JP2787144B2 - Underwater position measuring device - Google Patents
Underwater position measuring deviceInfo
- Publication number
- JP2787144B2 JP2787144B2 JP7316328A JP31632895A JP2787144B2 JP 2787144 B2 JP2787144 B2 JP 2787144B2 JP 7316328 A JP7316328 A JP 7316328A JP 31632895 A JP31632895 A JP 31632895A JP 2787144 B2 JP2787144 B2 JP 2787144B2
- Authority
- JP
- Japan
- Prior art keywords
- receiver
- signal
- frequency components
- transmission frequency
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は水中を移動する2つ
の物体間のスラントレンジを求めて物体の位置を計測す
る水中位置計測装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underwater position measuring device for measuring a slant range between two objects moving underwater and measuring the position of the object.
【0002】[0002]
【従来の技術】水中の移動物体の位置を計測する公知文
献としては、例えば“「しんかい6500」用音響測位
について”(海洋科学技術センター試験研究報告 第2
6号、September 1991、p.65〜8
2)があり、この文献のp.72〜77には、音響によ
る測位方式として、LBL(Long Base Li
ne)方式が開示されている。上記LBL方式によれ
ば、まず水中の3箇所の固定位置にトランスポンダを設
置しておく。次に移動物体から質問パルス信号を送信す
ると、3個のトランスポンダは前記質問パルス信号に応
答してそれぞれの応答パルス信号を送信する。そして移
動物体が前記質問パルス信号を送信してから、それぞれ
の応答パルス信号を受信するまでの各時間(即ち音波の
各往復伝播時間)をそれぞれ計測して距離に換算し、3
箇所のトランスポンダ設置位置から移動物体までの各ス
ラントレンジ(slant range)を求め、その
交点位置として移動物体の位置を算出するものであっ
た。また3個のトランスポンダの識別は、質問信号の送
信周波数、送信時間、トランスポンダの作動周波数及び
応答周波数を変えることにより行っていた。2. Description of the Related Art As a well-known document for measuring the position of a moving object in water, for example, "Acoustic positioning for" Shinkai 6500 ""
No. 6, September 1991, p. 65-8
2), p. 72 to 77, LBL (Long Base Li) is used as an acoustic positioning method.
ne) A method is disclosed. According to the LBL method, first, transponders are installed at three fixed positions in water. Next, when a query pulse signal is transmitted from the moving object, the three transponders transmit respective response pulse signals in response to the query pulse signal. Then, each time from when the moving object transmits the interrogation pulse signal to when the response pulse signal is received (that is, each reciprocating propagation time of the sound wave) is measured and converted into a distance.
Each slant range from a transponder installation position to a moving object is obtained, and the position of the moving object is calculated as the intersection position. The three transponders are identified by changing the transmission frequency and transmission time of the interrogation signal, the operating frequency of the transponder, and the response frequency.
【0003】[0003]
【発明が解決しようとする課題】しかしながら上記のよ
うな水中位置計測装置では、各トランスポンダからそれ
ぞれ応答周波数の異なる信号を受波した信号のS/Nを
向上させるため、バンドパスフィルタを設けているが、
このフィルタの通過帯域はパルス波の波形を歪ませない
程度に広くする必要があるため、S/N向上には限界が
あるという問題点があった。またトランスポンダの設置
数が多い場合には、質問信号及び応答信号が時間的に重
ならないように送信間隔を長くする必要があり、複数の
スラントレンジ測定の同時性が失われるため、位置変動
の激しい移動物体の位置限定が困難であるという問題点
もあった。However, in the underwater position measuring apparatus as described above, a band-pass filter is provided in order to improve the S / N of a signal which has received signals having different response frequencies from each transponder. But,
Since the pass band of this filter needs to be widened so as not to distort the waveform of the pulse wave, there is a problem that the S / N improvement is limited. When the number of transponders is large, it is necessary to lengthen the transmission interval so that the interrogation signal and the response signal do not overlap in time, and the synchronization of a plurality of slant range measurements is lost. There is also a problem that it is difficult to limit the position of the moving object.
【0004】[0004]
【課題を解決するための手段】本発明に係る水中位置測
定装置は、水中を移動する2つの物体間のスラントレン
ジを求めて物体の位置を計測する水中位置計測装置にお
いて、一方の物体の所定位置にそれぞれ設けられた複数
の送波器及び単一の受波器と、他方の物体の所定位置に
設けられた単一の受波器と、複数のそれぞれ異なる周波
数の連続波送信信号を発生して前記一方の物体に設けら
れた複数の送波器にそれぞれ供給する複数の送信信号発
生手段と、前記一方の物体に設けられた受波器と他方の
物体に設けられた受波器の出力信号をそれぞれ入力し、
2つの入力信号に含まれる複数の送信周波数成分を分析
すると共に、一方の物体の受波器出力から分析した複数
の送信周波数成分に対する他方の物体の受波器出力から
分析した複数の送信周波数成分の位相差をそれぞれ検出
するスペクトラムアナライザと、前記スペクトラムアナ
ライザの検出した複数の送信周波数成分毎の位相差に基
づき、一方の物体に設けられた複数の送波器と他方の物
体に設けられた受波器との間のスラントレンジをそれぞ
れ算出する演算手段とを備えたものである。An underwater position measuring apparatus according to the present invention is an underwater position measuring apparatus for measuring the position of an object by obtaining a slant range between two objects moving underwater. A plurality of transmitters and a single receiver provided at each position, a single receiver provided at a predetermined position of the other object, and a plurality of continuous wave transmission signals of different frequencies are generated. And a plurality of transmission signal generating means for respectively supplying a plurality of transmitters provided on the one object, and a receiver provided on the one object and a receiver provided on the other object Input each output signal,
A plurality of transmission frequency components included in two input signals are analyzed, and a plurality of transmission frequency components analyzed from a receiver output of the other object with respect to a plurality of transmission frequency components analyzed from a receiver output of one object. And a plurality of transmitters provided on one object and a plurality of transmitters provided on the other object based on the phase difference of each of a plurality of transmission frequency components detected by the spectrum analyzer. And a calculating means for calculating a slant range with the wave device.
【0005】本発明においては、水中を移動する2つの
物体間のスラントレンジを求めて物体の位置を計測する
水中位置計測装置において、一方の物体の所定位置にそ
れぞれ複数の送波器及び単一の受波器が設けられ、他方
の物体の所定位置に単一の受波器が設けられ、複数の送
信信号発生手段はそれぞれ異なる周波数の連続波送信信
号を発生して前記一方の物体に設けられた複数の送波器
にそれぞれ供給し、スペクトラムアナライザは前記一方
の物体に設けられた受波器と他方の物体に設けられた受
波器の出力信号をそれぞれ入力し、2つの入力信号に含
まれる複数の送信周波数成分を分析すると共に、一方の
物体の受波器出力から分析した複数の送信周波数成分に
対する他方の物体の受波器出力から分析した複数の送信
周波数成分の位相差をそれぞれ検出し、演算手段は前記
スペクトラムアナライザの検出した複数の送信周波数成
分毎の位相差に基づき、一方の物体に設けられた複数の
送波器と他方の物体に設けられた受波器との間のスラン
トレンジをそれぞれ算出するようにしたので、周波数の
異なる複数の送信周波数成分の連続的な同時分析が可能
となり、位置変動の激しい移動物体の位置をリアルタイ
ムで計測できるようになった。また受信信号のS/Nが
スペクトラムアナライザの分析周波数帯域幅(ΔF)に
反比例するので、各送信波を単一周波数の連続波とする
ことで、ΔFに比例する分析時間間隔を最適化して受信
信号のS/Nを向上させることが可能になった。According to the present invention, there is provided an underwater position measuring apparatus for measuring a position of an object by obtaining a slant range between two objects moving underwater. Is provided, a single receiver is provided at a predetermined position of the other object, a plurality of transmission signal generating means are respectively provided on the one object to generate continuous wave transmission signals of different frequencies Supplied to the plurality of transmitters provided, respectively, the spectrum analyzer inputs the output signal of the receiver provided on the one object and the output signal of the receiver provided on the other object, respectively, into two input signals. A plurality of transmission frequency components included are analyzed, and the phases of the plurality of transmission frequency components analyzed from the receiver output of the other object with respect to the plurality of transmission frequency components analyzed from the receiver output of one object. Respectively, based on the phase difference for each of a plurality of transmission frequency components detected by the spectrum analyzer, a plurality of transmitters provided on one object and a receiver provided on the other object , The slant ranges between are calculated, so that it is possible to continuously analyze a plurality of transmission frequency components having different frequencies at the same time, and to measure the position of a moving object whose position fluctuates greatly in real time. Further, since the S / N of the received signal is inversely proportional to the analysis frequency bandwidth (ΔF) of the spectrum analyzer, each transmission wave is made to be a continuous wave of a single frequency, so that the analysis time interval proportional to ΔF is optimized. It has become possible to improve the S / N of the signal.
【0006】[0006]
【発明の実施の形態】図1は本発明の実施形態1,2に
係る水中位置計測装置の構成を示す図である。本発明
は、水中を移動する2つの物体(これを物体A、物体B
とする)間のスラントレンジを求めて物体の位置を計測
するものであるが、この実施形態では、物体Aは水中位
置の基準となる座標原点を有する物体として使用し、物
体Bは水中位置の測定される被測定物体とした。また説
明を容易にするために、図1の例では、物体A及び物体
Bは両物体を含む水平面内でのみ移動するものとし、物
体Aに設ける座標は前記水平面を含む2次元座標として
説明する(なお、3次元座標とした場合の説明は後述す
る)。FIG. 1 is a diagram showing the configuration of an underwater position measuring apparatus according to Embodiments 1 and 2 of the present invention. In the present invention, two objects (object A and object B)
In this embodiment, the object A is used as an object having a coordinate origin serving as a reference of an underwater position, and the object B is used as an object having a coordinate origin which is a reference of the underwater position. The measured object was measured. For ease of explanation, in the example of FIG. 1, the object A and the object B are assumed to move only in a horizontal plane including both objects, and the coordinates provided on the object A will be described as two-dimensional coordinates including the horizontal plane. (Note that the case of three-dimensional coordinates will be described later.)
【0007】図1において、1は#1送波器、2は#2
送波器、3は#1受波器であり、上記1〜3は物体Aの
所定位置にそれぞれ設置される。4は#2受波器であり
物体Bの所定位置に設置される。5は#1送信器であり
#1送波器1に周波数F1 の連続波信号を供給し、6は
#2送信器であり#2送波器2に周波数F2 の連続波信
号を供給する。上記#1,#2送信器5,6は物体A内
又は陸上に設置される。7はスペクトラムアナライザで
あり、#1受波器3及び#2受波器4の出力信号を伝送
ケーブル9を介してそれぞれ入力し、この入力した2つ
の入力信号にそれぞれ含まれる2つの送信周波数成分を
分析すると共に、2つの入力信号間の送信周波数成分毎
の位相差または位相差及びレベル差を検出する。8はパ
ーソナルコンピュータであり、スペクトラムアナライザ
7が検出した位相差または位相差及びレベル差に基づき
物体A,B間のスラントレンジ等を計算する演算や物体
軌跡の作図等を行う。なお、通常、スペクトラムアナラ
イザ7及びパーソナルコンピュータ8は陸上に設置され
る。In FIG. 1, 1 is a # 1 transmitter and 2 is a # 2 transmitter.
The transmitter 3 is a # 1 receiver, and the above 1 to 3 are installed at predetermined positions of the object A, respectively. Reference numeral 4 denotes a # 2 receiver, which is installed at a predetermined position of the object B. 5 supplies a continuous wave signal of the frequencies F 1 to a # 1 transmitter # 1 transmitters 1, 6 supply a continuous wave signal of # a 2 transmitter # 2 transmitters 2 to the frequency F 2 I do. The # 1 and # 2 transmitters 5 and 6 are installed in the object A or on land. Reference numeral 7 denotes a spectrum analyzer which receives the output signals of the # 1 receiver 3 and the # 2 receiver 4 via a transmission cable 9, respectively, and outputs two transmission frequency components included in the two input signals. And a phase difference or a phase difference and a level difference between two input signals for each transmission frequency component are detected. Reference numeral 8 denotes a personal computer, which performs a calculation for calculating a slant range between the objects A and B based on the phase difference detected by the spectrum analyzer 7 or the phase difference and the level difference, and draws an object trajectory. Usually, the spectrum analyzer 7 and the personal computer 8 are installed on land.
【0008】次に#1送波器1、#2送波器2及び#1
受波器3の設置位置について説明する。図1の配置例に
おいては、まず物体A上に座標原点(0,0)を設け、
この座標原点に#2送波器2を設置し、この#2送波器
2の設置位置(0,0)からY軸上にY0 (例えば0.
5m)離れた物体A上の位置(0,Y0 )に#1受波器
3を設置し、この#1受波器3の設置位置(0,Y0 )
からY軸上にY0 離れた物体A上の位置(0,2Y0 )
に#1送波器1を設置した。また物体A上に設置した#
1送波器1と#2送波器2からそれぞれ物体B上に設置
した#2受波器4までのスラントレンジをL1 (m)と
L2 (m)とした。Next, # 1 transmitter 1, # 2 transmitter 2 and # 1
The installation position of the receiver 3 will be described. In the arrangement example of FIG. 1, first, a coordinate origin (0, 0) is provided on the object A,
A # 2 transmitter 2 is installed at the origin of the coordinates, and Y 0 (for example, 0 .0) on the Y axis from the installation position (0, 0) of the # 2 transmitter 2.
5m) away on the object A (0, Y 0) to set up a # 1 receivers 3, the installation position of the # 1 wave receiver 3 (0, Y 0)
(0,2Y 0 ) on the object A away from the object by Y 0 on the Y axis
The # 1 transmitter 1 was installed in the system. Also set on object A #
The slant ranges from the first transmitter 1 and the # 2 transmitter 2 to the # 2 receiver 4 installed on the object B were L 1 (m) and L 2 (m), respectively.
【0009】実施形態1.図1を用いて実施形態1の動
作を説明する。図1の#1送信器5は、周波数F1 (H
z)(例えば1kHz)の連続波信号を物体Aの#1送
波器1に供給し、#1送波器1から周波数F1 の音波を
送波させる。同様に#2送信器6は周波数F2 (Hz)
(例えば1.1kHz)の連続波信号を物体Aの#2送
波器2に供給し、#2送波器2から周波数F2 の音波を
送波させる。物体A上に設置された#1受波器3は、#
1送波器1から送波され水中の直線距離Y0 を伝播して
きた周波数F1 の音波と、#2送波器2から送波され水
中の直線距離Y0 を伝播してきた周波数F2 の音波とを
共に受波し、この受波した2つの周波数成分を含む出力
信号を伝送ケーブル9を介してスペクトラムアナライザ
7の一方の入力へ供給する。Embodiment 1 The operation of the first embodiment will be described with reference to FIG. # 1 transmitter 5 of FIG. 1, the frequency F 1 (H
z) a continuous wave signal (e.g., 1kHz) was supplied to the # 1 wave transmitter 1 of the object A, thereby transmitting sound waves frequencies F 1 from # 1 wave transmitter 1. Similarly, the # 2 transmitter 6 has a frequency of F 2 (Hz).
(E.g., 1.1 kHz) the continuous wave signal is supplied to # 2 wave transmitter 2 of the object A, thereby transmitting sound waves of a frequency F 2 from # 2 wave transmitter 2. The # 1 receiver 3 installed on the object A is #
1 and wave frequencies F 1 which is transmitting the wave transmitter 1 has propagated the linear distance Y 0 in water, the frequency F 2 which has propagated the linear distance Y 0 in water is transmitting from # 2 wave transmitter 2 A sound wave is received together, and an output signal containing the received two frequency components is supplied to one input of the spectrum analyzer 7 via the transmission cable 9.
【0010】同様に物体B上に設置された#2受波器4
は、#1送波器1から送波され水中のスラントレンジL
1 を伝播してきた周波数F1 の音波と、#2送波器2か
ら送波され水中のスラントレンジL2 を伝播してきた周
波数F2 の音波とを共に受波し、この受波した2つの周
波数成分を有する出力信号を伝送ケーブル9を介してス
ペクトラムアナライザ7の他方の入力へ供給する。スペ
クトラムアナライザ7は、#1受波器3と#2受波器4
とから入力される2つの入力信号について、それぞれ送
信周波数F1 とF2 の信号成分の分析を行うと共に、#
1受波器3からの入力信号より分析した送信周波数F1
とF2 の信号成分の位相を2つの基準位相として、この
周波数F1 とF2 の基準位相に対して、#2受波器4か
らの入力信号より分析した周波数F1 の信号成分の位相
差θ1 と周波数F2 の信号成分の位相差θ2 とを検出す
る。[0010] Similarly, the # 2 receiver 4 installed on the object B
Is the slant range L transmitted from the # 1 transmitter 1 and underwater.
1 and wave frequencies F 1 that has propagated through the # together reception and sound waves of a frequency F 2 to the slant range L 2 propagating in the water is transmitting from 2 wave transmitter 2, the two were the reception An output signal having a frequency component is supplied to the other input of the spectrum analyzer 7 via the transmission cable 9. The spectrum analyzer 7 includes the # 1 receiver 3 and the # 2 receiver 4
The analysis of the signal components of the transmission frequencies F 1 and F 2 for the two input signals input from
Transmission frequency F 1 analyzed from the input signal from one receiver 3
And the phase of the signal component of F 2 as two reference phases, relative to the frequencies F 1 and F 2 of the reference phase, position of the signal components of the frequencies F 1 was analyzed from the input signal from the # 2 receivers 4 The phase difference θ 1 and the phase difference θ 2 of the signal component of the frequency F 2 are detected.
【0011】ここで上記検出する位相差θ1 とθ2 の有
効範囲は、角度で360度分しかない(例えば位相差1
0度と370度とは共に同位相である)ので、基準位相
に対する遅れ位相と進み位相とを考えると、−180度
〜+180度の範囲となる。また水中音波の伝播時の波
長を考えると、音波が1波長の距離を伝播する間に位相
は360度変化する。そしてこの位相の変化と音波の伝
播距離とは比例関係にある。例えば位相の変化が90度
のときの伝播距離は1/4波長で、180度のときの伝
播距離は1/2波長である。そして前記位相差θ1 は、
#1送波器1から周波数F1 の音波が距離Y0 とL1 を
それぞれ伝播した2つの受波信号間の位相差(前者を基
準にした後者の位相差)であり、位相差θ2 は、#2送
波器2から周波数F2 の音波が距離Y0 とL2 をそれぞ
れ伝播した2つの受波信号間の位相差であるから、前記
スラントレンジL1 ,L2 と前記直線距離Y0 との距離
差、L1 −Y0 ,L2 −Y0 とが1波長以下の距離であ
れば、上記位相差θ1 ,θ2 から前記距離差L1 −
Y0 ,L2−Y0 は算出することができる。Here, the effective range of the detected phase differences θ 1 and θ 2 is only 360 degrees (for example, the phase difference 1).
Since both 0 ° and 370 ° have the same phase), considering the lag phase and the advance phase with respect to the reference phase, the range is from −180 ° to + 180 °. Considering the wavelength at which the underwater sound wave propagates, the phase changes by 360 degrees while the sound wave propagates over a distance of one wavelength. The change in the phase is proportional to the propagation distance of the sound wave. For example, when the phase change is 90 degrees, the propagation distance is 4 wavelength, and when the phase change is 180 degrees, the propagation distance is 波長 wavelength. And the phase difference θ 1 is
# 1 is a phase difference between the sound waves of frequencies F 1 from the wave transmitter 1 is the distance Y 0 and L 1 the two received signals propagating respectively (the latter of the phase difference relative to the former), the phase difference theta 2 Is the phase difference between the two received signals transmitted from the # 2 transmitter 2 at the frequency F 2 over the distances Y 0 and L 2 , respectively, so that the slant ranges L 1 and L 2 and the linear distance If the distance difference from Y 0 , L 1 −Y 0 , L 2 −Y 0 is a distance of one wavelength or less, the distance difference L 1 − from the phase difference θ 1 , θ 2.
Y 0 , L 2 −Y 0 can be calculated.
【0012】いま水中音速をC(m/sec)(約15
00m/sec)とすると周波数F1 における1波長は
C/F1 (例えばF1 が1kHzの場合の1波長は約
1.5m)、周波数F2 における1波長はC/F2 であ
る。従っていまL1 ,L2 は共にY0 より大きいとする
と、前記距離差L1 −Y0,L2 −Y0 は次の(1),
(2)式となり、L1 ,L2 は(3),(4)式で示さ
れる。 L1 −Y0 =−(θ1 /360)×(C/F1 ) ……(1) L2 −Y0 =−(θ2 /360)×(C/F2 ) ……(2) L1 =−(θ1 /360)×(C/F1 )+Y0 ……(3) L2 =−(θ2 /360)×(C/F2 )+Y0 ……(4) なお上記位相差θ1 ,θ2 は基準位相に対して進み位相
で正、遅れ位相で負の値になるので、前記L1 ,L2 が
共にY0 より大きいと、θ1 ,θ2 は遅れ位相の負の値
になる。Now, the underwater sound speed is set to C (m / sec) (about 15
1 wavelength at frequencies F 1 when 00m / sec) to the wavelength of about 1.5 m), 1 wavelength at the frequency F 2 of the case C / F 1 (for example, F 1 is 1kHz is C / F 2. Therefore, assuming that both L 1 and L 2 are larger than Y 0 , the distance differences L 1 −Y 0 and L 2 −Y 0 are given by the following (1),
Equation (2) is obtained, and L 1 and L 2 are represented by equations (3) and (4). L 1 -Y 0 = - (θ 1/360) × (C / F 1) ...... (1) L 2 -Y 0 = - (θ 2/360) × (C / F 2) ...... (2) L 1 = - (θ 1/ 360) × (C / F 1) + Y 0 ...... (3) L 2 = - (θ 2/360) × (C / F 2) + Y 0 ...... (4) Note that the Since the phase differences θ 1 and θ 2 are positive values in the leading phase and negative values in the lagging phase with respect to the reference phase, if both L 1 and L 2 are larger than Y 0 , θ 1 and θ 2 become lagging phases. Will be negative.
【0013】前記(3),(4)式で求め得るL1 ,L
2 はそれぞれの送信周波数F1 ,F2 の1波長以内に制
限されるため、いま位相差θ1 ,θ2 が−180度〜+
180度の範囲内とすると、L1 ,L2 の求め得る範囲
はそれぞれ±(1/2)×(C/F1 )(m)、±(1
/2)×(C/F2 )(m)以内に限定される。従って
送信周波数F1 ,F2 及び#1,#2送波器1,2と#
1送波器3間の距離Y0 はあらかじめスラントレンジL
1 ,L2 の変動幅を想定して決定する必要がある。
(3),(4)式から#2受波器4の座標(X,Y)は
次の(5),(6)式で示される。L 1 and L obtained by the above equations (3) and (4)
2 is limited to within one wavelength of each of the transmission frequencies F 1 and F 2 , so that the phase differences θ 1 and θ 2 are now −180 degrees to +180 degrees.
Assuming that it is within the range of 180 degrees, the ranges where L 1 and L 2 can be obtained are ± (1/2) × (C / F 1 ) (m) and ± (1
/ 2) × (C / F 2 ) (m). Therefore, the transmission frequencies F 1 , F 2 and # 1, # 2 transmitters 1, 2, and #
The distance Y 0 between one transmitter 3 is previously set to the slant range L
1, it is necessary to determine by assuming the fluctuation band of the L 2.
From the expressions (3) and (4), the coordinates (X, Y) of the # 2 receiver 4 are expressed by the following expressions (5) and (6).
【0014】[0014]
【数1】 (Equation 1)
【0015】[0015]
【数2】 (Equation 2)
【0016】パーソナルコンピュータ8は上記各式の演
算を行い、スラントレンジL1 ,L2 や#2受波器4の
座標位置を算出する。なお、本発明における#1,#2
送波器1,2及び#1受波器3の設置位置は図1の配置
例に限定されるものではない。例えば#1送波器1と#
1受波器3の間隔と、#2受波器2と#1受波器3の間
隔とは等しくなくても、それぞれの設置位置が既知であ
れば、上記と同様にスラントレンジL1 ,L2 や#2受
波器4の座標位置を算出することができる。The personal computer 8 calculates the slant ranges L 1 and L 2 and the coordinate position of the # 2 receiver 4 by performing the calculations of the above equations. Note that, in the present invention, # 1 and # 2
The installation positions of the transmitters 1 and 2 and the # 1 receiver 3 are not limited to the arrangement example in FIG. For example, # 1 transmitter 1 and #
Even if the interval between the 1 receiver 3 and the interval between the # 2 receiver 2 and the # 1 receiver 3 are not equal, if the respective installation positions are known, the slant ranges L 1 , L 2 and # can be calculated coordinate positions of the 2 receivers 4.
【0017】また、図1の実施形態においては、送信周
波数の異なるF1 ,F2 の音波をそれぞれ送波する2つ
の送波器を用いて、2次元座標における物体Bの位置測
定を行った場合の例を示したが、本発明はこれに限定さ
れるものではない。例えば送信周波数の異なるF1 ,F
2 ,F3 の音波をそれぞれ送波する3つの送波器を用い
て、3次元座標における物体Bの位置測定を行うことが
できる。例えば、図1の配置において、物体Aの#1受
波器3の設置位置(0,Y0 )からX・Y平面に垂直な
方向(Z軸と平行な方向)に距離Y0 離れた位置に#3
送波器を設置してF3 の音波を送波させ、この#3送波
器から#2受波器4までのスラントレンジL3 を求める
ことにより、#2受波器3の3次元座標位置(X,Y,
Z)を算出することができる。In the embodiment shown in FIG. 1, the position of the object B in two-dimensional coordinates is measured using two transmitters for transmitting F 1 and F 2 sound waves having different transmission frequencies. Although an example of the case has been described, the present invention is not limited to this. For example, F 1 and F with different transmission frequencies
The position of the object B in three-dimensional coordinates can be measured using three transmitters for transmitting the sound waves 2 and F 3 respectively. For example, in the arrangement of FIG. 1, a position Y 0 away from the installation position (0, Y 0 ) of the object A # 1 receiver 3 in a direction perpendicular to the XY plane (a direction parallel to the Z axis). # 3
By installing a transmitter and transmitting a sound wave of F 3 , and obtaining a slant range L 3 from the # 3 transmitter to the # 2 receiver 4, the three-dimensional coordinates of the # 2 receiver 3 are obtained. Position (X, Y,
Z) can be calculated.
【0018】実施形態2.前記実施形態1においては、
周波数F1 ,F2 の2つの受波信号間の位相差θ1 ,θ
2 のみの検出のため、前記距離差L1 −Y0 ,L2 −Y
0 が1波長以下の場合のみに測定距離が制限されてい
た。実施形態2においては前記距離差が1波長以上の場
合にも測定できるように前記位相差θ1 ,θ2 のほか
に、周波数F1,F2 の2つの受波信号間の音圧レベル
差V1 ,V2 も検出するようにした。いま#1受波器3
と#2受波器4の受波感度は等しく、#1送波器1と#
2送波器2の指向特性は無指向性(音圧が球面拡散する
特性)であるとすると、送波器と受波器との間の距離
(r)に対する受波器での音圧レベルは、−20log
(r)に比例して(r2 に反比例して)低下すると考え
られる。Embodiment 2 FIG. In the first embodiment,
Phase difference θ 1 , θ between two received signals of frequencies F 1 , F 2
2 , the distance differences L 1 -Y 0 , L 2 -Y
The measurement distance was limited only when 0 was one wavelength or less. In the second embodiment, in addition to the phase differences θ 1 and θ 2 , a sound pressure level difference between two received signals of frequencies F 1 and F 2 so that measurement can be performed even when the distance difference is one wavelength or more. V 1 and V 2 are also detected. Now # 1 receiver 3
And # 2 receivers 4 have the same receiving sensitivity, and # 1 transmitters 1 and # 2
2 Assuming that the directional characteristic of the transmitter 2 is omnidirectional (the characteristic that the sound pressure is spherically diffused), the sound pressure level at the receiver with respect to the distance (r) between the transmitter and the receiver Is -20 log
It is thought to decrease in proportion to (r) (in inverse proportion to r 2 ).
【0019】従って距離Y0 を伝播して受波した#1受
波器3からの2つの周波数の音圧レベルを基準として、
それぞれ距離L1 ,L2 を伝播して受波した#2受波器
4からの2つの周波数の音圧レベル差V1 ,V2 を求め
ると、このV1 ,V2 から前記距離差L1 −Y0 ,L2
−Y2 の概略値を求めることは可能である。但しこの音
圧レベル差から求める距離差の概略値は精度が余り良く
ない。そこで本発明の実施形態2においては、音圧レベ
ル差からは波長単位による距離を求め、1波長以下の距
離は位相差から求めるようにした。例えば前記距離差L
1 −Y0 が3.4波長相当の距離であると仮定すると、
3波長分は音圧レベル差から求め、0.4波長分は位相
差から求め、合計で3.4波長分の距離であることを算
出するようにした。Therefore, with reference to the sound pressure levels of the two frequencies from the # 1 receiver 3 which have propagated and received the distance Y 0 ,
When the sound pressure level differences V 1 and V 2 of the two frequencies from the # 2 receiver 4 which have propagated and received the distances L 1 and L 2 , respectively, are obtained, the distance difference L is obtained from the V 1 and V 2. 1 −Y 0 , L 2
It is possible to obtain the approximate value of -Y 2. However, the approximate value of the distance difference obtained from this sound pressure level difference is not very accurate. Therefore, in the second embodiment of the present invention, the distance in units of wavelength is obtained from the sound pressure level difference, and the distance of one wavelength or less is obtained from the phase difference. For example, the distance difference L
Assuming that 1− Y 0 is a distance equivalent to 3.4 wavelengths,
Three wavelengths are obtained from the sound pressure level difference, and 0.4 wavelengths are obtained from the phase difference, so that a total distance of 3.4 wavelengths is calculated.
【0020】実施形態2において、スペトクラムアナラ
イザ7は、#1受波器3と#2受波器4とから入力され
る2つの入力信号について、それぞれ送信周波数F1 と
F2の信号成分の分析を行うと共に、#1受波器3から
の入力信号より分析した送信周波数F1 とF2 の信号成
分の位相及び信号レベルを基準として、この周波数F1
とF2 の基準の位相及び信号レベルに対して、#2受波
器4からの入力信号より分析した周波数F1 の信号成分
の位相差θ1 及びレベル差V1 と、周波数F2の信号成
分の位相差θ2 及びレベル差V2 とを検出する。そして
実施形態2における、スラントレンジL1 ,L2 は次の
(7),(8)式から算出する。 L1 ={K1 −(θ1 /360)}×(C/F1 )+Y0 ……(7) L2 ={K2 −(θ2 /360)}×(C/F2 )+Y0 ……(8) 但し(7),(8)式のK1 ,K2 はそれぞれ次の
(9),(10)式を満足する整数値である。In the second embodiment, the spectrum analyzer 7 analyzes the signal components of the transmission frequencies F 1 and F 2 for the two input signals input from the # 1 receiver 3 and the # 2 receiver 4 respectively. , And based on the phases and signal levels of the signal components of the transmission frequencies F 1 and F 2 analyzed from the input signal from the # 1 receiver 3, this frequency F 1
And the reference phase and signal level of F 2 , the phase difference θ 1 and level difference V 1 of the signal component of frequency F 1 analyzed from the input signal from the # 2 receiver 4 and the signal of frequency F 2 The phase difference θ 2 and the level difference V 2 of the components are detected. In the second embodiment, the slant ranges L 1 and L 2 are calculated from the following equations (7) and (8). L 1 = {K 1 - ( θ 1/360)} × (C / F 1) + Y 0 ...... (7) L 2 = {K 2 - (θ 2/360)} × (C / F 2) + Y 0 (8) where K 1 and K 2 in the equations (7) and (8) are integer values that satisfy the following equations (9) and (10), respectively.
【0021】[0021]
【数3】 (Equation 3)
【0022】[0022]
【数4】 (Equation 4)
【0023】パーソナルコンピュータ8は、スペクトラ
ムアナライザ7が検出したθ1 ,θ2 ,V1 ,V2 から
(9),(10)式を満足するK1 ,K2 を求め、これ
らを(7),(8)式に代入することにより、前記距離
差が1波長以上のスラントレンジL1 ,L2 を算出する
ことができる。なお実施形態2においても、送信周波数
の異なるF1 ,F2 ,F3 の音波をそれぞれ送波する3
つの送波器を用いて3次元座標における物体Bの位置測
定を行うことができる。The personal computer 8 calculates K 1 and K 2 satisfying the equations (9) and (10) from θ 1 , θ 2 , V 1 and V 2 detected by the spectrum analyzer 7, and calculates these as (7) , (8), the slant ranges L 1 and L 2 in which the distance difference is equal to or more than one wavelength can be calculated. Note that also in the second embodiment, the sound waves of F 1 , F 2 , and F 3 having different transmission frequencies are transmitted.
The position of the object B in the three-dimensional coordinates can be measured using the two transmitters.
【0024】実施形態1及び2においては、2つの異な
る周波数の送波信号についての2箇所からの受波信号を
連続的に同時分析が可能のため、運動性能が良く位置変
動の激しい移動物体の位置をリアルタイムに計測するこ
とが可能になった。また受信信号のS/Nがスペクトラ
ムアナライザ7の分析周波数帯域幅(ΔF)に反比例す
るため、各送信波を単一周波数の連続波とすることで、
前記ΔFに比例する分析時間間隔を最適化して受信信号
のS/Nを向上させることも可能となった。In the first and second embodiments, it is possible to continuously and simultaneously analyze received signals from two locations for transmitted signals of two different frequencies. The position can be measured in real time. Also, since the S / N of the received signal is inversely proportional to the analysis frequency bandwidth (ΔF) of the spectrum analyzer 7, by making each transmission wave a continuous wave of a single frequency,
It has also become possible to improve the S / N of the received signal by optimizing the analysis time interval proportional to ΔF.
【0025】図2は本発明の実施形態3,4に係る水中
位置計測装置の構成を示す図である。図2の構成は、図
1の構成から#1受波器3を除去し、代りに、#1,#
2送波器5,6から入力する2つの入力信号にれぞれ所
定の減衰量を与えて出力する可変減衰器10と、この可
変減衰器10から入力する2つの入力信号にそれぞれ所
定の遅延時間を与えて出力する可変遅延回路11と、こ
の可変遅延回路11から入力する2つの入力信号を混合
し、この混合出力を基準信号としてスペクトラムアナラ
イザ7の一方の入力に供給する混合器12とを設けたも
のである。従って図2の可変減衰器10、可変遅延回路
11及び混合器12は図1の#1受波器3に代わる機能
を有し、スペクトラムアナライザ7の一方の入力に供給
する基準信号を生成する基準信号生成手段を構成してい
る。そして図2の上記基準信号生成手段を除く他の部分
は、図1と同一構成で同一動作を行うので、図2におい
てはこの基準信号生成手段についてのみの説明を行う。
また図2では、#1送信器5、#2送信器6、可変減衰
器10、可変遅延回路11、混合器12、スペクトラム
アナライザ7及びパーソナルコンピュータ8は陸上に設
置されるものとして説明する。FIG. 2 is a diagram showing the configuration of the underwater position measuring device according to the third and fourth embodiments of the present invention. The configuration of FIG. 2 eliminates the # 1 receiver 3 from the configuration of FIG.
A variable attenuator 10 that applies a predetermined amount of attenuation to each of the two input signals input from the two transmitters 5 and 6, and outputs a predetermined delay to the two input signals input from the variable attenuator 10. A variable delay circuit 11 for giving time and outputting, and a mixer 12 for mixing two input signals input from the variable delay circuit 11 and supplying the mixed output to one input of the spectrum analyzer 7 as a reference signal. It is provided. Therefore, the variable attenuator 10, the variable delay circuit 11, and the mixer 12 in FIG. 2 have a function that replaces the # 1 receiver 3 in FIG. 1, and generates a reference signal to be supplied to one input of the spectrum analyzer 7. It constitutes signal generation means. Since the other parts of FIG. 2 except for the reference signal generating means perform the same operation with the same configuration as in FIG. 1, only the reference signal generating means will be described in FIG.
In FIG. 2, the # 1 transmitter 5, the # 2 transmitter 6, the variable attenuator 10, the variable delay circuit 11, the mixer 12, the spectrum analyzer 7, and the personal computer 8 are described as being installed on land.
【0026】#1送信器5は周波数F1 の連続波信号を
伝送ケーブル9を介して物体Aの#1送波器1に供給す
ると共に可変減衰器10の一方の入力に供給する。また
#2送信器6は周波数F2 の連続波信号を伝送ケーブル
9を介して物体Aの#2送波器2に供給すると共に可変
減衰器10の他方の入力に供給する。可変減衰器10の
減衰量と可変遅延回路の遅延時間とは、ある設置位置に
設置された#1受波器3の出力信号と等しい基準信号を
生成するように較正されるが、ここでは説明を容易にす
るため、#1受波器3が図1と同一位置に設置された場
合と等しい基準信号の生成法について説明する。The # 1 transmitter 5 supplies the continuous wave signal of the frequency F 1 to the # 1 transmitter 1 of the object A via the transmission cable 9 and to one input of the variable attenuator 10. The # variable with 2 transmitter 6 is supplied to # 2 wave transmitter 2 of the object A through the transmission cable 9 a continuous wave signal of frequency F 2
The other input of the attenuator 10 is supplied. The attenuation of the variable attenuator 10 and the delay time of the variable delay circuit are calibrated so as to generate a reference signal equal to the output signal of the # 1 receiver 3 installed at a certain installation position. In order to facilitate the above, a method of generating a reference signal equivalent to the case where the # 1 receiver 3 is installed at the same position as in FIG. 1 will be described.
【0027】実施形態3,4においては、実際の移動物
体の測定前に、あらかじめ図1の配置例と等しく同一直
線上の水中位置に、#1受波器3と、該#1受波器3の
両側にその間隔をそれぞれY 0 とする#1送波器1及び
#2送波器2とを設け、#1,#2送波器1,2からそ
れぞれ前記送信周波数F1 ,F2 の連続波を送波させ、
これを#1受波器3で受波した信号の周波数F1 ,F2
の各信号成分の位相及び信号レベルをそれぞれ測定して
おく。そしてこのように測定された周波数F1 ,F2 の
各信号成分の位相及び信号レベルと、図2の混合器12
から出力されスペクトラムアナライザ7の一方の入力に
供給される基準信号の周波数F1 ,F2 の各信号成分の
位相及び信号レベルとが同一になるように、可変遅延回
路11における2つの周波数毎の遅延時間と、可変減衰
器10における2つの周波数毎の減衰量をそれぞれ較正
する。上記のような較正が行われることにより、図2の
混合器12の出力信号は、図1の配置例における#1受
波器3の出力信号と等しい基準信号として生成される。
混合器12は、このようにして生成された基準信号をス
ペクトラムアナライザ7の一方の入力に供給し、スペク
トラムアナライザ7の他方の入力には、図1と同様に受
波器4の出力信号が供給される。In the third and fourth embodiments, before the actual measurement of the moving object, the same operation as in the arrangement example of FIG.
In the underwater position on the line, the # 1 receiver 3 and the # 1 receiver 3
# 1 transmitter 1 with the interval being Y 0 on both sides and
A # 2 transmitter 2 is provided, and # 1 and # 2 transmitters 1 and 2 transmit continuous waves of the transmission frequencies F 1 and F 2 , respectively.
This is the frequency F 1 , F 2 of the signal received by the # 1 receiver 3
The phase and signal level of each signal component are measured in advance. Then, the phase and signal level of each signal component of the frequencies F 1 and F 2 measured in this way are compared with the mixer 12 shown in FIG.
Output from the way the phase and signal level of each signal component of the frequency F 1, F 2 of the reference signal supplied to one input of the spectrum analyzer 7 are the same, the variable delay circuit 11 in every two frequencies The delay time and the amount of attenuation at each of the two frequencies in the variable attenuator 10 are calibrated. By performing the above-described calibration, the output signal of the mixer 12 of FIG. 2 is generated as a reference signal equal to the output signal of the # 1 receiver 3 in the arrangement example of FIG.
The mixer 12 supplies the reference signal generated in this way to one input of the spectrum analyzer 7, and supplies the output signal of the receiver 4 to the other input of the spectrum analyzer 7 as in FIG. Is done.
【0028】実施形態3.実施形態3においては、図2
のスペクトラムアナライザ7は、実施形態1の場合と同
様に混合器12と受波器4とから入力される2つの入力
信号について、それぞれ送信周波数F1 とF2 の信号成
分の分析を行うと共に、混合器12からの入力信号より
分析した送信周波数F1 とF2 の信号成分の位相を2つ
の基準位相として、この周波数F1 とF2 の基準位相に
対して、受波器4からの入力信号より分析した周波数F
1 の信号成分の位相差θ1 と周波数F2 の信号成分の位
相差θ2 とを検出する。図2の例では、混合器12の出
力する周波数F1 ,F2 の各信号成分の位相及び信号レ
ベルは、図1の配置例における#1受波器3の出力する
周波数F1 ,F2 の各信号成分のものと等しいから、実
施形態3においては、実施形態1で説明した(3),
(4),(5),(6)式をそのまま適用して水中位置
の計測を行うことができる。Embodiment 3 In the third embodiment, FIG.
The spectrum analyzer 7 analyzes the signal components of the transmission frequencies F 1 and F 2 with respect to the two input signals input from the mixer 12 and the receiver 4 in the same manner as in the first embodiment. The phases of the signal components of the transmission frequencies F 1 and F 2 analyzed from the input signal from the mixer 12 are set as two reference phases, and the input from the receiver 4 is applied to the reference phases of the frequencies F 1 and F 2. Frequency F analyzed from signal
Retardation of the retardation theta 1 and the signal component of the frequency F 2 of the first signal component is detected and theta 2. In the example of FIG. 2, the phase and signal level of each signal component of the frequency F 1, F 2 outputted from the mixer 12 is frequency F 1, F 2 outputted from the # 1 wave receiver 3 in the arrangement example of FIG. 1 Therefore, in the third embodiment, (3) and (3) described in the first embodiment
The underwater position can be measured by applying the equations (4), (5), and (6) as they are.
【0029】実施形態4.実施形態4においては、図2
のスペクトラムアナライザ7は、実施形態2の場合と同
様に混合器12と受波器4とから入力される2つの入力
信号について、それぞれ送信周波数F1 とF2 の信号成
分の分析を行うと共に、混合器12からの入力信号より
分析した送信周波数F1 とF2 の信号成分の位相及び信
号レベルを基準として、この周波数F1 とF2 の基準の
位相及び信号レベルに対して、受波器4からの入力信号
より分析した周波数F1 の信号成分の位相差θ1 及びレ
ベル差V1 と、周波数F2 の信号成分の位相差θ2 及び
レベル差V2 とを検出する。実施形態4においても、上
記と同一の理由により、実施形態2で説明した(7),
(8),(9),(10)式をそのまま適用して水中位
置の計測を行うことができる。実施形態3,4において
は、水中物体Aに受波器を設置せず、これに接続する伝
送ケーブル9も1本分削減され、防水構造を要する水中
機器の構成が簡単になるので、陸上機器が多少増加して
も装置全体としてのコスト低減の効果がある。Embodiment 4 FIG. In Embodiment 4, FIG.
The spectrum analyzer 7 analyzes the signal components of the transmission frequencies F 1 and F 2 with respect to the two input signals input from the mixer 12 and the receiver 4 in the same manner as in the second embodiment. based on the phase and signal level of the signal component of the transmission frequencies F 1 and F 2 was analyzed from the input signal from the mixer 12, the phase and signal level of the reference of the frequencies F 1 and F 2, receivers The phase difference θ 1 and level difference V 1 of the frequency F 1 signal component and the phase difference θ 2 and level difference V 2 of the frequency F 2 signal component which are analyzed from the input signal from No. 4 are detected. Also in the fourth embodiment, for the same reason as described above, (7) described in the second embodiment,
The underwater position can be measured by applying equations (8), (9) and (10) as they are. In the third and fourth embodiments, the receiver is not installed on the underwater object A, the number of transmission cables 9 connected to the receiver is reduced by one, and the configuration of the underwater equipment requiring a waterproof structure is simplified. However, even if the number increases, there is an effect of reducing the cost of the entire apparatus.
【0030】[0030]
【発明の効果】以上のように本発明によれば、水中を移
動する2つの物体間のスラントレンジを求めて物体の位
置を計測する水中位置計測装置において、一方の物体の
所定位置にそれぞれ複数の送波器及び単一の受波器が設
けられ、他方の物体の所定位置に単一の受波器が設けら
れ、複数の送信信号発生手段はそれぞれ異なる周波数の
連続波送信信号を発生して前記一方の物体に設けられた
複数の送波器にそれぞれ供給し、スペクトラムアナライ
ザは前記一方の物体に設けられた受波器と他方の物体に
設けられた受波器の出力信号をそれぞれ入力し、2つの
入力信号に含まれる複数の送信周波数成分を分析すると
共に、一方の物体の受波器出力から分析した複数の送信
周波数成分に対する他方の物体の受波器出力から分析し
た複数の送信周波数成分の位相差をそれぞれ検出し、演
算手段は前記スペクトラムアナライザの検出した複数の
送信周波数成分毎の位相差に基づき、一方の物体に設け
られた複数の送波器と他方の物体に設けられた受波器と
の間のスラントレンジをそれぞれ算出するようにしたの
で、周波数の異なる複数の送信周波数成分の連続的な同
時分析が可能となり、位置変動の激しい移動物体の位置
をリアルタイムで計測できるようになり、また受信信号
のS/Nがスペクトラムアナライザの分析周波数帯域幅
に反比例するので、各送信波を単一周波数の連続波とす
ることにより受信信号のS/Nを向上させることが可能
になるという効果が得られる。As described above, according to the present invention, in an underwater position measuring apparatus for measuring the position of an object by obtaining a slant range between two objects moving in water, a plurality of objects are provided at predetermined positions of one of the objects. Transmitter and a single receiver are provided, a single receiver is provided at a predetermined position of the other object, and a plurality of transmission signal generation means generate continuous wave transmission signals of different frequencies, respectively. To each of the plurality of transmitters provided on the one object, and the spectrum analyzer inputs the output signals of the receiver provided on the one object and the receiver provided on the other object, respectively. And analyzing a plurality of transmission frequency components included in the two input signals, and analyzing a plurality of transmission frequency components analyzed from the receiver output of the other object with respect to the plurality of transmission frequency components analyzed from the receiver output of one object. frequency The arithmetic means is provided for a plurality of transmitters provided for one object and for the other object based on the phase differences for each of the plurality of transmission frequency components detected by the spectrum analyzer. Since the slant range between the receiver and each receiver is calculated, continuous simultaneous analysis of multiple transmission frequency components with different frequencies is possible, enabling real-time measurement of the position of a moving object whose position fluctuates greatly. Since the S / N of the received signal is inversely proportional to the analysis frequency bandwidth of the spectrum analyzer, the S / N of the received signal can be improved by making each transmission wave a continuous wave of a single frequency. Is obtained.
【図1】本発明の実施形態1,2に係る水中位置計測装
置の構成を示す図である。FIG. 1 is a diagram showing a configuration of an underwater position measuring device according to Embodiments 1 and 2 of the present invention.
【図2】本発明の実施形態3,4に係る水中位置計測装
置の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of an underwater position measuring device according to Embodiments 3 and 4 of the present invention.
1 #1送波器 2 #2送波器 3 #1受波器 4 #2受波器 5 #1送信器 6 #2送信器 7 スペクトラムアナライザ 8 パーソナルコンピュータ DESCRIPTION OF SYMBOLS 1 # 1 wave transmitter 2 # 2 wave transmitter 3 # 1 wave receiver 4 # 2 wave receiver 5 # 1 transmitter 6 # 2 transmitter 7 Spectrum analyzer 8 Personal computer
フロントページの続き (56)参考文献 特開 平3−189581(JP,A) 特開 平1−295107(JP,A) 特開 昭61−104272(JP,A) 特開 昭60−243580(JP,A) 特公 平8−33441(JP,B2) 特公 平4−24671(JP,B2) (58)調査した分野(Int.Cl.6,DB名) G01S 3/80 - 3/86 G01S 5/18 - 5/30 G01S 7/52 - 7/64 G01S 15/00 - 15/96Continuation of the front page (56) References JP-A-3-189581 (JP, A) JP-A-1-295107 (JP, A) JP-A-61-104272 (JP, A) JP-A-60-243580 (JP, A) , A) JP 8-33441 (JP, B2) JP 4-24671 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) G01S 3/80-3/86 G01S 5/18-5/30 G01S 7/52-7/64 G01S 15/00-15/96
Claims (4)
レンジを求めて物体の位置を計測する水中位置計測装置
において、 一方の物体の所定位置にそれぞれ設けられた複数の送波
器及び単一の受波器と、 他方の物体の所定位置に設けられた単一の受波器と、 複数のそれぞれ異なる周波数の連続波送信信号を発生し
て前記一方の物体に設けられた複数の送波器にそれぞれ
供給する複数の送信信号発生手段と、 前記一方の物体に設けられた受波器と他方の物体に設け
られた受波器の出力信号をそれぞれ入力し、2つの入力
信号に含まれる複数の送信周波数成分を分析すると共
に、一方の物体の受波器出力から分析した複数の送信周
波数成分に対する他方の物体の受波器出力から分析した
複数の送信周波数成分の位相差をそれぞれ検出するスペ
クトラムアナライザと、 前記スペクトラムアナライザの検出した複数の送信周波
数成分毎の位相差に基づき、一方の物体に設けられた複
数の送波器と他方の物体に設けられた受波器との間のス
ラントレンジをそれぞれ算出する演算手段とを備えたこ
とを特徴とする水中位置計測装置。An underwater position measuring apparatus for measuring a position of an object by obtaining a slant range between two objects moving in water, comprising: a plurality of transmitters respectively provided at predetermined positions of one object; A single receiver provided at a predetermined position on the other object, and a plurality of transmissions provided on the one object by generating a plurality of continuous wave transmission signals of different frequencies. A plurality of transmission signal generating means for supplying the output signals of the receiver provided on the one object and the receiver provided on the other object, respectively, which are included in the two input signals. Analyzing a plurality of transmission frequency components and detecting a phase difference between a plurality of transmission frequency components analyzed from a receiver output of one object and a plurality of transmission frequency components analyzed from a receiver output of the other object, respectively. Spec And a slant between the plurality of transmitters provided on one object and the receiver provided on the other object based on a phase difference for each of a plurality of transmission frequency components detected by the spectrum analyzer. An underwater position measuring device comprising: a calculating means for calculating each range.
レンジを求めて物体の位置を計測する水中位置計測装置
において、 一方の物体の所定位置にそれぞれ設けられた複数の送波
器及び単一の受波器と、 他方の物体の所定位置に設けられた単一の受波器と、 複数のそれぞれ異なる周波数の連続波送信信号を発生し
て前記一方の物体に設けられた複数の送波器にそれぞれ
供給する複数の送信信号発生手段と、 前記一方の物体に設けられた受波器と他方の物体に設け
られた受波器の出力信号をそれぞれ入力し、2つの入力
信号に含まれる複数の送信周波数成分を分析すると共
に、一方の物体の受波器出力から分析した複数の送信周
波数成分に対する他方の物体の受波器出力から分析した
複数の送信周波数成分の位相差及びレベル差をそれぞれ
検出するスペクトラムアナライザと、 前記スペクトラムアナライザの検出した複数の送信周波
数成分毎の位相差及びレベル差に基づき、一方の物体に
設けられた複数の送波器と他方の物体に設けられた受波
器との間のスラントレンジをそれぞれ算出する演算手段
とを備えたことを特徴とする水中位置計測装置。2. An underwater position measuring device for measuring a position of an object by obtaining a slant range between two objects moving in water, comprising: a plurality of transmitters provided at predetermined positions of one of the objects; A single receiver provided at a predetermined position on the other object, and a plurality of transmissions provided on the one object by generating a plurality of continuous wave transmission signals of different frequencies. A plurality of transmission signal generating means for supplying the output signals of the receiver provided on the one object and the receiver provided on the other object, respectively, which are included in the two input signals. While analyzing a plurality of transmission frequency components, a phase difference and a level difference between a plurality of transmission frequency components analyzed from a receiver output of the other object and a plurality of transmission frequency components analyzed from a receiver output of one object are calculated. Check each A spectrum analyzer, based on a phase difference and a level difference for each of a plurality of transmission frequency components detected by the spectrum analyzer, a plurality of transmitters provided in one object and a receiver provided in the other object. An underwater position measuring device comprising: a calculating means for calculating a slant range between the two.
レンジを求めて物体の位置を計測する水中位置計測装置
において、 一方の物体の所定位置にそれぞれ設けられた複数の送波
器と、 他方の物体の所定位置に設けられた単一の受波器と、 複数のそれぞれ異なる周波数の連続波送信信号を発生し
て前記一方の物体に設けられた複数の送波器にそれぞれ
供給する複数の送信信号発生手段と、 前記複数の送信信号発生手段の出力信号をそれぞれ所定
時間遅延させて出力する複数の信号遅延手段と、 前記複数の信号遅延手段の出力信号を混合して出力する
信号混合手段と、 前記信号混合手段の出力信号と他方の物体に設けられた
受波器の出力信号をそれぞれ入力し、2つの入力信号に
含まれる複数の送信周波数成分を分析すると共に、信号
混合手段の出力から分析した複数の送信周波数成分に対
する他方の物体の受波器出力から分析した複数の送信周
波数成分の位相差をそれぞれ検出するスペクトラムアナ
ライザと、 前記スペクトラムアナライザの検出した複数の送信周波
数成分毎の位相差に基づき、一方の物体に設けられた複
数の送波器と他方の物体に設けられた受波器との間のス
ラントレンジをそれぞれ算出する演算手段とを備えたこ
とを特徴とする水中位置計測装置。3. An underwater position measuring device for measuring a position of an object by obtaining a slant range between two objects moving underwater, comprising: a plurality of transmitters provided at predetermined positions of one of the objects; A single receiver provided at a predetermined position of the object, a plurality of continuous wave transmission signals of a plurality of different frequencies to generate and supply to the plurality of transmitters provided on the one object respectively Transmission signal generation means, a plurality of signal delay means for respectively delaying output signals of the plurality of transmission signal generation means and outputting the same, and a signal mixing means for mixing and outputting output signals of the plurality of signal delay means And an output signal of the signal mixing means and an output signal of a receiver provided on the other object, respectively, analyzing a plurality of transmission frequency components included in the two input signals, A spectrum analyzer for detecting a phase difference between a plurality of transmission frequency components analyzed from a receiver output of the other object with respect to a plurality of transmission frequency components analyzed from the output of the stage; and a plurality of transmission frequency components detected by the spectrum analyzer. Based on each phase difference, comprising a plurality of transmitters provided on one object and a calculating means for calculating a slant range between the receiver provided on the other object, respectively. Underwater position measurement device.
レンジを求めて物体の位置を計測する水中位置計測装置
において、 一方の物体の所定位置にそれぞれ設けられた複数の送波
器と、 他方の物体の所定位置に設けられた単一の受波器と、 複数のそれぞれ異なる周波数の連続波送信信号を発生し
て前記一方の物体に設けられた複数の送波器にそれぞれ
供給する複数の送信信号発生手段と、 前記複数の送信信号発生手段の出力信号をそれぞれ減衰
させ所定レベルの信号として出力する複数の信号減衰手
段と、 前記複数の信号減衰手段の出力信号をそれぞれ所定時間
遅延させて出力する複数の信号遅延手段と、 前記複数の信号遅延手段の出力信号を混合して出力する
信号混合手段と、 前記信号混合手段の出力信号と他方の物体に設けられた
受波器の出力信号をそれぞれ入力し、2の入力信号に含
まれる複数の送信周波数成分を分析すると共に、信号混
合手段の出力から分析した複数の送信周波数成分に対す
る他方の物体の受波器出力から分析した複数の送信周波
数成分の位相差及びレベル差をそれぞれ検出するスペク
トラムアナライザと、 前記スペクトラムアナライザの検出した複数の送信周波
数成分毎の位相差及びレベル差に基づき、一方の物体に
設けられた複数の送波器と他方の物体に設けられた受波
器との間のスラントレンジをそれぞれ算出する演算手段
とを備えたことを特徴とする水中位置計測装置。4. An underwater position measuring device for measuring a position of an object by obtaining a slant range between two objects moving in water, comprising: a plurality of transmitters respectively provided at predetermined positions of one object; A single receiver provided at a predetermined position of the object, a plurality of continuous wave transmission signals of a plurality of different frequencies to generate and supply to the plurality of transmitters provided on the one object respectively Transmitting signal generating means, a plurality of signal attenuating means for attenuating output signals of the plurality of transmitting signal generating means and outputting the signals as a signal of a predetermined level, and delaying output signals of the plurality of signal attenuating means by a predetermined time, A plurality of signal delay means for outputting, a signal mixing means for mixing and outputting the output signals of the plurality of signal delay means, and an output signal of the signal mixing means and a receiver provided on the other object. Each of the output signals of the receiver is input, a plurality of transmission frequency components included in the two input signals are analyzed, and a plurality of transmission frequency components analyzed from the output of the signal mixing means are analyzed from the receiver output of the other object. A spectrum analyzer that detects a phase difference and a level difference between the plurality of transmission frequency components, and a plurality of spectrum analyzers provided on one object based on the phase difference and the level difference for each of the plurality of transmission frequency components detected by the spectrum analyzer. An underwater position measuring device comprising: a calculating means for calculating a slant range between a transmitter and a receiver provided on another object.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7316328A JP2787144B2 (en) | 1995-12-05 | 1995-12-05 | Underwater position measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7316328A JP2787144B2 (en) | 1995-12-05 | 1995-12-05 | Underwater position measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09159763A JPH09159763A (en) | 1997-06-20 |
JP2787144B2 true JP2787144B2 (en) | 1998-08-13 |
Family
ID=18075913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7316328A Expired - Lifetime JP2787144B2 (en) | 1995-12-05 | 1995-12-05 | Underwater position measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2787144B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102323580A (en) * | 2011-08-02 | 2012-01-18 | 天津理工大学 | Wireless ranging system using three-frequency continuous microwave and ranging method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2540596C (en) * | 2003-09-29 | 2011-11-15 | Ac Capital Management, Inc. | Sonar system and process |
-
1995
- 1995-12-05 JP JP7316328A patent/JP2787144B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102323580A (en) * | 2011-08-02 | 2012-01-18 | 天津理工大学 | Wireless ranging system using three-frequency continuous microwave and ranging method |
Also Published As
Publication number | Publication date |
---|---|
JPH09159763A (en) | 1997-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2585300C2 (en) | Method of estimating sound speed in water in acoustic network nodes | |
US11391863B2 (en) | Method of free-field broadband calibration of hydrophone sensitivity based on pink noise | |
CN102508204A (en) | Indoor noise source locating method based on beam forming and transfer path analysis | |
US11835544B2 (en) | Wind speed measuring device and wind speed measuring method | |
CA2101652C (en) | Measurement of the flow velocities of gases and/or of quantities that can be derived from same | |
CN109991590B (en) | System and method for testing low-frequency emission characteristic of transducer in pressure tank in limited space | |
RU2488133C1 (en) | Hydroacoustic complex to detect moving source of sound, to measure azimuthal angle to source and horizon of source of sound in shallow sea | |
RU2484492C1 (en) | Hydroacoustic system for measuring coordinates of sound source in shallow sea | |
RU2474836C1 (en) | Hydroacoustic system for measuring azimuthal angle to sound source in shallow sea | |
JP2787144B2 (en) | Underwater position measuring device | |
CN113466807B (en) | Radar critical intercepted distance test system | |
CN111796289B (en) | Ultrasonic accurate ranging and anti-interference method and system | |
JP4266810B2 (en) | Wind speed vector calculation device | |
JPH07167951A (en) | Radar device | |
JP2021175963A (en) | Wind direction/wind speed meter | |
JPH0990034A (en) | Doppler measuring instrument for measuring wind speed | |
JP3049260B2 (en) | Target signal detection method and device | |
JP3506604B2 (en) | Distance detecting device and distance detecting method for navigating object | |
RU2492498C2 (en) | Method of determining direction of hydroacoustic transponder beacon on horizontal and vertical angle | |
RU2739478C1 (en) | Method for processing a pseudo-noise signal in sonar | |
JPH03107783A (en) | Passive sonar device | |
RU2116632C1 (en) | Method of directed measurement of acoustic signals of sound source ( versions ) | |
CN114169141A (en) | Method for measuring three-dimensional vector parameter transfer function in underwater acoustic test pool | |
JPH07159546A (en) | Thunder position locating device | |
JPH11271446A (en) | Apparatus and method for detection of speed of cruising object |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |