JPS62286270A (en) | Semiconductor memory | |
JP2702121B2 (en) | Semiconductor storage device | |
US5606189A (en) | Dynamic RAM trench capacitor device with contact strap | |
US20090114970A1 (en) | Embedded dram with increased capacitance and method of manufacturing same | |
JPH10173148A (en) | Semiconductor storage device | |
JP2001203337A (en) | Semiconductor integrated circuit device and manufacturing method thereof | |
JPS6410948B2 (en) | ||
JPS62190869A (en) | Semiconductor memory | |
JP2519216B2 (en) | Semiconductor memory device | |
JPH0294561A (en) | Semiconductor storage device and manufacture thereof | |
JPH05243517A (en) | Semiconductor device | |
JPH04287366A (en) | Semiconductor integrated circuit device and its manufacture | |
JPH0691216B2 (en) | Semiconductor memory device | |
JP2661156B2 (en) | Semiconductor memory device | |
JPH0650766B2 (en) | Semiconductor memory device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |