JP2785908B2 - Method of manufacturing copper tube for superconductivity - Google Patents
Method of manufacturing copper tube for superconductivityInfo
- Publication number
- JP2785908B2 JP2785908B2 JP7134800A JP13480095A JP2785908B2 JP 2785908 B2 JP2785908 B2 JP 2785908B2 JP 7134800 A JP7134800 A JP 7134800A JP 13480095 A JP13480095 A JP 13480095A JP 2785908 B2 JP2785908 B2 JP 2785908B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- producing
- tube
- copper tube
- electrolytic solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Continuous Casting (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Electrolytic Production Of Metals (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は超電導用の銅管材の製
造方法に関するものである。
【0002】
【従来の技術】超電導線であるタンタルニオブ等を包含
する銅管材としては、RRR値(残留抵抗比)が4N
(99.99%)銅で200程度であり、また、特殊な
処理によりRRR値が500程度ものも商品化されてい
る。
【0003】
【発明が解決しようとする課題】本発明者等は、鋭意検
討の結果、上記RRR値のより高い銅管材の製造方法に
ついて、以下の発明をなした。
【0004】即ち、本発明は、(1)鋳型の一端は溶解
金属浴内に突出し、他端は冷却構造体に接した構造を有
する連続鋳造装置を用いて、銀が1ppm以下及びイオ
ウが0.5ppm以下の高純度銅よりなる溶湯を連続鋳
造して一方向凝固させてRRR値が6000以上の管材
とすることを特徴とする超電動用銅管材の製造方法、
(2)鋳型の一端は溶解金属浴内に突出し、他端は冷却
構造体に接した構造を有する連続鋳造装置を用いて、銀
が1ppm以下及びイオウが0.5ppm以下の高純度
銅よりなる溶湯を連続鋳造して単結晶化させてRRR値
が9000以上の管材とすることを特徴とする超電動用
銅管材の製造方法、(3)管材を鋳造後、引き抜き加工
及び/又は焼鈍する(1)又は(2)の製造方法、
(4)鋳造をパルス引き抜きにより行う上記(1)〜
(3)の製造方法、(5)鋳造速度が5〜150mm/
分である上記(1)〜(4)の製造方法、(6)前記溶
湯は、予め電気分解により得られた電気銅又は相当品を
鉱酸電解液中で電解して得た電気銅から成る上記(1)
〜(5)の製造方法、(7)電解液中の脱銀を陽極側か
ら排出された電解液と金属銅を接触させ、及び/又は塩
素イオンを用いる上記(6)の製造方法、(8)陽極と
陰極を隔膜で区分し、陽極側からの排出液を脱銀した
後、陰極室に循環給液する上記第(7)の製造方法、
(9)脱銀後電解液を孔径0.1μ〜2μの部材で濾過
する上記(8)の製造方法、(10)電解液の鉱酸とし
て硝酸を用いる上記(7)〜(9)の製造方法、(1
1)電解液として硫酸を用い、短周期PR電解を行う上
記(6)〜(10)の製造方法に関する。
【0005】
【作用】この発明は、銀が1ppm以下及びイオウが
0.5ppm以下の高純度銅よりなり望ましくは銀が
0.1ppm以下、イオウは0.01ppm以下であ
り、さらに望ましくは一方向凝固又は単結晶化されてい
る超電導用高純度銅管を製造するために、鋳型の一端は
溶湯金属浴内に突出し、他端は冷却構造体に接した構造
を有する連続鋳造装置を用いて、銀が1ppm以下及び
イオウが0.5ppm以下である高純度銅よりなる溶湯
を連続鋳造して鋳造体を得、これを必要に応じて伸線加
工及び/又は焼鈍する方法である。
【0006】この方法では、鋳型の一端が溶融高純度銅
浴内に突出させた鋳型を用いることりより、別の加熱手
段を用いる必要がなくなり、過剰加熱をすることなく、
溶湯の入口側近くで凝固面を保持できる。又一方向凝固
又は単結晶化を容易に可能とし、鋳造速度を遅くすると
単結晶も製造することができる。
【0007】鋳型の他端は冷却構造体に接しているた
め、鋳型出口部で溶融金属は全く存在しない。これによ
りブレークアウトのない連続鋳造を可能とする。
【0008】さらに、ブレークアウトがなく、結晶粒の
大きな鋳造体を得るために、上記鋳造をパルス引き抜き
で行なうと、安定な操業及び安定な品質の製品を得るこ
とができる。
【0009】パルス引き抜きとは、一定時間引き抜きを
停止し、その後引き抜きを行なう方法を繰り返すもので
ある。例えば、2〜10秒間で引き抜きを停止し、0.
1〜1秒間で引き抜くという断続的引き抜き方法であ
る。又、パルス引き抜きを用いれば鋳型が後出の図5の
ような形の溶融金属炉内に一部突出している場合でも一
方向凝固又は単結晶化されたものが得られる。
【0010】好適な鋳造速度は5〜150mm/分で、
特に好ましくは10〜70mm/分である。粒界の極め
て少ない銅材が得られるからである。鋳造速度とは、引
き抜き時間で引き抜き長さを割った値であるが、パルス
引き抜きを採用する場合には停止時間と引き抜き時間の
合計時間で引き抜き長さを割った値である。
【0011】上記の連続鋳造において、不活性ガス又は
中性ガスを溶融金属の凝固界面近傍に吹き込むことによ
り凝固界面近傍の温度勾配を強くでき、一方向凝固が好
ましく行われる。
【0012】本発明の連続鋳造で用いられる溶湯は、予
め電気分解により得られた電気銅又は相当品を後述の如
き電気分解液中で電解して得られた高純度電気銅より成
る。
【0013】以上の連続鋳造をより好ましく行なうため
には、鋳型の材料として熱良導体の耐火物を用いるのが
好ましい。例えば窒化珪素、炭化珪素、黒鉛等である。
黒鉛を用いた場合には、製品の酸素濃度が3ppm前後
に低下する。
【0014】この発明に用いる鋳造装置は、溶解炉又は
保持炉の側壁に鋳型を設けたもの、或いは溶解炉又は保
持炉に対して垂直方向に鋳型を設けたもののいずれでも
よい。
【0015】この発明における製品の大きさとしては、
あまり大径のものは適さない。これは鋳型の温度が溶融
金属或いは半固体金属に伝わる範囲の製品大きさである
ことが、一方向凝固或いは単結晶化を可能にするからで
ある。
【0016】上記連続鋳造の溶湯に用いる高純度銅は、
予め電気分解により得られた電気銅又は相当品を鉱酸電
解液中で電解して得られた電気銅を用いる。電解液の鉱
酸としては硝酸もしくは硫酸を用いる。硝酸の電解浴の
場合は、製品中にイオウが混入しにくいが、硫酸電解浴
の場合はイオウが混入しやすいので、例えば短周期PR
電解で行うことが好ましい。電着時の電流密度は、0.
2〜10A/dm2 、保持時間10μsec〜2000
msec、電着銅の溶解時の電流密度は0.05〜5A
/dm2 、保持時間10μsec〜1000msecと
するのが好ましい。より好ましくは、電着時の電流密度
は1〜6A/dm2 、保持時間は0.1〜60mse
c、電着銅の溶解時の電流密度は0.2〜3A/dm
2 、保持時間は0.1〜60msecである。
【0017】硝酸電解浴で処理する方法の場合、硝酸の
濃度はpH:3以下に保持されるよう調整される。好ま
しくはpH:1.5〜2.0に調整される。
【0018】又、電解時は、陽極と陰極を隔膜で区分す
ることが好ましい。隔膜の主目的は、陽極の溶解によっ
て生じる不純物と陰極との隔離である。上記不純物は沈
降する固形物、懸濁する固形物及び溶存物とに大別され
る。隔膜材としては、イオン交換膜、布地、セラミック
等があるが、耐酸性の布地例えばテビロン、テトロン等
の化織布が好ましい。
【0019】陽極側からの排出液は金属銅と接触させる
こと及び/又は塩酸等の塩素イオンを存在させることに
よって液中の銀の除去を行なう。又、必要に応じて排出
液を活性炭槽に通過させるとよい。又、脱銀後、液を孔
径0.1〜2μの濾材で濾過することによって不純物が
より好ましく除去できる。
【0020】このような再電解処理を行うことによって
得られた、銀が1ppm以下及びイオウが0.5ppm
以下、又酸素含量も6ppm前後の高純度銅を前記鋳造
法によって鋳造したものを必要に応じて更に伸線加工及
び/又は焼鈍すれば、超電導用の銅管材としての優れた
特性が得られる。
【0021】
【発明の効果】以上説明したように、この発明における
超電導用の銅管材は銀が1ppm以下及びイオウが0.
5ppm以下の高純度銅から成り、これは例えば図1に
示す如き装置により、電気銅を電解処理することによっ
て精製され、上述の如き連続鋳造装置を用いて鋳造する
ことにより得られる。通常の多結晶であると、RRR値
は4000であり、一方向凝固であると6000、単結
晶であると9000前後と極めて高い値を示す。この発
明を図面を参照して以下実施例により詳細に説明する。
【0022】
【実施例】図1において、1は電解槽、2は電気銅より
なる陽極、3は陰極で、硝酸を主とする電解液5中に浸
漬されている。陰極3は隔膜4で囲まれている。6は撹
拌槽で、電解槽1よりくみ出された電解液は撹拌槽6に
入り、必要により或程度の新液が補給されて、濾過槽7
に入る。濾過槽7では塩酸等の塩素イオン存在下で電解
液と金属銅とを接触させて液中の銀の除去を行う。8は
活性炭槽である。
【0023】具体的な一例を示すと、電気銅(成分品
位、Ag:13.9ppm、S:11.0ppm、A
s:0.5ppm、Sb:0.3ppm、Pb:0.7
ppm、O:10ppm)を陽極2とし、Tiを陰極3
として、同陰極3の周囲にテトロン(TR84501、
商品名、北村製布製)を配した電解液を陽極室と陰極室
とに区分し、陰極3を隔離する隔膜4とした。電解液5
の流れは、陽極室より排出された不純電解液が、脱銀処
理され引き続き陰極室に給液されるようにした。脱銀処
理は電解液中に塩素濃度を塩酸添加で1000±10m
g/リットルとし、濾過槽7中で金属銅に電解液を4.
0時間接触させて行った。脱銀処理後液を孔径0.2μ
のミリポアフィルタで濾過し、陰極室に給液する方法を
とった。陰極表面積当たりの給液量は1.65cm/時
間とした。電解浴は銅50g/リットル硝酸浴とし、p
Hは1.7に維持した。電解浴温は22〜27℃とし
た。電流密度は1.0A/dm2 とし、陽極2、陰極3
間距離は40mmとした。連続10日間通電後陰極3を
引き上げて、Ti板から電着銅を剥がし、洗浄乾燥を行
い、目的の高純度銅を得た。この高純度銅はイオウ:
0.05ppm以下、銀:0.3ppm、Fe:0.0
5ppm以下、O:6ppm等極めて高純度のものであ
った。
【0024】この高純度銅を図2に示す鋳造装置によ
り、一方向凝固を行った。図2中9は溶解炉で、底部側
壁にグラファイト鋳型10を一端が溶融金属浴11内に
突出するように設け、又グラファイト鋳型10の他端に
は冷却構造体12を設けてある。
【0025】まず、グラファイト鋳型10に設けた直径
11mmの孔内に外径10.6mmの純銅棒13を端部
が溶融金属供給側より1cm引込むように挿入してお
く。溶解炉9内には前述の高純度銅を溶融して溶融金属
浴11として入れ、1250℃に昇温して保持する。冷
却構造体12に8リットル/分の水を通じ高純度銅の凝
固位置を鋳型内の溶融金属供給側に設定した。そして、
凝固した管を連続的に0.5秒で1.5mm引き抜き、
その後4秒停止とするパルス引き抜きを行った。
【0026】この結果得られた高純度銅の管(イオウ:
0.05ppm以下、銀:0.3ppm以下、O:3p
pm)は、結晶粒界のほとんどない単結晶に近いもので
あった。これにTa3 Nb線を詰め、引き抜き加工し超
電導体を得た。銅管のRRR値は9000と高いもので
あった。
【0027】図3は連続鋳造装置の他の例で、垂直方向
に引き出す形式のものであるが、グラファイト鋳型10
の途中に不活性ガス導入管15を開口させ、連続鋳造過
程において、不活性ガスを導入し、該不活性ガスにて鋳
造管の表面を覆いながら溶融金属浴中へ噴出させた。そ
して、溶融金属浴を撹拌し、温度及び不純物成分のバラ
ツキをなくす働きをさせた。なお、不活性ガスが溶融金
属浴側のみに放出されるような鋳造管の出口側にガスシ
ール16を施した。凝固した管を20mm/分でピンチ
ロールにより連続的に引き抜いた。不活性ガスの供給は
図4に示すようにグラファイト鋳型10内の溶湯の凝固
界面に行ってもよい。
【0028】この結果得られた高純度銅管は一方向凝固
のものであり、結晶粒径が2〜5mmと極めて大きく表
面が滑らかなものであった。このようにして得られた銅
管に、Ta3 Nb線を詰め、引き抜き加工し、超電導体
を製造した。銅管のRRR値は6000と高いものであ
った。
【0029】図5は連続鋳造装置の他の例を示すもの
で、鋳型10が溶融金属浴11内に一部突出している形
式のものであり、この場合には前述のパルス引き抜きが
特に有効である。なお、図5中17は外気温の影響を少
なくするために設けた保温用発熱体である。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a copper tube for superconductivity. 2. Description of the Related Art Copper tubing containing superconducting wire such as tantalum niobium has an RRR value (residual resistance ratio) of 4N.
(99.99%) about 200 for copper, and an RRR value of about 500 has been commercialized by special treatment. [0003] As a result of intensive studies, the present inventors have made the following invention on a method of manufacturing a copper pipe having a higher RRR value. That is, the present invention provides (1) a continuous casting apparatus having a structure in which one end of a mold protrudes into a molten metal bath and the other end is in contact with a cooling structure. A method for producing a copper tube for super electric use, characterized in that a molten metal made of high-purity copper of 0.5 ppm or less is continuously cast and solidified in one direction to obtain a tube having an RRR value of 6000 or more;
(2) One end of the mold protrudes into the molten metal bath, and the other end is made of high-purity copper containing 1 ppm or less of silver and 0.5 ppm or less of sulfur by using a continuous casting apparatus having a structure in contact with a cooling structure. A method for producing a copper tube for super electric motor, characterized in that a molten metal is continuously cast and single-crystallized to obtain a tube having an RRR value of 9000 or more. (3) After the tube is cast, drawing and / or annealing is performed ( 1) or the production method of (2),
(4) The above-mentioned (1) to which casting is performed by pulse drawing
(3) Production method, (5) Casting speed is 5 to 150 mm /
(6) The molten metal is made of electrolytic copper previously obtained by electrolysis or electrolytic copper obtained by electrolyzing an equivalent product in a mineral acid electrolytic solution. The above (1)
To (5), (7) the method of (6) above, wherein the desilvering of the electrolytic solution is brought into contact with the electrolytic solution discharged from the anode side and metallic copper, and / or chloride ion is used, (8) (7) The method according to the above (7), wherein the anode and the cathode are separated by a diaphragm, and the effluent from the anode is desilvered and then circulated and supplied to the cathode chamber.
(9) The method according to (8), wherein the electrolyte after desilvering is filtered through a member having a pore size of 0.1 to 2 μ, and (10) the method according to (7) to (9), wherein nitric acid is used as the mineral acid in the electrolyte. Method, (1
1) The method according to any one of the above (6) to (10), wherein short-period PR electrolysis is performed using sulfuric acid as an electrolyte. The present invention comprises high-purity copper containing 1 ppm or less of silver and 0.5 ppm or less of sulfur, preferably 0.1 ppm or less of silver and 0.01 ppm or less of sulfur, and more preferably unidirectionally. In order to produce a solidified or single-crystallized superconducting high-purity copper tube, one end of the mold protrudes into the molten metal bath, and the other end uses a continuous casting device having a structure in contact with the cooling structure, In this method, a molten metal made of high-purity copper containing 1 ppm or less of silver and 0.5 ppm or less of sulfur is continuously cast to obtain a cast body, which is drawn and / or annealed as necessary. [0006] In this method, since one end of the mold is protruded into the molten high-purity copper bath, it is not necessary to use another heating means.
A solidified surface can be maintained near the molten metal inlet side. In addition, unidirectional solidification or single crystallization can be easily performed, and a single crystal can be produced by reducing the casting speed. Since the other end of the mold is in contact with the cooling structure, there is no molten metal at the exit of the mold. This enables continuous casting without breakout. Further, if the casting is performed by pulse drawing in order to obtain a cast having large crystal grains without breakout, a product of stable operation and stable quality can be obtained. The pulse extraction is a method in which the extraction is stopped for a certain period of time and then the extraction is repeated. For example, the drawing is stopped in 2 to 10 seconds, and 0.
This is an intermittent drawing method in which the drawing is performed in 1 to 1 second. When pulse drawing is used, a unidirectionally solidified or single crystallized mold can be obtained even when the mold partially projects into a molten metal furnace having a shape as shown in FIG. 5 described later. The preferred casting speed is 5 to 150 mm / min.
Particularly preferably, it is 10 to 70 mm / min. This is because a copper material having very few grain boundaries can be obtained. The casting speed is a value obtained by dividing the drawing length by the drawing time. In the case of employing pulse drawing, the casting speed is a value obtained by dividing the drawing length by the total time of the stopping time and the drawing time. In the continuous casting described above, by blowing an inert gas or a neutral gas into the vicinity of the solidification interface of the molten metal, the temperature gradient near the solidification interface can be increased, and unidirectional solidification is preferably performed. The molten metal used in the continuous casting of the present invention is made of electrolytic copper obtained by electrolysis or a high-purity electrolytic copper obtained by electrolyzing an equivalent product in an electrolytic solution as described below. In order to more preferably perform the above continuous casting, it is preferable to use a refractory of a good conductor as a material of the mold. For example, silicon nitride, silicon carbide, graphite, or the like is used.
When graphite is used, the oxygen concentration of the product decreases to around 3 ppm. [0014] The casting apparatus used in the present invention may be either a mold provided on a side wall of a melting furnace or a holding furnace or a mold provided vertically in a melting furnace or a holding furnace. The size of the product in the present invention is as follows:
Large diameters are not suitable. This is because a product size in a range in which the temperature of the mold is transmitted to the molten metal or semi-solid metal enables unidirectional solidification or single crystallization. The high-purity copper used for the continuous casting melt is
Electrocopper obtained by electrolysis of electrolytic copper or an equivalent product in a mineral acid electrolytic solution in advance is used. Nitric acid or sulfuric acid is used as the mineral acid of the electrolytic solution. In the case of an electrolytic bath of nitric acid, sulfur is hardly mixed into the product, but in the case of a sulfuric acid electrolytic bath, sulfur is easily mixed, so that, for example, a short cycle PR is used.
It is preferable to carry out by electrolysis. The current density during electrodeposition is 0.
2 to 10 A / dm 2 , retention time 10 μsec to 2000
msec, current density during melting of electrodeposited copper is 0.05-5A
/ Dm 2 , and the holding time is preferably 10 μsec to 1000 msec. More preferably, the current density at the time of electrodeposition is 1 to 6 A / dm 2 , and the holding time is 0.1 to 60 msec.
c, current density at the time of melting of electrodeposited copper is 0.2 to 3 A / dm
2. The holding time is 0.1 to 60 msec. In the case of the treatment using a nitric acid electrolytic bath, the concentration of nitric acid is adjusted so as to be maintained at pH: 3 or less. Preferably, the pH is adjusted to 1.5 to 2.0. During electrolysis, it is preferable that the anode and the cathode are separated by a diaphragm. The main purpose of the diaphragm is to isolate the cathode from impurities caused by dissolution of the anode. The impurities are roughly classified into sedimented solids, suspended solids and dissolved substances. Examples of the membrane material include an ion-exchange membrane, a cloth, and a ceramic, and an acid-resistant cloth such as a woven cloth such as Tevilon or Tetron is preferable. The effluent from the anode side is brought into contact with metallic copper and / or the presence of chloride ions such as hydrochloric acid to remove silver from the liquor. Further, the discharged liquid may be passed through an activated carbon tank as needed. After desilvering, impurities can be more preferably removed by filtering the solution with a filter medium having a pore size of 0.1 to 2 μm. The silver obtained by performing such a re-electrolysis treatment is 1 ppm or less and sulfur is 0.5 ppm or less.
In the following, if high-purity copper having an oxygen content of about 6 ppm is cast by the above-mentioned casting method, if necessary, it is further drawn and / or annealed to obtain excellent properties as a copper tube material for superconductivity. As described above, the copper tube for superconductivity in the present invention has a silver content of 1 ppm or less and a sulfur content of 0.1 ppm.
It is made of high-purity copper of 5 ppm or less, which is refined by electrolytic treatment of electrolytic copper using, for example, an apparatus as shown in FIG. 1 and obtained by casting using the continuous casting apparatus as described above. The RRR value is 4000 for a normal polycrystal, 6000 for unidirectional solidification, and around 9000 for a single crystal. The present invention will be described in detail below with reference to the drawings. In FIG. 1, 1 is an electrolytic cell, 2 is an anode made of electrolytic copper, 3 is a cathode, and is immersed in an electrolytic solution 5 mainly containing nitric acid. The cathode 3 is surrounded by a diaphragm 4. Reference numeral 6 denotes a stirring tank, and the electrolytic solution pumped out of the electrolytic tank 1 enters the stirring tank 6, where a certain amount of new liquid is supplied if necessary.
to go into. In the filtration tank 7, silver is removed from the solution by bringing the electrolytic solution into contact with metallic copper in the presence of chloride ions such as hydrochloric acid. 8 is an activated carbon tank. As a specific example, electrolytic copper (component grade, Ag: 13.9 ppm, S: 11.0 ppm, A
s: 0.5 ppm, Sb: 0.3 ppm, Pb: 0.7
ppm, O: 10 ppm) as the anode 2 and Ti as the cathode 3
Around the cathode 3 tetron (TR84501,
The electrolyte solution (trade name, manufactured by Kitamura Seisakusho) was divided into an anode chamber and a cathode chamber, and a diaphragm 4 for isolating the cathode 3 was formed. Electrolyte 5
The impure electrolyte discharged from the anode chamber was desilvered and continuously supplied to the cathode chamber. Desilvering treatment is performed by adding chlorine concentration to the electrolyte 1000 ± 10m by adding hydrochloric acid.
g / liter, and the electrolytic solution was added to the metallic copper in the filtration tank 7.
The contact was performed for 0 hour. After the desilvering treatment, the solution is
And the solution was supplied to the cathode chamber. The amount of liquid supply per cathode surface area was 1.65 cm / hour. The electrolytic bath is a copper 50g / liter nitric acid bath.
H was maintained at 1.7. The electrolytic bath temperature was 22 to 27 ° C. The current density was 1.0 A / dm 2 , anode 2 and cathode 3
The distance between them was 40 mm. After energizing for 10 consecutive days, the cathode 3 was pulled up, the electrodeposited copper was peeled off from the Ti plate, washed and dried to obtain the desired high-purity copper. This high purity copper is sulfur:
0.05 ppm or less, silver: 0.3 ppm, Fe: 0.0
It was extremely high in purity, such as 5 ppm or less and O: 6 ppm. This high-purity copper was unidirectionally solidified by a casting apparatus shown in FIG. In FIG. 2, reference numeral 9 denotes a melting furnace, in which a graphite mold 10 is provided on the bottom side wall so that one end protrudes into the molten metal bath 11, and a cooling structure 12 is provided on the other end of the graphite mold 10. First, a pure copper rod 13 having an outer diameter of 10.6 mm is inserted into a hole having a diameter of 11 mm provided in the graphite mold 10 so that an end thereof is drawn in by 1 cm from a molten metal supply side. The above-mentioned high-purity copper is melted and put into a melting metal bath 11 in the melting furnace 9, and the temperature is raised to 1250 ° C. and held. The solidification position of the high-purity copper was set at the molten metal supply side in the mold by passing 8 liters / minute of water through the cooling structure 12. And
The solidified tube is continuously withdrawn 1.5 mm in 0.5 seconds,
Thereafter, pulse extraction was performed to stop for 4 seconds. The resulting tube of high purity copper (sulfur:
0.05 ppm or less, silver: 0.3 ppm or less, O: 3p
pm) was close to a single crystal having almost no crystal grain boundaries. This was filled with a Ta 3 Nb wire and drawn to obtain a superconductor. The RRR value of the copper tube was as high as 9000. FIG. 3 shows another example of a continuous casting apparatus which is of a type which is drawn out in a vertical direction.
During the continuous casting process, an inert gas was introduced, and an inert gas was introduced into the molten metal bath while covering the surface of the casting tube with the inert gas. Then, the molten metal bath was agitated, and worked to eliminate variations in temperature and impurity components. In addition, the gas seal 16 was provided on the outlet side of the casting tube such that the inert gas was released only to the molten metal bath side. The solidified tube was continuously pulled out with a pinch roll at 20 mm / min. The supply of the inert gas may be performed at the solidification interface of the molten metal in the graphite mold 10 as shown in FIG. The resulting high-purity copper tube was unidirectionally solidified and had a very large crystal grain size of 2 to 5 mm and a smooth surface. The thus obtained copper tube was filled with a Ta 3 Nb wire and subjected to drawing to produce a superconductor. The RRR value of the copper tube was as high as 6000. FIG. 5 shows another example of a continuous casting apparatus in which a mold 10 partially projects into a molten metal bath 11, in which case the above-described pulse drawing is particularly effective. is there. In addition, 17 in FIG. 5 is a heating element for heat retention provided in order to reduce the influence of the outside air temperature.
【図面の簡単な説明】
【図1】この発明の出発原料である高純度電解銅を得る
装置の一例を示す説明図である。
【図2】この発明に用いる連続鋳造装置の一例を示す説
明図である。
【図3】連続鋳造装置の例を示す説明図である。
【図4】連続鋳造装置の例を示す説明図である。
【図5】連続鋳造装置の例を示す説明図である。
【符号の説明】
1 電解槽
2 陽極
3 陰極
4 隔膜
5 電解液
6 撹拌槽
7 濾過槽
10 グラファイト鋳型
11 溶融金属浴
15 不活性ガス導入管
16 ガスシールBRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view showing an example of an apparatus for obtaining high-purity electrolytic copper as a starting material of the present invention. FIG. 2 is an explanatory view showing an example of a continuous casting apparatus used in the present invention. FIG. 3 is an explanatory view showing an example of a continuous casting apparatus. FIG. 4 is an explanatory view showing an example of a continuous casting apparatus. FIG. 5 is an explanatory view showing an example of a continuous casting apparatus. [Description of Signs] 1 electrolytic cell 2 anode 3 cathode 4 diaphragm 5 electrolytic solution 6 stirring tank 7 filtration tank 10 graphite mold 11 molten metal bath 15 inert gas introduction pipe 16 gas seal
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C25C 1/12 ZAA C25C 1/12 ZAA C30B 21/02 ZAA C30B 21/02 ZAA (56)参考文献 特開 昭61−230209(JP,A) 特開 昭61−169149(JP,A) 特開 昭61−176454(JP,A) 特開 昭62−107844(JP,A) 特開 昭62−70589(JP,A) 特開 昭62−67188(JP,A) 特公 昭38−22111(JP,B1) 特公 昭55−30599(JP,B2)──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C25C 1/12 ZAA C25C 1/12 ZAA C30B 21/02 ZAA C30B 21/02 ZAA (56) References JP-A-61-230209 ( JP, A) JP-A-61-169149 (JP, A) JP-A-61-176454 (JP, A) JP-A-62-107844 (JP, A) JP-A-62-70589 (JP, A) 62-67188 (JP, A) JP-B 38-22111 (JP, B1) JP-B 55-30599 (JP, B2)
Claims (1)
造体に接した構造を有する連続鋳造装置を用いて、銀が
1ppm以下及びイオウが0.5ppm以下の高純度銅
よりなる溶湯を連続鋳造して一方向凝固させてRRR値
が6000以上の管材とすることを特徴とする超電動用
銅管材の製造方法。 2.管材を鋳造後、引き抜き加工及び/又は焼鈍するこ
とを特徴とする請求項1記載の超電導用銅管材の製造方
法。 3.鋳造をパルス引き抜きにより行うことを特徴とする
請求項1又は2記載の超電導用銅管材の製造方法。 4.鋳造速度が5〜150mm/分であることを特徴と
する請求項1から3までの何れか1項記載の超電導用銅
管材の製造方法。 5.前記溶湯は、予め電気分解により得られた電気銅又
は相当品を鉱酸電解液中で電解して得た電気銅から成る
ことを特徴とする請求項1から4までの何れか1項記載
の超電導用銅管材の製造方法。 6.電解液中の脱銀を陽極側から排出された電解液と金
属銅を接触させ、及び/又は塩素イオンを用いることに
より行うことを特徴とする請求項5記載の超電導用銅管
材の製造方法。 7.陽極と陰極を隔膜で区分し、陽極側からの排出液を
脱銀した後、陰極室に循環給液することを特徴とする請
求項6記載の超電導用銅管材の製造方法。 8.脱銀後電解液を孔径0.1μ〜2μの部材で濾過す
ることを特徴とする請求項7記載の超電導用銅管材の製
造方法。 9.電解液の鉱酸として硝酸を用いることを特徴とする
請求項6から8までの何れか1項記載の超電導用銅管材
の製造方法。 10.電解液として硫酸を用い、短周期PR電解を行う
ことを特徴とする請求項5から9までの何れか1項記載
の超電導用銅管材の製造方法。 11.鋳型の一端は溶解金属浴内に突出し、他端は冷却
構造体に接した構造を有する連続鋳造装置を用いて、銀
が1ppm以下及びイオウが0.5ppm以下の高純度
銅よりなる溶湯を連続鋳造して単結晶化させてRRR値
が9000以上の管材とすることを特徴とする超電動用
銅管材の製造方法。 12.管材を鋳造後、引き抜き加工及び/又は焼鈍する
ことを特徴とする請求項11記載の超電導用銅管材の製
造方法。 13.鋳造をパルス引き抜きにより行うことを特徴とす
る請求項11又は12記載の超電導用銅管材の製造方
法。 14.鋳造速度が5〜150mm/分であることを特徴
とする請求項11から13までの何れか1項記載の超電
導用銅管材の製造方法。 15.前記溶湯は、予め電気分解により得られた電気銅
又は相当品を鉱酸電解液中で電解して得た電気銅から成
ることを特徴とする請求項11から14までの何れか1
項記載の超電導用銅管材の製造方法。 16.電解液中の脱銀を陽極側から排出された電解液と
金属銅を接触させ、及び/又は塩素イオンを用いること
により行うことを特徴とする請求項15記載の超電導用
銅管材の製造方法。 17.陽極と陰極を隔膜で区分し、陽極側からの排出液
を脱銀した後、陰極室に循環給液することを特徴とする
請求項16記載の超電導用銅管材の製造方法。 18.脱銀後電解液を孔径0.1μ〜2μの部材で濾過
することを特徴とする請求項17記載の超電導用銅管材
の製造方法。 19.電解液の鉱酸として硝酸を用いることを特徴とす
る請求項16から18までの何れか1項記載の超電導用
銅管材の製造方法。(57) [Claims] One end of the mold protrudes into the molten metal bath, and the other end uses a continuous casting device having a structure in contact with the cooling structure to continuously feed a molten metal of high-purity copper with silver of 1 ppm or less and sulfur of 0.5 ppm or less. A method for producing a copper tube for super electric motor, wherein the tube is cast and unidirectionally solidified to obtain a tube having an RRR value of 6000 or more. 2. 2. The method for producing a copper tube for superconductivity according to claim 1, wherein the tube is drawn and / or annealed after casting. 3. 3. The method according to claim 1, wherein the casting is performed by pulse drawing. 4. The method for producing a copper tube for superconductivity according to any one of claims 1 to 3, wherein the casting speed is 5 to 150 mm / min. 5. 5. The method according to claim 1, wherein the molten metal is made of electrolytic copper obtained by electrolysis of an electrolytic copper or an equivalent thereof in a mineral acid electrolytic solution in advance. 6. Manufacturing method of copper tube for superconductivity. 6. The method for producing a copper tube for superconductivity according to claim 5, wherein desilvering in the electrolytic solution is performed by bringing the electrolytic solution discharged from the anode side into contact with metallic copper and / or using chlorine ions. 7. 7. The method for producing a copper tube for superconducting material according to claim 6, wherein the anode and the cathode are separated by a diaphragm, and the effluent from the anode is desilvered and then circulated and supplied to the cathode chamber. 8. 8. The method for producing a copper tube for superconductivity according to claim 7, wherein the electrolytic solution after desilvering is filtered through a member having a pore size of 0.1 to 2 [mu] m. 9. The method for producing a copper tube for superconductivity according to any one of claims 6 to 8, wherein nitric acid is used as a mineral acid of the electrolytic solution. 10. The method for producing a copper tube for superconductivity according to any one of claims 5 to 9, wherein short-period PR electrolysis is performed using sulfuric acid as an electrolytic solution. 11. One end of the mold protrudes into the molten metal bath, and the other end uses a continuous casting device having a structure in contact with the cooling structure to continuously feed a molten metal of high-purity copper with silver of 1 ppm or less and sulfur of 0.5 ppm or less. A method for producing a copper tube for super electric motor, wherein the tube is cast and single-crystallized to obtain a tube having an RRR value of 9000 or more. 12. The method for producing a copper tube for superconductivity according to claim 11, wherein the tube is cast and / or annealed after casting. 13. 13. The method for producing a superconducting copper tube according to claim 11, wherein the casting is performed by pulse drawing. 14. The method for producing a copper tube for superconductivity according to any one of claims 11 to 13, wherein the casting speed is 5 to 150 mm / min. 15. 15. The method according to claim 11, wherein the molten metal comprises electrolytic copper obtained by electrolysis in advance or electrolytic copper obtained by electrolyzing an equivalent product in a mineral acid electrolytic solution.
The method for producing a superconducting copper pipe material according to the above item. 16. The method for producing a copper tube for superconductivity according to claim 15, wherein desilvering in the electrolytic solution is performed by bringing the electrolytic solution discharged from the anode side into contact with metallic copper and / or using chlorine ions. 17. 17. The method for producing a copper tube for superconducting material according to claim 16, wherein the anode and the cathode are separated by a diaphragm, and the effluent from the anode is desilvered and circulated and supplied to the cathode chamber. 18. 18. The method for producing a copper tube for superconductivity according to claim 17, wherein the electrolytic solution after desilvering is filtered through a member having a pore size of 0.1 to 2 [mu] m. 19. The method for producing a copper tube for superconductivity according to any one of claims 16 to 18, wherein nitric acid is used as a mineral acid of the electrolytic solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7134800A JP2785908B2 (en) | 1995-05-08 | 1995-05-08 | Method of manufacturing copper tube for superconductivity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7134800A JP2785908B2 (en) | 1995-05-08 | 1995-05-08 | Method of manufacturing copper tube for superconductivity |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62211287A Division JPH07107181B2 (en) | 1987-08-27 | 1987-08-27 | Copper material for superconductivity |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08108251A JPH08108251A (en) | 1996-04-30 |
JP2785908B2 true JP2785908B2 (en) | 1998-08-13 |
Family
ID=15136829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7134800A Expired - Lifetime JP2785908B2 (en) | 1995-05-08 | 1995-05-08 | Method of manufacturing copper tube for superconductivity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2785908B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8192596B2 (en) | 2004-01-29 | 2012-06-05 | Jx Nippon Mining & Metals Corporation | Ultrahigh-purity copper and process for producing the same |
KR101006035B1 (en) * | 2005-06-15 | 2011-01-06 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | Ultrahigh-purity copper and process for producing the same, and bonding wire comprising ultrahigh-purity copper |
WO2010038642A1 (en) | 2008-09-30 | 2010-04-08 | 日鉱金属株式会社 | High-purity copper or high-purity copper alloy sputtering target, process for manufacturing the sputtering target, and high-purity copper or high-purity copper alloy sputtered film |
KR101058765B1 (en) * | 2008-09-30 | 2011-08-24 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | Manufacturing method of high purity copper by high purity copper and electrolysis |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4243071A (en) * | 1978-08-23 | 1981-01-06 | Altex Scientific, Inc. | Sample injection valve |
JPS61169149A (en) * | 1985-01-22 | 1986-07-30 | Nippon Mining Co Ltd | Continuous casting method |
JPS61176454A (en) * | 1985-01-31 | 1986-08-08 | Nippon Mining Co Ltd | Continuous casting device |
JP2547193B2 (en) * | 1985-04-05 | 1996-10-23 | 古河電気工業株式会社 | Nb-Ti alloy superconducting wire |
JPS6267188A (en) * | 1985-09-20 | 1987-03-26 | Nippon Mining Co Ltd | Method for removing ag from copper electrolytic solution |
JPS6270589A (en) * | 1985-09-25 | 1987-04-01 | Nippon Mining Co Ltd | Manufacture of high purity electrolytic copper |
JPS62107844A (en) * | 1985-11-05 | 1987-05-19 | O C C:Kk | Mold for continuous casting billet |
-
1995
- 1995-05-08 JP JP7134800A patent/JP2785908B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08108251A (en) | 1996-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1333110A1 (en) | Fabrication of metal articles by electrolysis of preshaped metal compounds in a fused salt | |
US4874436A (en) | Method for producing high purity electrolytic copper | |
JPS5942079B2 (en) | Aluminum refining method | |
JP2785908B2 (en) | Method of manufacturing copper tube for superconductivity | |
EP0223837B1 (en) | Method and apparatus for purification of gold | |
JP4397714B2 (en) | Raw material for aluminum purification | |
JPH07107181B2 (en) | Copper material for superconductivity | |
JP2561862B2 (en) | Purification and electrolysis method for obtaining ultra high purity copper | |
US5948140A (en) | Method and system for extracting and refining gold from ores | |
JP5069728B2 (en) | Aluminum purification method, high-purity aluminum material, method for producing aluminum material for electrolytic capacitor electrode, and aluminum material for electrolytic capacitor electrode | |
JP3243929B2 (en) | Adjustment method of copper ion concentration of copper removal electrolytic solution | |
JP2777955B2 (en) | Desilvering or silver recovery method | |
JPH042656B2 (en) | ||
RU2181780C2 (en) | Method for extracting gold from gold containing polymetallic materials | |
JP2553082B2 (en) | Copper refining method | |
US3108934A (en) | Process for the manufacture of antimony of high purity | |
JP2000038692A (en) | Production of high purity silver | |
CN116411314B (en) | Preparation method of high-purity zinc | |
Chatterjee | Electrowinning of gold from anode slimes | |
CN115074783B (en) | Preparation method of 5N high-purity silver | |
JP2892359B2 (en) | Method of forming high purity copper pipe used as stabilizing material for superconducting wire | |
JP2570076B2 (en) | Manufacturing method of high purity nickel | |
JPH01224141A (en) | Method and apparatus for continuous casting | |
JPH0527695B2 (en) | ||
JPH0653949B2 (en) | Copper electrolytic refining method |