[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2794401B2 - Method for manufacturing MOS transistor - Google Patents

Method for manufacturing MOS transistor

Info

Publication number
JP2794401B2
JP2794401B2 JP20933195A JP20933195A JP2794401B2 JP 2794401 B2 JP2794401 B2 JP 2794401B2 JP 20933195 A JP20933195 A JP 20933195A JP 20933195 A JP20933195 A JP 20933195A JP 2794401 B2 JP2794401 B2 JP 2794401B2
Authority
JP
Japan
Prior art keywords
insulating film
film
gate
substrate
impurity region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20933195A
Other languages
Japanese (ja)
Other versions
JPH0945917A (en
Inventor
ヨン・ギュ・チョイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ERU JII SEMIKON CO Ltd
Original Assignee
ERU JII SEMIKON CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ERU JII SEMIKON CO Ltd filed Critical ERU JII SEMIKON CO Ltd
Priority to JP20933195A priority Critical patent/JP2794401B2/en
Publication of JPH0945917A publication Critical patent/JPH0945917A/en
Application granted granted Critical
Publication of JP2794401B2 publication Critical patent/JP2794401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はMOSトランジスタに係
り、特に不純物含有の絶縁膜を用いて二重の浅い接合を
形成して、イオン注入による基板の結晶欠陥の発生を防
止することのできるポケット構造を有するMOSトラン
ジスタの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MOS transistor, and more particularly, to a pocket which can form a double shallow junction using an impurity-containing insulating film to prevent occurrence of crystal defects in a substrate due to ion implantation. The present invention relates to a method for manufacturing a MOS transistor having a structure.

【0002】[0002]

【従来の技術】素子の集積度が増加するに伴ってパンチ
スルーやDIBL(Drain Induced Ba
rrier Lowering)等のようなチャンネル
効果が生じた。このような短チャンネル効果を防止する
ために、低濃度のソース/ドレイン領域と隣接するn-
又はp-型のポケット領域を有するLDD MOSトラ
ンジスタが提案された。
2. Description of the Related Art As the degree of integration of devices increases, punch-through and DIBL (Drain Induced Ba) have been developed.
channel effect, such as a lower lowering effect. In order to prevent such a short channel effect, n adjacent to a low concentration source / drain region is used.
Alternatively, an LDD MOS transistor having a p - type pocket region has been proposed.

【0003】図1(A)〜(D)は従来のポケット領域
を有するLDD MOSトランジスタの製造工程図を示
す。図1(A)のように、シリコン基板11上に通常の
工程でゲート絶縁膜12とゲート13を順次形成する。
次に、図1(B)のようにゲート13をマスクとしてn
-型不純物とp-型不純物を基板に順次イオン注入し、イ
オン注入された不純物を熱処理工程により活性化させ
て、二重の浅い接合を有する低濃度のn- 型ソース/ド
レイン領域14,15とp- 型ポケット領域16を其々
形成する。このとき、二重の浅い接合を有する低濃度の
- 型ソース/ドレイン領域14,15は基板内のゲー
トの両側の部分に各々形成し、p- 型ポケット領域16
は前記のn- 型ソース/ドレイン領域14,15を囲む
ように其々形成する。図1(C)のように、基板の全面
にわたってCVD酸化膜を蒸着し、RIE法により前記
酸化膜をエッチングしてゲート13の両側に側壁スペー
サ17を形成する。図1(D)のように、側壁スペーサ
17とゲート13をマスクとしてn+ 型不純物を基板に
イオン注入し、イオン注入された不純物を熱処理工程に
より活性化させて、高濃度のn+ 型ソース/ドレイン領
域18,19を形成する。これにより、ポケット領域を
有するLDD MOSトランジスタが得られる。
FIGS. 1A to 1D show a manufacturing process of an LDD MOS transistor having a conventional pocket region. As shown in FIG. 1A, a gate insulating film 12 and a gate 13 are sequentially formed on a silicon substrate 11 by a normal process.
Next, as shown in FIG. 1B, n
The n-type impurity and the p - type impurity are successively ion-implanted into the substrate, and the ion-implanted impurity is activated by a heat treatment process, so that low-concentration n - type source / drain regions 14 and 15 having a double shallow junction are formed. And p -type pocket regions 16 are respectively formed. At this time, low-concentration n -type source / drain regions 14 and 15 having double shallow junctions are formed on both sides of the gate in the substrate, respectively, and p -type pocket region 16 is formed.
Are respectively formed so as to surround the n type source / drain regions 14 and 15. As shown in FIG. 1C, a CVD oxide film is deposited over the entire surface of the substrate, and the oxide film is etched by RIE to form sidewall spacers 17 on both sides of the gate 13. As shown in FIG. 1D, an n + -type impurity is ion-implanted into the substrate by using the side wall spacer 17 and the gate 13 as a mask, and the ion-implanted impurity is activated by a heat treatment step, so that a high-concentration n + -type source is formed. / Drain regions 18 and 19 are formed. Thus, an LDD MOS transistor having a pocket region is obtained.

【0004】[0004]

【発明が解決しようとする課題】従来のMOSトランジ
スタの製造方法は、ソース/ドレイン領域とポケット領
域を形成するために、通常のイオン注入工程又は傾斜型
イオン注入工程を行った。しかし、このようなイオン注
入工程を施すと、シリコン基板のチャンネル領域、又は
接合部位に結晶欠陥が発生し、この結晶欠陥は接合のリ
ークソースとして作用してソースの特性を低下させると
いう問題点があった。
In the conventional method for manufacturing a MOS transistor, a normal ion implantation step or a gradient ion implantation step is performed to form a source / drain region and a pocket region. However, when such an ion implantation step is performed, a crystal defect occurs in a channel region or a junction portion of the silicon substrate, and this crystal defect acts as a leak source of the junction and degrades the characteristics of the source. there were.

【0005】本発明の目的はかかる問題点を解決するた
めのものであて、互いに拡散度の異なる不純物が含有さ
れた絶縁膜を拡散ソースとして二重の浅い接合を形成し
て、イオン注入によるシリコン基板内の欠点発生を防止
することのできるMOSトランジスタの製造方法を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve such a problem. A double shallow junction is formed by using an insulating film containing impurities having different diffusivities as a diffusion source, and the silicon is formed by ion implantation. It is an object of the present invention to provide a method of manufacturing a MOS transistor that can prevent occurrence of defects in a substrate.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明のMOSトランジスタの製造方法は、第1導
電型の基板上にゲートとゲート絶縁膜を順次形成する工
程と、ゲートを含む基板の全面に互いに異なる拡散度及
び導電型を有する2種類の不純物が含有された絶縁膜を
形成する工程と、不純物が含有された絶縁膜上にキャッ
プ絶縁膜を形成する工程と、熱処理工程により第2導電
型の不純物領域と、その第2導電型の不純物領域を囲む
第1導電型の不純物領域とをゲート両側の基板に形成す
る工程と、前記不純物が含有された絶縁膜とキャップ絶
縁膜をエッチングしてゲートの両側に側壁スペーサを形
成する工程と、基板に第2導電型の不純物をイオン注入
して、前記不純物領域と隣接した第2導電型の不純物領
域を形成する工程とを含むことを特徴とする。
In order to achieve the above object, a method of manufacturing a MOS transistor according to the present invention includes a step of sequentially forming a gate and a gate insulating film on a first conductivity type substrate, and including the gate. Forming an insulating film containing two types of impurities having different diffusivities and conductivity types over the entire surface of the substrate, forming a cap insulating film on the insulating film containing the impurities, and a heat treatment step. Forming an impurity region of the second conductivity type and an impurity region of the first conductivity type surrounding the impurity region of the second conductivity type on the substrate on both sides of the gate; an insulating film containing the impurity and a cap insulating film; Forming side wall spacers on both sides of the gate by etching, and ion-implanting a second conductivity type impurity into the substrate to form a second conductivity type impurity region adjacent to the impurity region. Characterized in that it comprises a.

【0007】[0007]

【実施の形態】以下、本発明の実施の形態を図面に基づ
いて詳細に説明する。図2(A)〜(F)は本発明の実
施の形態によるポケット構造を有するMOSトランジス
タの製造工程図である。図2(A)に示すようにシリコ
ン基板21上にゲート絶縁膜22とゲート23を順次形
成し、図2(B)のようにゲート23を形成させた基板
の全面に互いに異なる拡散度を有する不純物が含有され
た絶縁膜24を100乃至1000Å厚に蒸着し、その
上に図2(C)のようにキャップ絶縁膜25として、C
VD酸化膜を1000Å厚に蒸着する。ここで、互いに
異なる拡散度を有する不純物が含有された絶縁膜24は
BAsSG膜であり、このBAsSG膜24はAsH
4 ,SiH4,B26 等の水素化物ガス、又はAs−
(OR)4,Si−(OR)4,B−(OR)4 等の有機
金属ソースを用いて蒸着する。ここで、Rはアルコール
基、即ち炭化水素群CHxを意味する。続いて、900
℃の温度で10乃至30分間の熱処理工程を行うと、図
2(D)のようにゲートの両側で基板内にn+ /p-
浅い接合が形成される。ここで、二重の浅い接合のう
ち、n+領域26,27はソース/ドレイン領域として
其々作用し、p-型領域28は前記n+型ソース/ドレイ
ン領域26,27を囲むポケット領域として作用する。
Embodiments of the present invention will be described below in detail with reference to the drawings. 2 (A) to 2 (F) are manufacturing process diagrams of a MOS transistor having a pocket structure according to the embodiment of the present invention. A gate insulating film 22 and a gate 23 are sequentially formed on a silicon substrate 21 as shown in FIG. 2A, and have different diffusion degrees over the entire surface of the substrate on which the gate 23 is formed as shown in FIG. An insulating film 24 containing impurities is deposited to a thickness of 100 to 1000 mm, and a cap insulating film 25 is formed thereon as shown in FIG.
A VD oxide film is deposited to a thickness of 1000 °. Here, the insulating film 24 containing impurities having different diffusivities is a BAsSG film, and the BAsSG film 24 is made of AsH.
4, SiH 4, B 2 H 6 or the like hydride gas, or As-
Vapor deposition is performed using an organic metal source such as (OR) 4 , Si- (OR) 4 , B- (OR) 4 . Here, R means an alcohol group, that is, a hydrocarbon group CHx. Then, 900
When a heat treatment process is performed at a temperature of 10 ° C. for 10 to 30 minutes, a shallow junction of n + / p is formed in the substrate on both sides of the gate as shown in FIG. Here, among the double shallow junctions, n + regions 26 and 27 respectively act as source / drain regions, and p region 28 serves as a pocket region surrounding n + source / drain regions 26 and 27. Works.

【0008】上記のようにBAsSG膜24は互いに基
板内における拡散度の異なるAsとBが含まれた酸化膜
である。Bはシリコン基板内における拡散度がAsに比
べて10倍位大きく、さらにBの偏析係数が低い。従っ
て、前記BAsSG膜24を熱処理すると、Asの拡散
程度に比べてBの拡散程度がさらに大きいために、前記
のようにn+/p-からなる二重の浅い接合が基板内に形
成される。
As described above, the BAsSG film 24 is an oxide film containing As and B having different degrees of diffusion in the substrate. B has a degree of diffusion in the silicon substrate that is about 10 times larger than that of As and has a low segregation coefficient of B. Therefore, when heat treating the BAsSG film 24, in order compared to the order diffusion of As is larger about diffusion of B, n + / p as the - dual shallow junction consisting of is formed in the substrate .

【0009】図3はBAsSG膜のドーピングプロファ
イルを示すもので、図3(A)は熱処理前のドーピング
プロファイル、図3(B)は熱処理後のドーピングプロ
ファイルを各々示す。図3(A)において、BAsSG
膜内に含有されたAsとBの濃度は各々5×1021atom
s/cm3と同一の濃度を利用し、基板の濃度は1.8×1
15atoms /cm3 である。図3(B)はBAsSG膜を
基板上に蒸着した後熱処理すると、n+/p-の二重の浅
い接合が基板内に形成されることを示す。即ち、Bは熱
処理工程時に熱処理時間が変わるに伴ってドーピングプ
ロファイルが大きく変わるが、Asの場合には熱処理時
間に構わず殆ど変わらない。図3(B)のは900℃
で30分間にわたって熱処理したときのボロンのドーピ
ングプロファイル、は900℃で20分間にわたって
熱処理したときのボロンのドーピングプロファイル、
は900℃で10分間にわたって熱処理したときのボロ
ンのドーピングプロファイルを各々示す。
FIG. 3 shows the doping profile of the BAsSG film. FIG. 3A shows the doping profile before the heat treatment, and FIG. 3B shows the doping profile after the heat treatment. In FIG. 3A, BAsSG
The concentrations of As and B contained in the film are 5 × 10 21 atoms each.
Using the same concentration as s / cm 3 , the concentration of the substrate is 1.8 × 1
0 15 atoms / cm 3 . FIG. 3B shows that when a BAsSG film is deposited on a substrate and then heat-treated, a double shallow junction of n + / p is formed in the substrate. That is, the doping profile of B greatly changes as the heat treatment time changes during the heat treatment step, but in the case of As, it hardly changes regardless of the heat treatment time. FIG. 3 (B) is 900 ° C.
Boron doping profile when heat-treated for 30 minutes at 900 ° C., boron doping profile when heat-treated at 900 ° C. for 20 minutes,
Indicates boron doping profiles when heat-treated at 900 ° C. for 10 minutes.

【0010】前記BAsSG膜内に含有されるボロンの
濃度を減少させると、シリコン基板におけるBの濃度と
プロファイルを低く保持できるばかりではなく、Asと
Bの濃度と拡散時間を調整してn+/p-の二重接合の濃
度プロファイルを調整するのが容易である。
When the concentration of boron contained in the BAsSG film is reduced, not only can the concentration and profile of B in the silicon substrate be kept low, but also the concentration of As and B and the diffusion time can be adjusted to obtain n + / p - it is easy to adjust the dual junction concentration profile of the.

【0011】熱処理工程を行った後、図2(E)のよう
に、CVD酸化膜25とBAsSG膜24を異方性エッ
チングして、ゲートの両側にCVD酸化膜25とBAs
SG膜24からなる側壁スペーサ29を形成する。側壁
スペーサを形成した後、ゲート23と側壁スペーサ29
をマスクとして5×1015atoms/cm3のドーズのAsイ
オンを40keVのエネルギーで基板に注入し、850
℃の温度で30分間の熱処理工程を行ってn+型の高濃
度ソース/ドレイン領域30,31を形成する。これに
より、ポケット構造を有するトランジスタが得られる。
After performing the heat treatment step, the CVD oxide film 25 and the BAsSG film 24 are anisotropically etched as shown in FIG.
A side wall spacer 29 made of the SG film 24 is formed. After forming the side wall spacer, the gate 23 and the side wall spacer 29 are formed.
As a mask, As ions of 5 × 10 15 atoms / cm 3 are implanted into the substrate at an energy of 40 keV, and 850
By performing a heat treatment step at a temperature of 30 ° C. for 30 minutes, n + type high concentration source / drain regions 30 and 31 are formed. Thus, a transistor having a pocket structure is obtained.

【0012】前記実施の形態ではAsとBが含有された
酸化膜を用いてn+/p-の二重接合を形成したが、Ga
(又はIn)とPが含有された酸化膜を用いてn+/p-
の二重接合を形成することもできる。
In the above embodiment, an n + / p double junction is formed using an oxide film containing As and B.
(Or In) and n + / p using an oxide film containing P
Can be formed.

【0013】[0013]

【発明の効果】前記本発明によれば、イオン注入工程を
施さずに不純物が含有された酸化膜を拡散ソースとして
二重の浅い接合を形成したので、イオン注入工程による
シリコン基板における欠点発生が排除されて素子の特性
低下を防止することができるという利点がある。尚、前
記MOSトランジスタの製造方法は、拡散ソースとして
用いられる絶縁膜とキャップ絶縁膜を側壁スペーサ用物
質として利用して、別の蒸着工程無しに側壁スペーサを
形成することにより、工程の単純化を図ることができ
る。
According to the present invention, since a double shallow junction is formed by using an oxide film containing impurities as a diffusion source without performing an ion implantation step, the occurrence of defects in the silicon substrate due to the ion implantation step is prevented. There is an advantage that the characteristics can be prevented from being reduced due to being eliminated. In addition, the method of manufacturing the MOS transistor simplifies the process by forming the sidewall spacer without using a separate deposition process by using the insulating film and the cap insulating film used as the diffusion source as the material for the sidewall spacer. Can be planned.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来のMOSトランジスタの製造工程図であ
る。
FIG. 1 is a manufacturing process diagram of a conventional MOS transistor.

【図2】 本発明の実施の形態によるMOSトランジス
タの製造工程図である。
FIG. 2 is a manufacturing process diagram of the MOS transistor according to the embodiment of the present invention;

【図3】 BAsSG膜のドーピングプロファイルを示
す図面である。
FIG. 3 is a diagram illustrating a doping profile of a BAsSG film.

【符号の説明】[Explanation of symbols]

21…シリコン基板、22…ゲート絶縁膜、23…ゲー
ト、24…不純物が含有された酸化膜、25…CVD酸
化膜、29…側壁スペーサ、26,27低濃度のn-
ソース/ドレイン領域、28…低濃度のp-型ポケット
領域、30,31…高濃度のn+ 型ソース/ドレイン領
域。
21 ... silicon substrate, 22 ... gate insulating film, 23 ... gate, 24 ... oxide film containing impurities, 25 ... CVD oxide film, 29 ... sidewall spacer 26 and 27 low-concentration n - -type source / drain regions, 28: low-concentration p - type pocket region, 30, 31 ... high-concentration n + -type source / drain region.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1導電型の基板上にゲート絶縁膜とゲ
ートを順次形成する工程と、 ゲートを含む基板の全面に互いに異なる拡散度及び導電
型を有する2種類の不純物が含有された絶縁膜を形成す
る工程と、 不純物が含有された絶縁膜上にキャップ絶縁膜を形成す
る工程と、 熱処理工程により第2導電型の不純物領域と、その第2
導電型の不純物領域を囲む第1導電型の不純物領域とを
基板のゲート両側の部分に形成する工程と、 前記不純物が含有された絶縁膜とキャップ絶縁膜をエッ
チングしてゲートの両側に側壁スペーサを形成する工程
と、 基板に第2導電型の不純物をイオン注入して、前記不純
物領域と隣接した第2導電型の不純物領域を形成する工
程と、 を含むことを特徴とするMOSトランジスタの製造方
法。
A step of sequentially forming a gate insulating film and a gate on a substrate of a first conductivity type; and an insulating step in which two types of impurities having different diffusivities and conductivity types are contained over the entire surface of the substrate including the gate. A step of forming a film, a step of forming a cap insulating film on the insulating film containing impurities, and a heat treatment step of forming a second conductive type impurity region and a second conductive type impurity region.
Forming a first conductivity type impurity region surrounding the conductivity type impurity region on both sides of the gate of the substrate; etching the impurity-containing insulating film and the cap insulating film to form sidewall spacers on both sides of the gate; Forming an impurity region of the second conductivity type by ion-implanting an impurity of the second conductivity type into the substrate to form an impurity region of the second conductivity type adjacent to the impurity region. Method.
【請求項2】 絶縁膜は不純物が含有された酸化膜であ
ることを特徴とする請求項1記載のMOSトランジスタ
の製造方法。
2. The method according to claim 1, wherein the insulating film is an oxide film containing impurities.
【請求項3】 絶縁膜はAsとBが含有されたBAsS
G膜であることを特徴とする請求項2記載のMOSトラ
ンジスタの製造方法。
3. The insulating film is made of BAsS containing As and B.
3. The method according to claim 2, wherein the film is a G film.
【請求項4】 絶縁膜がBAsSGの場合に、BAsS
G膜はAsH4,SiH4,B2H6等の水素化物ガ
ス、又はAs−(OR)4,Si−(OR)4,B−
(OR)4(ここで、Rはアルコール基である)等の有
機金属ソースを用いて蒸着することを特徴とする請求項
3記載のMOSトランジスタの製造方法。
4. When the insulating film is BAsSG, BAsS
The G film is made of a hydride gas such as AsH4, SiH4, B2H6, or As- (OR) 4, Si- (OR) 4, B-
4. The method according to claim 3, wherein the deposition is performed using an organic metal source such as (OR) 4 (where R is an alcohol group).
【請求項5】 酸化膜内に含有された不純物は、各Ga
とP、もしくはInとPであることを特徴とする請求項
2記載のMOSトランジスタの製造方法。
5. The method according to claim 1, wherein the impurity contained in the oxide film is Ga
3. The method for manufacturing a MOS transistor according to claim 2, wherein P and In or P and In are P.
【請求項6】 不純物が含有された絶縁膜の厚さは10
0乃至1000Åであることを特徴とする請求項1記載
のMOSトランジスタの製造方法。
6. The thickness of the insulating film containing impurities is 10
2. The method according to claim 1, wherein the angle is 0 to 1000 degrees.
JP20933195A 1995-07-26 1995-07-26 Method for manufacturing MOS transistor Expired - Fee Related JP2794401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20933195A JP2794401B2 (en) 1995-07-26 1995-07-26 Method for manufacturing MOS transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20933195A JP2794401B2 (en) 1995-07-26 1995-07-26 Method for manufacturing MOS transistor

Publications (2)

Publication Number Publication Date
JPH0945917A JPH0945917A (en) 1997-02-14
JP2794401B2 true JP2794401B2 (en) 1998-09-03

Family

ID=16571183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20933195A Expired - Fee Related JP2794401B2 (en) 1995-07-26 1995-07-26 Method for manufacturing MOS transistor

Country Status (1)

Country Link
JP (1) JP2794401B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5151636B2 (en) * 2008-04-09 2013-02-27 株式会社デンソー Horizontal semiconductor device having trench gate and method of manufacturing the same
US9130426B2 (en) * 2011-10-31 2015-09-08 Regal Beloit America, Inc. Permanent magnet rotors and methods of assembling the same

Also Published As

Publication number Publication date
JPH0945917A (en) 1997-02-14

Similar Documents

Publication Publication Date Title
KR100408328B1 (en) Method of producing a mos transistor
US7344948B2 (en) Methods of forming transistors
US6506649B2 (en) Method for forming notch gate having self-aligned raised source/drain structure
EP0838085A1 (en) Low damage source and drain doping technique
JPH0923010A (en) Semiconductor element and its preparation
US7485516B2 (en) Method of ion implantation of nitrogen into semiconductor substrate prior to oxidation for offset spacer formation
US6150221A (en) Semiconductor device and method for manufacturing same
US5650347A (en) Method of manufacturing a lightly doped drain MOS transistor
JP2794401B2 (en) Method for manufacturing MOS transistor
US5913115A (en) Method for producing a CMOS circuit
JPH04245442A (en) Manufacture of ldd transistor
KR0156174B1 (en) Manufacture of mosfet
JP2931243B2 (en) Method for manufacturing semiconductor device
JP3088547B2 (en) Method for manufacturing semiconductor device
JP2000208642A (en) Manufacture of dual gate mos transistor
US6958299B2 (en) Methods of manufacturing semiconductor devices
JP3376305B2 (en) Method for manufacturing semiconductor device
KR100861282B1 (en) method for fabricating semiconductor device
JPH07131004A (en) Semiconductor device and preparation thereof
KR100204014B1 (en) Mos transistor and manufacturing method thereof
KR100309137B1 (en) Method for manufacturing semiconductor device
KR0124060B1 (en) Forming method of insulating layer for flatening of semiconductor device
KR20040037847A (en) Method for fabricating semiconductor device
JPH0590519A (en) Manufacture of semiconductor device
JPH0645434A (en) Manufacture of mos semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100626

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110626

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees