JP2701772B2 - Liquid crystal display - Google Patents
Liquid crystal displayInfo
- Publication number
- JP2701772B2 JP2701772B2 JP7040190A JP4019095A JP2701772B2 JP 2701772 B2 JP2701772 B2 JP 2701772B2 JP 7040190 A JP7040190 A JP 7040190A JP 4019095 A JP4019095 A JP 4019095A JP 2701772 B2 JP2701772 B2 JP 2701772B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- substrate
- pixel
- electrode
- crystal display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Liquid Crystal (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は液晶表示装置に関し、特
に配向分割により視野角を広げた液晶表示装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly, to a liquid crystal display device in which a viewing angle is widened by orientation division.
【0002】[0002]
【従来の技術】液晶ディスプレイ(以下「LCD」と記
す)はコンパクト性、低消費電力性により、その需要は
拡大している。また機能的にも大画面化、高精細化、多
階調化が進められている。既に対角33cmの表示サイ
ズで8ビットの多階調(フルカラー)表示能力のある製
品も一部実用化されている。このような大画面化、フル
カラー化が進められるとLCDの視野特性が一層問題と
なり、広視野角化が大きな課題とされている。2. Description of the Related Art Demand for a liquid crystal display (hereinafter referred to as "LCD") is increasing due to its compactness and low power consumption. Functionally, a large screen, high definition, and multiple gradations are being promoted. Some products already have a display size of 33 cm diagonal and a multi-tone (full color) display capability of 8 bits. When such a large screen and full color are promoted, the viewing characteristics of the LCD become more problematic, and widening the viewing angle is a major issue.
【0003】現状のOA用途のLCDでは液晶の配向
は、例えば図4(a)に示すような矢印の方向に薄膜ト
ランジスタ(以下TFTと記す)基板の画素電極21と
カラーフィルター基板の対向電極22(CF)上の配向
膜(通常はポリイミド膜)にラビング処理(ローラに巻
かれた布で擦る)を行い、液晶23を上下非対称に配向
させている。液晶はTFT基板直上ではTFT基板側の
ラビング方向に、カラーフィルター基板直上ではそのラ
ビング方向に配向し、基板間でツイストして配向する事
になる。In the current LCD for OA applications, the orientation of the liquid crystal is determined, for example, in the direction of an arrow as shown in FIG. 4 (a), with the pixel electrode 21 on a thin film transistor (hereinafter referred to as TFT) substrate and the counter electrode 22 ( The alignment film (usually a polyimide film) on the CF) is subjected to a rubbing treatment (rubbing with a cloth wound around a roller) to align the liquid crystal 23 vertically asymmetrically. The liquid crystal is aligned in the rubbing direction on the TFT substrate side immediately above the TFT substrate, in the rubbing direction immediately above the color filter substrate, and is twisted between the substrates.
【0004】電圧が印加されていない(あるいは低い電
圧しか印加されていない場合)状態では液晶23は寝た
状態(基板に平行)でツイストするため、入射光偏光面
は旋光性により液晶のツイストと共に回転する。出射側
の偏光板が入射側に対して直交していると白(ノーマリ
ーホワイトモード)表示となる。一方液晶に大きな電圧
が印加されると、液晶はラビング方向側に若干の角度
(プレチルト角)をもって配向している為、ラビング方
向に液晶分子は立ち上がる。図4(a)の例では液晶分
子は下側方向に立ち上がる事になる。十分大きな電圧が
液晶に印加されると液晶分子は完全に立ち上がり、光の
信号方向での屈折率の異方性は無くなり、入射光の偏光
面は回転せず、ノーマリブラックでは黒表示となる。黒
と白の中間の電圧が液晶に印加されると液晶はその印加
電圧に応じた立ち方をする。この状態では液晶を上視野
から見る場合と下視野から見る場合では、実質的な液晶
の立ち方が異なり視認性に上下の非対称性が生じる。図
4(a)に示すように上視野では液晶が寝た状態に近く
なり、低階調側の輝度が上昇し、コントラストが低下す
る。一方下視野では液晶が立った状態になるため低階調
側の輝度は急激に低下するが、この程度は階調により異
なり、その結果階調の順番が逆転する現象(階長反転)
が生ずる。When no voltage is applied (or when only a low voltage is applied), the liquid crystal 23 is twisted in a lying state (parallel to the substrate), so that the plane of polarization of the incident light is rotated together with the twist of the liquid crystal due to optical rotation. Rotate. When the exit side polarizing plate is orthogonal to the incidence side, white (normally white mode) display is obtained. On the other hand, when a large voltage is applied to the liquid crystal, the liquid crystal is oriented in the rubbing direction with a slight angle (pre-tilt angle), so that the liquid crystal molecules rise in the rubbing direction. In the example of FIG. 4A, the liquid crystal molecules rise in the lower direction. When a sufficiently large voltage is applied to the liquid crystal, the liquid crystal molecules completely rise, the anisotropy of the refractive index in the signal direction of light disappears, the plane of polarization of the incident light does not rotate, and a black display is obtained in normally black. . When a voltage between black and white is applied to the liquid crystal, the liquid crystal rises according to the applied voltage. In this state, when the liquid crystal is viewed from the upper field of view and when the liquid crystal is viewed from the lower field of view, the manner in which the liquid crystal stands substantially differs, and vertical asymmetry occurs in visibility. As shown in FIG. 4A, in the upper field of view, the liquid crystal is close to a lying state, the luminance on the low gradation side increases, and the contrast decreases. On the other hand, in the lower visual field, since the liquid crystal is in a standing state, the luminance on the low gradation side drops sharply.
Occurs.
【0005】このような上視野でのコントラスト低下、
下視野の階調反転を防ぐため、特開昭52−21845
に開示されている一画素内に異なる配向分布を持たせる
技術の試みがなされている。特にLCDの上下視野角拡
大に効果がある図4(b)に示すような一画素内を二分
割し、液晶の立ち方がそれぞれ上下方向になるように液
晶23を配向させる事が多数試みられている。このよう
に電圧印加時に下側に立ち上がる領域と上側に立ち上が
る領域とが存在すると上下視野特性は従来の上視野と下
視野特性を合成した特性となり、特に下視野での階調反
転防止に絶大な効果があることが知られている。[0005] Such a decrease in contrast in the upper visual field,
In order to prevent the reversal of gradation in the lower visual field, Japanese Patent Application Laid-Open No. Sho 52-21845.
An attempt has been made for a technique for providing different orientation distributions within one pixel as disclosed in U.S. Pat. In particular, many attempts have been made to divide one pixel into two, as shown in FIG. 4B, which is effective in expanding the vertical viewing angle of the LCD, and to orient the liquid crystal 23 so that the liquid crystal stands vertically. ing. As described above, when there is a region rising downward and a region rising upward when voltage is applied, the upper and lower visual field characteristics become characteristics obtained by combining the conventional upper visual field and lower visual field characteristics, and are particularly tremendous for preventing grayscale inversion in the lower visual field. It is known to be effective.
【0006】二分割配向の実現方法は図5(a),
(b),(c)に示す三つの方法がそれぞれ(a)ID
RC91 Digest、P68、1991,(b)S
ID92Digest、P798、1992、特開平5
−210099,(c)Japan Display9
2、P591、1992、特開平5−173137に開
示されている。図5(a)にラビング方向を示す方法は
分割されたそれぞれの領域で配向が逆になるよう上下基
板でのラビング方向を逆にしている方法である。この方
法は液晶の配向は安定となるがラビングを上下の基板上
でそれぞれ2回、つまり1回目を全面行うとすると2回
目には半分の領域をカバーする必要があり、プロセスが
非常に煩雑となる。[0006] The method of realizing the two-divided orientation is shown in FIG.
The three methods shown in (b) and (c) are (a) ID
RC91 Digest, P68, 1991, (b) S
ID92Digest, P798, 1992, JP-A-5
-210099, (c) Japan Display 9
2, P591, 1992, and JP-A-5-173137. The rubbing direction shown in FIG. 5A is a method in which the rubbing directions on the upper and lower substrates are reversed so that the orientation is reversed in each of the divided regions. In this method, the alignment of the liquid crystal becomes stable, but when rubbing is performed twice on the upper and lower substrates, that is, when the first time is performed on the entire surface, it is necessary to cover half the area in the second time, which makes the process extremely complicated. Become.
【0007】図5(b)の方法はそれを改善するために
上下の基板で分割する領域で高プレチルト配向膜と低プ
レチルト配向膜をそれぞれ配し、液晶配向を高プレチル
ト配向上のラビング方向で律する事でラビングを1回で
済ます方法である。この方法はプロセス制御が難しいラ
ビングの回数を低減し、プロセス的には簡略化される
が、電圧印加時の液晶の立ち上がり方向は高プレチルト
配向膜のプレチルト方向で決まるため、低プレチルト配
向膜上のプレチルト方向と電圧印加時の液晶の立ち上が
り方向は逆となり、液晶は図10(c),(d)に示す
ようなスプレイ配向状態となる。スプレイ配向は図10
(a),(b)に示すノーマル配向に比べ歪みエネルギ
ーが大きく、外乱によりノーマル配向に戻ろうとするた
め、例えば画素電極周辺とその回りのバス配線間に形成
される横方向電界が大きいと、リバースチルト(液晶の
立ち上がり方向が異なる領域)やリバースツイスト(液
晶のツイスト方向の異なる領域)などの表示不良が発生
しやすくなる。In the method shown in FIG. 5 (b), a high pretilt alignment film and a low pretilt alignment film are respectively arranged in regions divided by upper and lower substrates to improve the liquid crystal alignment in the rubbing direction on the high pretilt alignment. It is a method that rubbing can be done only once by regulating. This method reduces the number of rubbing processes that are difficult to control, and simplifies the process.However, the rising direction of the liquid crystal when voltage is applied is determined by the pretilt direction of the high pretilt alignment film. The pretilt direction is opposite to the rising direction of the liquid crystal when a voltage is applied, and the liquid crystal is in a splay alignment state as shown in FIGS. Spray orientation is shown in FIG.
Since the strain energy is larger than the normal orientation shown in (a) and (b) and attempts to return to the normal orientation due to disturbance, for example, if the lateral electric field formed between the periphery of the pixel electrode and the bus wiring around the pixel electrode is large, Display defects such as reverse tilt (regions where liquid crystal rising directions are different) and reverse twist (regions where liquid crystal twist directions are different) are likely to occur.
【0008】図5(a)と(b)との中間的な方法が図
5(c)に示す方法である。この方式は一方の基板に高
プレチルト配向膜を設け、高プレチルト膜側だけ2回ラ
ビングする方法である。この方法は(a)の方法よりラ
ビングの回数が少なくプロセス的には有利である。また
スプレイ配向領域は一方だけになるので、横方向電界の
影響の強い領域にはノーマル配向側が来るようにラビン
グ方向を設定する事で配向の安定性を確保しやすくな
る。FIG. 5C shows an intermediate method between FIGS. 5A and 5B. In this method, a high pretilt alignment film is provided on one substrate, and rubbing is performed twice only on the high pretilt film side. This method has a smaller number of rubbings than the method (a) and is advantageous in terms of process. Also, since only one splay alignment region is provided, the rubbing direction is set such that the normal alignment side comes to a region where the influence of the lateral electric field is strong, so that the alignment stability can be easily ensured.
【0009】一般にこのような画素内配向分割をすると
分割境界には電圧印加時にも液晶が横になった、配向の
遷移領域が生じ、黒表示時に白い輝線(ディスクリネー
ションライン)となる。これはLCDのコントラスト低
下をもたらすので、特開平5−281545に開示され
ているように配向分割領域をブラックマトリックス(以
下BMと記す)で覆う技術が必要となる。図6に示すよ
うにディスクリ遮光層(BM)26による遮光を行う場
合、図5(a),(b)の何れの方法も境界が一方の基
板で決まらないのでBMと分割境界とのマージンを取ら
なければならないが、図5(c)の方法であれば、2回
ラビングする基板側にBMを設ける事でディスクリネー
ションを遮光できるので、BMの幅を狭くでき、BMに
よる輝度低下が少ない。Generally, when such intra-pixel orientation division is performed, a transition region of the orientation occurs in which the liquid crystal lays down even when a voltage is applied at the division boundary, and a white bright line (a disclination line) occurs when displaying black. Since this causes a decrease in the contrast of the LCD, a technique for covering the alignment division region with a black matrix (hereinafter, referred to as BM) is required as disclosed in JP-A-5-281545. As shown in FIG. 6, when light is shielded by the discrete light-shielding layer (BM) 26, the boundary between the BM and the division boundary is not determined in either of the methods shown in FIGS. However, in the method shown in FIG. 5 (c), the disclination can be shielded by providing the BM on the side of the substrate to be rubbed twice, so that the width of the BM can be narrowed, and the reduction in luminance due to the BM can be prevented. Few.
【0010】以上述べたラビング条件を二領域で変える
事で液晶の配向を分割する方法は、程度差はあるが何れ
もプロセス増大、配向の不安定性を伴っている。これを
解決する配向分割方法として特開平4−149410に
電界を用いた配向分割技術が開示されている。この方法
は図7(a)に示すように低プレチルト配向膜を両方の
基板に設け、スプレイ配向するようにラビング処理を行
う事で液晶の電圧印加時の立ち上がり方がなるべくプレ
チルト方向に依存しないようにする(図7(b))。こ
の状態では液晶の配向は画素電極21の周辺の横方向電
界の影響を敏感に受け、図7(c)に示すように液晶2
3は電圧印加時に画素周辺電界に依存した方向に立ち上
がり、分割配向される。但し、この状態では画素中央部
の横方向電界は無いので、プレチルトの揺らぎ、その他
の配向パラメータのアンバランスで配向分割は必ずしも
画素の中央部にくるとは限らない。The above-mentioned method of dividing the orientation of liquid crystal by changing the rubbing conditions in two regions has an increase in the process and instability of the orientation, although the degree is different. As an orientation division method for solving this problem, Japanese Patent Application Laid-Open No. 4-149410 discloses an orientation division technique using an electric field. In this method, as shown in FIG. 7A, a low pretilt alignment film is provided on both substrates, and a rubbing process is performed so as to perform splay alignment, so that the rising of the liquid crystal when voltage is applied is not dependent on the pretilt direction as much as possible. (FIG. 7B). In this state, the orientation of the liquid crystal is sensitively affected by the lateral electric field around the pixel electrode 21, and as shown in FIG.
No. 3 rises in a direction depending on the electric field around the pixel when a voltage is applied, and is dividedly oriented. However, in this state, since there is no horizontal electric field in the center of the pixel, the alignment division does not always come to the center of the pixel due to fluctuations in pretilt and imbalance in other alignment parameters.
【0011】そこで対向電極側に配向分割境界部に対応
する所にスリットを設ける事で配向分割位置を安定化す
る技術がSID93 Digest、P269、199
3,特開平6−43461に開示されている。この方法
では図8(a)に示すように、通常のラビング条件では
横方向電界の強い基板(画素電極)側のラビング方向と
直交する斜め方向が横方向電界による配向分割がされや
すいので、それに沿った斜めのスリット27を対向基板
上に形成する事で、図8(b)に示すように画素中央部
にも横電界成分を発生させ配向分割位置を安定化してい
る。更に前述の配向分割境界のディスクリネーションラ
インを遮光するために図9に示すような斜め方向にBM
のディスクリ遮光層26を設ける必要がある。Therefore, a technology for stabilizing the alignment division position by providing a slit on the counter electrode side at a position corresponding to the alignment division boundary is disclosed in SID93 Digest, P269, 199.
3, JP-A-6-43461. In this method, as shown in FIG. 8 (a), under normal rubbing conditions, an oblique direction orthogonal to the rubbing direction on the substrate (pixel electrode) side having a strong lateral electric field is likely to be subjected to orientation division by the lateral electric field. By forming oblique slits 27 along the opposite substrate on the opposite substrate, a horizontal electric field component is also generated in the center of the pixel as shown in FIG. 8B to stabilize the alignment division position. Further, in order to shield the above-described disclination line at the alignment division boundary, the BM is inclined in the oblique direction as shown in FIG.
Needs to be provided.
【0012】[0012]
【発明が解決しようとする課題】前述の従来の横方向電
界での配向分割方式ではディスクリネーションラインを
遮光する為に斜め方向にBMを形成する必要があり、そ
のBM層により画素領域で光が通過する面積率(開口
率)が大幅に低下して、輝度低下による視認性が劣化す
るという問題がある。In the above-described conventional orientation division method using a lateral electric field, it is necessary to form a BM in an oblique direction in order to shield a disclination line from light. There is a problem that the area ratio (opening ratio) through which the light passes greatly decreases, and the visibility deteriorates due to the decrease in luminance.
【0013】本発明は前述の問題を解決し、輝度低下に
よる視認性劣化を抑えながら、上下視野角を増大させL
CDの表示性能を向上させる事を目的とする。The present invention solves the above-mentioned problem and increases the vertical viewing angle while suppressing the visibility deterioration due to the luminance reduction.
An object is to improve the display performance of a CD.
【0014】[0014]
【課題を解決するための手段】本発明の液晶表示装置
は、二枚の偏光板及び透明基板に挟まれた液晶層を透明
基板内の第1の基板上に形成された画素電極と第2の基
板に形成された対向電極間の電圧印加により液晶配向状
態を変更する事で透過率を制御する液晶表示装置におい
て、前記第2の基板上の対向電極は複数の領域に分割さ
れ、分割対向電極の領域が前記第1の基板の画素電極に
対して偏心している事を特徴とする。対向電極は画素列
方向に分割されてもよいし、画素行方向に分割されても
よい。また、分割電極の画素電極に対する偏心方向はピ
クセル毎に変えている。さらに本発明では、液晶は低電
圧印加時にはスプレイ配向とされている。According to the liquid crystal display device of the present invention, a liquid crystal layer sandwiched between two polarizing plates and a transparent substrate is provided with a pixel electrode formed on a first substrate in the transparent substrate and a second electrode. In a liquid crystal display device in which the transmittance is controlled by changing the liquid crystal alignment state by applying a voltage between the counter electrodes formed on the substrate, the counter electrode on the second substrate is divided into a plurality of regions, The electrode region is eccentric with respect to the pixel electrode of the first substrate. The counter electrode may be divided in the pixel column direction or in the pixel row direction. The direction of eccentricity of the divided electrode with respect to the pixel electrode is changed for each pixel. Further, in the present invention, the liquid crystal is in a splay alignment when a low voltage is applied.
【0015】[0015]
【実施例】次に本発明について図面を参照して説明す
る。図1(a),(b)は本発明の第1の実施例を示す
LCDパネルの上面図と断面図である。本実施例では、
カラーフィルター基板2上の対向透明電極4は列方向に
分割されている。さらに対向透明電極は画素透明電極3
に対し行方向に偏心しており、その偏心の向きは単位ピ
クセルのRGBでは同じにし、その回りのピクセルでは
逆方向に偏心するように対向透明電極が分割されてい
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIGS. 1A and 1B are a top view and a sectional view of an LCD panel showing a first embodiment of the present invention. In this embodiment,
The opposing transparent electrode 4 on the color filter substrate 2 is divided in the column direction. Further, the opposing transparent electrode is a pixel transparent electrode 3
Are eccentric in the row direction, the direction of the eccentricity is the same for the RGB of the unit pixel, and the opposing transparent electrodes are divided so as to be eccentric in the opposite direction for the surrounding pixels.
【0016】この構成により各画素透明電極3には対向
透明電極4の偏心方向に対応した方向の横方向電界が印
加される事になるので、液晶は電圧印加時にその横電界
方向に立ち上がる事になる。図1(a)の上方に矢印で
示しているように、例えばTFT基板側の配向膜が右下
方向にラビングされている場合には、液晶はラビング方
向側にプレチルトしている。一方CF基板側は左下方向
にラビングされているので、画素透明電極と対向透明電
極に挟まれた液晶は低電圧印加時にはスプレイ配向して
いる。このため、対向透明電極が右側に偏心している画
素ではラビング方向に立ち上がるが、左側に偏心してい
る画素では液晶はラビングと逆方向に立ち上がることと
なる。各画素内では液晶の配向は同一であり、画素内に
は配向分割に伴うディスクリネーションの発生は無い。
従って、配向分割境界を遮光するBMが不必要であり、
配向分割にともなう輝度低下を抑える事ができる。また
ピクセル毎に偏心方向を変える事で、上下視野での色バ
ランスの変化を抑える事ができる。なお、横方向電界に
よる液晶の立上りに影響を与えないために、プレチルト
角はなるべく小さい方がよい。With this configuration, a horizontal electric field in a direction corresponding to the eccentric direction of the opposing transparent electrode 4 is applied to each pixel transparent electrode 3, so that the liquid crystal rises in the horizontal electric field direction when a voltage is applied. Become. As shown by an arrow in FIG. 1A, for example, when the alignment film on the TFT substrate side is rubbed in the lower right direction, the liquid crystal is pretilted in the rubbing direction. On the other hand, since the CF substrate side is rubbed in the lower left direction, the liquid crystal sandwiched between the pixel transparent electrode and the opposing transparent electrode is splay-aligned when a low voltage is applied. For this reason, the pixel in which the opposing transparent electrode is eccentric to the right rises in the rubbing direction, but the liquid crystal in the pixel eccentric to the left rises in the opposite direction to the rubbing. The orientation of the liquid crystal is the same in each pixel, and there is no occurrence of disclination in the pixel due to the orientation division.
Therefore, a BM that shields the alignment division boundary is unnecessary,
It is possible to suppress a decrease in luminance due to the orientation division. Further, by changing the eccentric direction for each pixel, it is possible to suppress a change in color balance in the upper and lower visual fields. Note that the pretilt angle is preferably as small as possible so as not to affect the rise of the liquid crystal due to the lateral electric field.
【0017】図2(a),(b)は本発明の第2の実施
例を示すLCDパネルの上面図と断面図である。本実施
例では、第1の実施例が対向電極が列方向に完全に分離
されていたのに対し、画素列間あるいはピクセル間の対
向電極にはスリットを設けていない。この構成により第
1の実施例に比べ対向電極4の面抵抗を下げる事ができ
るので、対向電極の電位振れに起因するクロストークな
どを軽減する事ができる。FIGS. 2A and 2B are a top view and a sectional view of an LCD panel showing a second embodiment of the present invention. In this embodiment, the opposing electrodes are completely separated in the column direction in the first embodiment, but no slit is provided in the opposing electrodes between pixel columns or between pixels. With this configuration, the sheet resistance of the counter electrode 4 can be reduced as compared with the first embodiment, so that crosstalk and the like due to potential fluctuation of the counter electrode can be reduced.
【0018】図3(a),(b)は本発明の第3の実施
例を示すLCDパネルの上面図と断面図である。本実施
例は第1及び第2の実施例と異なり、対向電極4を行方
向に分離し、行毎に偏心方向を揃えた構成となってい
る。本実施例では行毎に配向の向きが変わることになる
が、同じ行内でピクセル毎に対向電極の偏心を変える事
も同様に可能である。FIGS. 3A and 3B are a top view and a sectional view of an LCD panel showing a third embodiment of the present invention. This embodiment is different from the first and second embodiments in that the opposing electrode 4 is separated in the row direction and the eccentric direction is aligned for each row. In the present embodiment, the direction of orientation changes for each row, but it is similarly possible to change the eccentricity of the counter electrode for each pixel within the same row.
【0019】本発明は以上の実施例だけでなく、対向電
極の適切な分割と画素電極に対する偏心により画素単位
に横方向電界を利用して配向分割する全ての方法を包含
する。The present invention includes not only the embodiments described above but also all the methods for performing the orientation division using the lateral electric field for each pixel by appropriate division of the counter electrode and eccentricity with respect to the pixel electrode.
【0020】[0020]
【発明の効果】以上説明した様に本発明の液晶表示装置
では、対向電極を分割し、画素電極に対して偏心させる
事で画素電極毎に横方向電界を利用した配向分割が可能
となり、画素内配向分割方式で求められる配向分割線の
遮光用のブラックマトリックスを設ける必要がなくな
り、輝度低下の問題を抑え液晶表示装置の広視野角化が
図れる。したがって、液晶表示装置に本発明を適用する
事で、広視野で高画質な表示性能を有する液晶表示装置
が実現できる。As described above, in the liquid crystal display device of the present invention, by dividing the counter electrode and decentering it with respect to the pixel electrode, it becomes possible to perform alignment division using a horizontal electric field for each pixel electrode. There is no need to provide a black matrix for shielding the alignment division lines required by the internal alignment division method, so that the problem of luminance reduction can be suppressed and the viewing angle of the liquid crystal display device can be widened. Therefore, by applying the present invention to a liquid crystal display device, a liquid crystal display device having a wide visual field and high image quality display performance can be realized.
【図1】(a),(b)は本発明の第1の実施例を示す
液晶パネルの上面図と断面図である。FIGS. 1A and 1B are a top view and a cross-sectional view of a liquid crystal panel according to a first embodiment of the present invention.
【図2】(a),(b)は本発明の第2の実施例を示す
液晶パネルの上面図と断面図である。FIGS. 2A and 2B are a top view and a sectional view of a liquid crystal panel according to a second embodiment of the present invention.
【図3】(a),(b)は本発明の第3の実施例を示す
液晶パネル上面図と断面図である。FIGS. 3A and 3B are a top view and a cross-sectional view of a liquid crystal panel according to a third embodiment of the present invention.
【図4】(a)は均一配向時のラビング方向を示す平面
図及び配向状態を示す断面図並びに輝度−電圧特性図、
(b)は分割配向時のラビング方向例を示す平面図及び
配向状態を示す断面図並びに輝度−電圧特性図である。FIG. 4A is a plan view showing a rubbing direction during uniform alignment, a cross-sectional view showing an alignment state, and a luminance-voltage characteristic diagram,
(B) is a plan view showing a rubbing direction example at the time of divided orientation, a sectional view showing an orientation state, and a luminance-voltage characteristic diagram.
【図5】(a)〜(c)はラビング方向例を示す平面図
である。FIGS. 5A to 5C are plan views showing examples of rubbing directions.
【図6】ラビングにより配向分割し、遮光する従来例を
示す平面図である。FIG. 6 is a plan view showing a conventional example in which alignment is divided by rubbing and light is shielded.
【図7】(a)は横方向電界で配向分割する従来例を示
す平面図、(b)は電圧無印加時の図7(a)の断面
図、図7(c)は電圧印加時の図7(a)の断面図であ
る。7A is a plan view showing a conventional example in which orientation division is performed by a lateral electric field, FIG. 7B is a cross-sectional view of FIG. 7A when no voltage is applied, and FIG. It is sectional drawing of FIG.
【図8】(a)は対向電極にスリットを設けて横方向電
界により配向分割させている従来例を示す平面図、
(b)は電圧印加時の図8(a)の断面図である。FIG. 8A is a plan view showing a conventional example in which a slit is provided in a counter electrode and orientation division is performed by a lateral electric field;
FIG. 9B is a cross-sectional view of FIG.
【図9】(a)は横方向電界で配向分割し、遮光する従
来例を示す平面図、(b)は電圧印加時の図9(a)の
断面図である。9 (a) is a plan view showing a conventional example in which the light is shielded by dividing the orientation by a horizontal electric field, and FIG. 9 (b) is a cross-sectional view of FIG. 9 (a) when a voltage is applied.
【図10】(a),(b)は液晶のノーマル配向状態と
ラビング方向とを示す断面図、(c),(d)はスプレ
イ配向状態を示すラビング方向と断面図である。10A and 10B are cross-sectional views showing a normal alignment state and a rubbing direction of a liquid crystal, and FIGS. 10C and 10D are rubbing directions and a cross-sectional view showing a splay alignment state.
1,25 TFT基板 2 カラーフィルター基板 3 画素透明電極 4 対向透明電極 5,24 カラーフィルター 6,23 液晶層 21 画素電極 22 対向電極 26 ディスクリ遮光層 1, 25 TFT substrate 2 Color filter substrate 3 Pixel transparent electrode 4 Opposing transparent electrode 5, 24 Color filter 6, 23 Liquid crystal layer 21 Pixel electrode 22 Opposing electrode 26 Discrete light shielding layer
Claims (3)
晶層を該透明基板内の第1の基板上に形成された画素電
極と第2の基板に形成された対向電極間の電圧印加によ
り液晶配向状態を変更する事で透過率を制御する液晶表
示装置において、前記第2の基板上の対向電極は複数の
領域に分割され、該分割対向電極の領域が前記第1の基
板の画素電極に対して偏心しており、かつ偏心方向をピ
クセル毎に変えたことを特徴とする液晶表示装置。1. A liquid sandwiched between two polarizing plates and a transparent substrate.
The crystal layer is formed on a pixel substrate formed on a first substrate in the transparent substrate.
By applying a voltage between the electrode and a counter electrode formed on the second substrate.
Liquid crystal display that controls transmittance by changing the liquid crystal alignment state
In the display device, the counter electrode on the second substrate has a plurality of
And the area of the divided counter electrode is divided into the first substrate.
Plate is eccentric to the pixel electrode and the eccentric direction is
A liquid crystal display device comprising a call was changed to every Kuseru.
層を該透明基板内の第1の基板上に形成された画素電極
と第2の基板に形成された対向電極間の電圧印加により
液晶配向状態を変更する事で透過率を制御する液晶表示
装置において、前記第2の基板上の対向電極は複数の領
域に分割され、該分割対向電極の領域が前記第1の基板
の画素電極に対して偏心しており、かつ偏心方向を隣接
するピクセル毎に変えたことを特徴とする液晶表示装
置。2. A liquid crystal sandwiched between two polarizing plates and a transparent substrate.
A pixel electrode formed on a first substrate in the transparent substrate
And the voltage applied between the opposing electrodes formed on the second substrate
Liquid crystal display that controls transmittance by changing liquid crystal alignment state
In the apparatus, the counter electrode on the second substrate has a plurality of areas.
And the area of the divided counter electrode is divided into the first substrate
Eccentric to the pixel electrode and the eccentric direction is adjacent
A liquid crystal display device characterized by changing for each pixel .
液晶は、低電圧印加時にスプレイ配向していることを特
徴とする請求項1または2記載の液晶表示装置。3. A device sandwiched between the pixel electrode and a counter electrode.
The liquid crystal is splay-aligned when a low voltage is applied.
The liquid crystal display device according to claim 1 or 2, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7040190A JP2701772B2 (en) | 1995-02-28 | 1995-02-28 | Liquid crystal display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7040190A JP2701772B2 (en) | 1995-02-28 | 1995-02-28 | Liquid crystal display |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08234208A JPH08234208A (en) | 1996-09-13 |
JP2701772B2 true JP2701772B2 (en) | 1998-01-21 |
Family
ID=12573864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7040190A Expired - Lifetime JP2701772B2 (en) | 1995-02-28 | 1995-02-28 | Liquid crystal display |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2701772B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100311210B1 (en) * | 1998-12-29 | 2002-09-17 | 주식회사 하이닉스반도체 | Liquid crystal display |
KR100713882B1 (en) * | 2000-12-01 | 2007-05-07 | 비오이 하이디스 테크놀로지 주식회사 | FFS mode thin film transistor liquid crystal display |
JP5770452B2 (en) * | 2010-11-18 | 2015-08-26 | スタンレー電気株式会社 | Liquid crystal display element |
CN102707487B (en) * | 2012-06-04 | 2014-11-19 | 青岛海信电器股份有限公司 | Transparent display device and electronic equipment employing same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5084778A (en) * | 1989-12-26 | 1992-01-28 | General Electric Company | Electrode structure for removing field-induced disclination lines in a phase control type of liquid crystal device |
JP2502802B2 (en) * | 1990-10-15 | 1996-05-29 | インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン | Liquid crystal display |
-
1995
- 1995-02-28 JP JP7040190A patent/JP2701772B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08234208A (en) | 1996-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5666179A (en) | Liquid crystal display device having opening formed in electrode | |
US5717474A (en) | Wide-viewing angle multi-domain halftone active matrix liquid crystal display having compensating retardation | |
US7982836B2 (en) | Liquid crystal display device | |
US20100289975A1 (en) | Liquid crystal display device | |
JPH10268309A (en) | Liquid crystal display device | |
JP2008026756A (en) | Liquid crystal display | |
KR100833955B1 (en) | Array substate for In Plane Switching mode Liquid crystal display device | |
US20080143947A1 (en) | Multi-domain vertical alignment liquid crystal display panel | |
JP2004151525A (en) | Liquid crystal display | |
JP3519573B2 (en) | Liquid crystal display | |
JP3156467B2 (en) | Liquid crystal display | |
JP2001235748A (en) | Multi-domain type liquid crystal display device | |
US6867835B2 (en) | In-plane switching LCD panel having different alignment layers | |
JP2701772B2 (en) | Liquid crystal display | |
JP3175972B2 (en) | Liquid crystal display | |
JP2002214613A (en) | Liquid crystal display | |
KR100345957B1 (en) | In Plane Switching mode Liquid crystal display device | |
JP4019906B2 (en) | Liquid crystal display | |
JP2000356775A (en) | Liquid crystal display element and its production | |
JP4245473B2 (en) | Liquid crystal display | |
JP2716004B2 (en) | Liquid crystal display | |
KR100773875B1 (en) | In Plane Switching mode Liquid crystal display device | |
JPH07294936A (en) | Matrix type liquid crystal display device | |
JP3127626B2 (en) | LCD panel | |
JPH06308497A (en) | Liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970902 |