JP2785745B2 - CVD equipment - Google Patents
CVD equipmentInfo
- Publication number
- JP2785745B2 JP2785745B2 JP7133678A JP13367895A JP2785745B2 JP 2785745 B2 JP2785745 B2 JP 2785745B2 JP 7133678 A JP7133678 A JP 7133678A JP 13367895 A JP13367895 A JP 13367895A JP 2785745 B2 JP2785745 B2 JP 2785745B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction chamber
- exhaust pipe
- oxygen
- butterfly valve
- reaction vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Formation Of Insulating Films (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、有機シラン系材料によ
りシリコン酸化膜を形成するCVD装置に関し、特に真
空排気設備のクリーン度の保持手段に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CVD apparatus for forming a silicon oxide film from an organic silane-based material, and more particularly to a means for maintaining the cleanness of a vacuum exhaust system.
【0002】[0002]
【従来の技術】従来、有機シラン系材料により基板ウェ
ハ上にノンドープ、あるいはリンやボロン含有のシリコ
ン酸化膜を形成するCVD装置においては、供給された
材料は完全には分解や反応せず、ほとんどが未反応の形
で排気されるため、排気配管中で室温状態に戻ってしま
う。この場合、TEOS等の有機シラン系材料は室温で
は液体状態となるために、排気配管中で液化し、配管中
の内壁に付着する。その結果、付着物が圧力コントロー
ル用のバルブの動作を不安定にして成膜時の圧力変動を
招き、安定した成膜ができなくなる等といった問題が生
じていた。2. Description of the Related Art Conventionally, in a CVD apparatus for forming a non-doped or phosphorus- or boron-containing silicon oxide film on a substrate wafer with an organosilane-based material, the supplied material does not completely decompose or react, Is exhausted in an unreacted form, so that it returns to the room temperature state in the exhaust pipe. In this case, since the organic silane-based material such as TEOS is in a liquid state at room temperature, it is liquefied in the exhaust pipe and adheres to the inner wall in the pipe. As a result, there has been a problem that the deposits make the operation of the pressure control valve unstable and cause pressure fluctuations during film formation, thereby making stable film formation impossible.
【0003】この問題の対策として特開平4−2970
32号公報において、排気配管中にプラズマ反応室と高
周波電力印加可能なヒータ、水素導入管を付加すること
で、未反応有機シラン系材料を活性水素との化学反応を
利用して分解処理し、排気配管系への未反応有機シラン
系材料による付着物を低減することができる技術が開示
された。As a countermeasure against this problem, Japanese Patent Laid-Open Publication No.
In Japanese Patent No. 32, by adding a plasma reaction chamber, a heater capable of applying high-frequency power, and a hydrogen introduction pipe to an exhaust pipe, an unreacted organic silane-based material is decomposed by utilizing a chemical reaction with active hydrogen, A technique capable of reducing deposits due to unreacted organosilane-based material on an exhaust piping system has been disclosed.
【0004】この従来のCVD装置を示す模式図を図2
に示す。同図においては、201はシリコン酸化膜を形
成するために用いられる反応容器、202はその内部に
選択的に収納配置されるボート,203はボート202
上に載せられる基板ウェハ,204は反応容器201の
外側に配置されたヒーター,205は反応容器201の
両端側を閉じるフランジギャップであり、さらに反応容
器201から引き出される排気配管208はゲートバル
ブ206を介してポンプ207に接続されている。さら
に、反応容器201からの排気配管208の途中にプラ
ズマ反応室210を介在させて設け、その外周部に加熱
手段として高周波電力を供給する誘導コイル付ヒーター
209を設けるとともに、プラズマ反応室210に水素
導入管211が接続されている。FIG. 2 is a schematic view showing this conventional CVD apparatus.
Shown in In the figure, 201 is a reaction vessel used for forming a silicon oxide film, 202 is a boat selectively housed and arranged therein, and 203 is a boat 202
A substrate wafer mounted thereon, 204 is a heater arranged outside the reaction vessel 201, 205 is a flange gap closing both ends of the reaction vessel 201, and an exhaust pipe 208 drawn out of the reaction vessel 201 is a gate valve 206. Connected to the pump 207 via Further, a plasma reaction chamber 210 is provided in the middle of an exhaust pipe 208 from the reaction vessel 201, and a heater 209 with an induction coil for supplying high-frequency power is provided as a heating means on an outer peripheral portion thereof. The introduction pipe 211 is connected.
【0005】このような構成において、基板ウェハ20
2に有機シラン系材料、例えばTEOSと酸素のヒータ
ー204の加熱による熱反応を用いてシリコン酸化膜を
形成する。この際、容器201内の温度は500〜70
0℃に加熱する。なおゲートバルブ206は反応容器2
01内の圧力を制御するために使用されている。反応容
器201からポンプ207により排気される未反応材料
は、排気配管208に付加されたプラズマ反応室210
を通過する。また、これと同時に水素導入管211から
水素をプラズマ反応室210に導入する。さらに誘導コ
イル付きヒータ211により高周波電力および熱エネル
ギをTEOSおよび水素に加えると、未反応材料が水素
との化学反応によりC2 H6 ,水分,そしてSiO2 と
いうような無機生成物に分解されることになり、排気配
管208への付着物を低減することができる。In such a configuration, the substrate wafer 20
2, a silicon oxide film is formed using a thermal reaction of an organic silane-based material, for example, TEOS and oxygen, which is generated by heating the heater 204. At this time, the temperature in the container 201 is 500-70.
Heat to 0 ° C. The gate valve 206 is provided in the reaction vessel 2
It is used to control the pressure in 01. The unreacted material exhausted from the reaction vessel 201 by the pump 207 is supplied to the plasma reaction chamber 210 added to the exhaust pipe 208.
Pass through. At the same time, hydrogen is introduced into the plasma reaction chamber 210 from the hydrogen introduction pipe 211. When high-frequency power and heat energy are further applied to TEOS and hydrogen by the heater 211 with an induction coil, the unreacted material is decomposed into inorganic products such as C 2 H 6 , moisture, and SiO 2 by a chemical reaction with hydrogen. That is, the amount of deposits on the exhaust pipe 208 can be reduced.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記方
法にて有機シラン系材料により基板ウェハー上にノンド
ープ、あるいはリンやボロン含有のシリコン酸化膜を形
成する場合、排気配管への付着物分解の手段として水素
を導入している。また熱エネルギーも加えているが、水
素ガスは爆発性を持っていて大変危険である。例えば、
水素は空気中で爆発範囲は4.1〜74.2%と広く、
これが酸素中であると4.65〜93.9%とさらに広
がる。また水素はシランなどの雰囲気中ではシランの分
解反応で生ずるエネルギーが点火源となり自然発火す
る。その他、摩擦や静電気などでも発火、爆発の危険性
が高く、CVD装置への適用は、安全上大変難しく実用
化されにくいという欠点を有している。However, when a non-doped or phosphorus- or boron-containing silicon oxide film is formed on a substrate wafer with an organosilane-based material by the above-mentioned method, it is necessary as a means for decomposing substances adhering to an exhaust pipe. Hydrogen is introduced. Although it also adds heat energy, hydrogen gas is explosive and very dangerous. For example,
Hydrogen explodes in air in a wide range of 4.1 to 74.2%,
When this is in oxygen, it further spreads to 4.65 to 93.9%. In addition, in the atmosphere of hydrogen such as silane, the energy generated by the decomposition reaction of silane becomes an ignition source and spontaneously ignites. In addition, there is a high risk of ignition and explosion due to friction, static electricity, and the like, and there is a drawback that application to a CVD apparatus is very difficult in terms of safety and practical use is difficult.
【0007】したがって本発明の目的は、発火,爆発の
危険をともなわないで安全に、未反応物の付着を低減す
ることができるCVD装置を提供することである。Accordingly, an object of the present invention is to provide a CVD apparatus capable of safely reducing the adhesion of unreacted substances without danger of ignition or explosion.
【0008】[0008]
【課題を解決するための手段】そこで本発明のCVD装
置は、有機シラン系材料により基板ウェハにシリコン酸
化膜を形成するCVD装置において、反応容器からポン
プに至る排気配管の途中に、反応室を設けさらに前記反
応室と前記ポンプとの間にバタフライバルブを設け、前
記反応室内に常時50〜200sccmの酸素を流し続
けるような構成にし、これにより前記バタフライバルブ
への付着物を低減して該バタフライバルブによる圧力コ
ントロール精度を長期に渡り高い状態に保持可能にした
ことを特徴としている。CVD apparatus SUMMARY OF THE INVENTION The present invention provides a CVD apparatus for forming a silicon oxide film on a substrate wafer by an organic silane material, Pong from the reaction vessel
A reaction chamber is provided in the exhaust pipe to
A butterfly valve is provided between the reaction chamber and the pump,
The structure is such that 50 to 200 sccm of oxygen is continuously flowed into the reaction chamber, whereby the butterfly valve is used.
The butterfly valve reduces pressure
It is characterized in that the control accuracy can be maintained at a high state for a long time.
【0009】[0009]
【作用】このように本発明では反応容器からの排気配管
の途中に反応室を設けそこに酸素を流す構造であるか
ら、未反応のTEOSが酸素との化学反応により二酸化
炭素、水分および二酸化珪素等に分解され、これにより
排気配管への付着物を低減することができる。また、水
素を用いないで酸素を用いているから爆発等の懸念はな
くなる。As described above, the present invention has a structure in which a reaction chamber is provided in the middle of an exhaust pipe from a reaction vessel and oxygen is caused to flow therethrough. And the like, whereby the amount of deposits on the exhaust pipe can be reduced. Further, since oxygen is used without using hydrogen, there is no fear of explosion or the like.
【0010】[0010]
【実施例】次に、本発明について添付の図面を参照して
説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the accompanying drawings.
【0011】図1は、本発明の第1の実施例にかかわる
CVD装置を示す模式図である。同図においては、10
1はシリコン酸化膜を形成するために用いられる反応容
器、102はその内部に設置されるボート,103はボ
ート102上に載せられてCVD処理される基板ウェ
ハ、104は反応容器101の外側に配置されたヒータ
ー,105は反応容器101の両端側を閉じるフランジ
ギャップであり、さらに反応容器101から引き出され
る排気配管108はバタフライバルブ106を介して排
気ポンプ107に接続されている。また、反応容器10
1とバタフライバルブ106との間の排気配管108の
途中に反応室110を設け、ここに酸素導入管109が
接続されている。また、この反応室110は必要に応じ
て加熱できるよう、ヒーター(図示省略)が設置されて
いる。このような構成において、基板ウェハー103に
有機シラン系材料TEOSを200〜400sccm流
し、酸素を100〜200sccm添加する。この際、
反応容器101内の温度は500〜700℃に加熱す
る。またCVDのデポ(堆積)中の真空度は0.6〜
1.0Torrとする。反応室110に酸素導入管10
9から酸素(O2 )を流さないで、上記条件下でデポを
行った場合、デポ累積時間が15時間を超えた時点でバ
タフライバルブ106での圧力コントロールがきかなく
なり始めた。この時点でフランジギャップ105からポ
ンプ107間の排気配管108を分解したところ、配管
内に大量の付着物が堆積しており、特にバタフライバル
ブ106付近の量が多く観察された。FIG. 1 is a schematic view showing a CVD apparatus according to a first embodiment of the present invention. In FIG.
1 is a reaction vessel used for forming a silicon oxide film, 102 is a boat installed in the inside thereof, 103 is a substrate wafer mounted on the boat 102 and subjected to CVD processing, 104 is arranged outside the reaction vessel 101 The heated heater 105 is a flange gap for closing both ends of the reaction vessel 101, and an exhaust pipe 108 drawn from the reaction vessel 101 is connected to an exhaust pump 107 via a butterfly valve 106. In addition, the reaction vessel 10
A reaction chamber 110 is provided in the middle of an exhaust pipe 108 between the valve 1 and the butterfly valve 106, and an oxygen introduction pipe 109 is connected to the reaction chamber 110. The reaction chamber 110 is provided with a heater (not shown) so that it can be heated as needed. In such a configuration, the organic silane-based material TEOS is supplied to the substrate wafer 103 at 200 to 400 sccm, and oxygen is added at 100 to 200 sccm. On this occasion,
The temperature inside the reaction vessel 101 is heated to 500 to 700 ° C. The degree of vacuum during CVD deposition is 0.6 to
1.0 Torr. Oxygen introduction pipe 10
In the case where the deposition was performed under the above-mentioned conditions without flowing oxygen (O 2 ) from No. 9, pressure control with the butterfly valve 106 began to become ineffective when the accumulated time of the depot exceeded 15 hours. At this time, when the exhaust pipe 108 between the flange gap 105 and the pump 107 was disassembled, a large amount of deposits was accumulated in the pipe, and a large amount was observed particularly near the butterfly valve 106.
【0012】そこで、配管108及びバタフライバルブ
106を十分に清掃した後、装置に再び取り付け、上記
と同条件にてデポを行った。その際、今度は酸素導入管
109から反応室110内に酸素を50〜200scc
m常に流し続けた。累積デポ時間が15時間となったと
ころで上記と同様に排気配管108を分解したところ、
前述したような付着物は、フランジキャップ105から
反応室110の間及び反応室110内には観察された
が、反応室110からポンプ107間の排気配管108
内にはバタフライバルブ106付近を含め、全く見当た
らず、清浄な状態が保持されていることが確認された。Therefore, after thoroughly cleaning the pipe 108 and the butterfly valve 106, the pipe 108 and the butterfly valve 106 were attached to the apparatus again, and deposition was performed under the same conditions as above. At this time, oxygen is introduced into the reaction chamber 110 from the oxygen introducing pipe 109 at 50 to 200 scc.
m Always kept flowing. When the exhaust pipe 108 was disassembled in the same manner as above when the accumulated depot time became 15 hours,
The aforementioned deposits were observed between the flange cap 105 and the reaction chamber 110 and in the reaction chamber 110, but the exhaust pipe 108 between the reaction chamber 110 and the pump 107 was observed.
No matter was found inside, including the vicinity of the butterfly valve 106, and it was confirmed that a clean state was maintained.
【0013】この条件下でさらにデポを続けた結果、反
応容器101の洗浄サイクルであるデポ累積時間100
時間までバタフライバルブ106の動作不良は発生せ
ず、反応室110内への酸素導入がその後の配管及びバ
タフライバルブ106への付着物防止に貢献しているこ
とが確認された。As a result of the further deposition under these conditions, the accumulated depot time 100
No malfunction of the butterfly valve 106 occurred until the time, and it was confirmed that the introduction of oxygen into the reaction chamber 110 contributed to the prevention of deposits on the piping and the butterfly valve 106 thereafter.
【0014】未反応のTEOSに酸素を加えると、 Si(OC2 H5 )4 +1202 → SiO2 +8C
O2 +10H2 O という反応で未反応材料が酸素との化学反応により、二
酸化炭素,水分、及びSiO2 などの無機生成物に分解
されるようになる。したがって排気配管108への付着
物を低減することができるものである。導入する酸素の
流量は、50sccm未満では排気配管108内の付着
物低減効果が薄くなり、また200sccm以上ではポ
ンプ107の反応容器101に対する排気能力の低下を
招き、その結果、反応容器内101内のパーティクルの
増加や装置の処理能力低下を引き起こすため実用的では
ない。When oxygen is added to unreacted TEOS, Si (OC 2 H 5 ) 4 +120 2 → SiO 2 + 8C
The unreacted material in the reaction of O 2 + 10H 2 O is decomposed into inorganic products such as carbon dioxide, moisture, and SiO 2 by a chemical reaction with oxygen. Therefore, the amount of deposits on the exhaust pipe 108 can be reduced. If the flow rate of oxygen to be introduced is less than 50 sccm, the effect of reducing the deposits in the exhaust pipe 108 becomes thin, and if it is 200 sccm or more, the exhaust capacity of the pump 107 with respect to the reaction vessel 101 is reduced. It is not practical because it causes an increase in particles and a decrease in processing capability of the apparatus.
【0015】また、導入する気体は、従来使用されてい
た水素では爆発性が高く危険であり、窒素ではTEOS
の化学反応が行なわれず、他の不活性ガス,例えばヘリ
ウムやアルゴンも同様に未反応TEOSの希しゃく効果
のみで排気配管108内への付着物低減にはほとんど効
果はない。[0015] In addition, the gas to be introduced is dangerous because it has a high explosive property in the case of hydrogen which has been used conventionally, and TEOS in the case of nitrogen.
Is not carried out, and other inert gases, for example, helium and argon, similarly have little effect on the reduction of the deposits in the exhaust pipe 108 only due to the effect of diluting the unreacted TEOS.
【0016】本発明の第2の実施例としては、第1の実
施例がノンドープのTEOS系SiO2 膜成膜時であっ
たのに対し、リンやボロンがドープされたTEOS系B
PSG膜成膜時のものである。使用する半導体製造装置
は第1の実施例で示した図1に示したものと同じであ
る。デポ条件としては、有機シラン系材料TEOSを2
00〜400sccm流し、酸素を100〜200sc
cm,ホスフィンを400〜600sccm,TMOB
を20〜25sccmそれぞれ添加する。反応室容器1
01の温度は500〜700℃,デポ中の真空度は0.
6〜1.0Torrで第1の実施例の際と同じである。
この条件下でかつ反応室110に酸素を導入しないでデ
ポを行った場合、デポ累積時間が40時間を超えた時点
でバタフライバルブ106での圧力コントロールがきか
なくなり始めた。この時点でフランジキャップ105か
らポンプ107間の排気配管108を分解したところ、
配管内に第1の実施例における場合と同様に大量の付着
物がたい積しており、特にバタフライバルブ106付近
の量が多く観察された。As a second embodiment of the present invention, the first embodiment is for forming a non-doped TEOS-based SiO 2 film, while the TEOS-based B doped with phosphorus or boron is used.
This is when the PSG film is formed. The semiconductor manufacturing equipment used is the same as that shown in FIG. 1 shown in the first embodiment. The deposition conditions were as follows.
Flow 100 to 400 sccm, and supply oxygen for 100 to 200 sc
cm, phosphine 400-600sccm, TMOB
Is added to each of 20 to 25 sccm. Reaction chamber container 1
01 is 500-700 ° C., and the degree of vacuum in the deposit is 0.
6 to 1.0 Torr is the same as in the first embodiment.
When the deposition was performed under these conditions and without introducing oxygen into the reaction chamber 110, the pressure control by the butterfly valve 106 began to become ineffective when the accumulated time of the deposition exceeded 40 hours. At this time, when the exhaust pipe 108 between the flange cap 105 and the pump 107 was disassembled,
As in the case of the first embodiment, a large amount of deposits were deposited in the pipe, and a large amount was observed particularly near the butterfly valve 106.
【0017】そこで、排気配管108及びバタフライバ
ルブ106を十分に清掃した後、装置に再び取り付け、
上記と同条件にてデポを行った。その際、酸素導入管1
09から酸素を反応室110内へ50〜200sccm
常に流し続けた。累積デポ時間が50時間となったとこ
ろで上記と同様に排気配管108を分解したところ、前
述したような付着物は反応室110より後ろの排気配管
108内にはバタフライバルブ106付近を含め、全く
見当らず、清浄な状態が保持されていることが確認され
た。Therefore, after thoroughly cleaning the exhaust pipe 108 and the butterfly valve 106, the exhaust pipe 108 and the butterfly valve 106 are attached to the apparatus again.
Deposition was performed under the same conditions as above. At that time, oxygen introduction pipe 1
Oxygen from 09 into reaction chamber 110 50-200 sccm
He kept flowing. When the accumulated depot time reached 50 hours, the exhaust pipe 108 was disassembled in the same manner as described above. And it was confirmed that a clean state was maintained.
【0018】第2の実施例では、ホスフィンやTMOB
を使用しているので、TEOSと酸素のみと比べてTE
OSとの反応効率が良く、付着物の量も少ないが、付着
物中に含まれるホスフィンは毒性が非常に強いため、バ
タフライバルブ106や排気配管108の分解・清浄時
に付着物から発生するガスが人体に及ぼす悪影響が懸念
される。In the second embodiment, phosphine or TMOB is used.
Is used, so TE is compared to TEOS and oxygen only.
Although the reaction efficiency with the OS is good and the amount of the deposit is small, the phosphine contained in the deposit is extremely toxic, so that the gas generated from the deposit when the butterfly valve 106 and the exhaust pipe 108 are disassembled and cleaned is reduced. There is concern about the adverse effects on the human body.
【0019】なお、本発明は上述した材料ガス以外、例
えばTEOS単体、他の有機シラン系材料を用いた半導
体製造装置であっても良い。The present invention may be applied to a semiconductor manufacturing apparatus using, for example, TEOS alone or another organic silane-based material other than the above-mentioned material gases.
【0020】[0020]
【発明の効果】以上説明したように本発明に係るCVD
装置によれば、反応容器からの排気配管の途中に反応室
を設け、この反応室内に酸素を常時流し続けるようにし
たので、有機シラン系材料の未反応物の排気配管及び反
応容器の圧力をコントロールしているバタフライバルブ
への付着を低減することができるため、圧力コントロー
ル精度が長期に渡り高い状態を保持できる。また、この
反応室中に流す気体が酸素であることから、従来から用
いられている水素などに比べ極めて安全である。以上の
効果から、本発明により従来より低汚染で良質なシリコ
ン酸化膜が得られると共に、CVD装置の稼働率が向上
するという優れた効果が得られる。As described above, the CVD according to the present invention is described.
According to the apparatus, the reaction chamber is provided in the middle of the exhaust pipe from the reaction vessel, and oxygen is continuously supplied into the reaction chamber. Since the adhesion to the butterfly valve being controlled can be reduced, the pressure control accuracy can be kept high for a long period of time. Further, since the gas flowing into the reaction chamber is oxygen, it is extremely safe as compared with conventionally used hydrogen and the like. From the above effects, according to the present invention, an excellent effect of obtaining a silicon oxide film of lower pollution and higher quality than before can be obtained, and the operation rate of the CVD apparatus can be improved.
【図1】本発明の実施例のCVD装置を示す模式図であ
る。FIG. 1 is a schematic view showing a CVD apparatus according to an embodiment of the present invention.
【図2】従来技術のCVD装置を示す模式図である。FIG. 2 is a schematic view showing a conventional CVD apparatus.
101,201 反応容器 102,202 ボート 103,203 基板ウェハー 104,204 ヒーター 105,205 フランジキャップ 106 バタフライバルブ 107,207 ポンプ 108,208 排気配管 109 酸素導入管 110 反応室 206 ゲートバルブ 209 誘導コイル付ヒーター 210 プラズマ反応室 211 水素導入管 101, 201 Reaction vessel 102, 202 Boat 103, 203 Substrate wafer 104, 204 Heater 105, 205 Flange cap 106 Butterfly valve 107, 207 Pump 108, 208 Exhaust pipe 109 Oxygen introduction pipe 110 Reaction chamber 206 Gate valve 209 Heater with induction coil 210 Plasma reaction chamber 211 Hydrogen introduction pipe
Claims (1)
リコン酸化膜を形成するCVD装置において、反応容器
からポンプに至る排気配管の途中に、反応室を設けさら
に前記反応室と前記ポンプとの間にバタフライバルブを
設け、前記反応室内に常時50〜200sccmの酸素
を流し続けるような構成にし、これにより前記バタフラ
イバルブへの付着物を低減して該バタフライバルブによ
る圧力コントロール精度を長期に渡り高い状態に保持可
能にしたことを特徴とするCVD装置。In a CVD apparatus for forming a silicon oxide film on a substrate wafer using an organosilane-based material , a reaction chamber is provided in the middle of an exhaust pipe from a reaction vessel to a pump .
A butterfly valve between the reaction chamber and the pump.
And a configuration in which oxygen of 50 to 200 sccm is continuously flowed into the reaction chamber, whereby the butterfly
The butterfly valve reduces deposits on the
Pressure control accuracy can be kept high for a long time
CVD apparatus is characterized in that the capacity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7133678A JP2785745B2 (en) | 1995-05-31 | 1995-05-31 | CVD equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7133678A JP2785745B2 (en) | 1995-05-31 | 1995-05-31 | CVD equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08330292A JPH08330292A (en) | 1996-12-13 |
JP2785745B2 true JP2785745B2 (en) | 1998-08-13 |
Family
ID=15110332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7133678A Expired - Lifetime JP2785745B2 (en) | 1995-05-31 | 1995-05-31 | CVD equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2785745B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100246967B1 (en) * | 1997-04-16 | 2000-03-15 | 윤종용 | Apparatus of manufacturing a semiconductor capacitor, method of manufacturing the capacitor, the capacitor and semiconductor memory device having the capacitor |
GB2579788B (en) * | 2018-12-13 | 2021-06-30 | Edwards Ltd | Abatement apparatus |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04136175A (en) * | 1990-09-26 | 1992-05-11 | Matsushita Electric Ind Co Ltd | Thin film forming device |
JPH0767524B2 (en) * | 1991-03-19 | 1995-07-26 | 株式会社荏原製作所 | Exhaust gas treatment method and device |
-
1995
- 1995-05-31 JP JP7133678A patent/JP2785745B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08330292A (en) | 1996-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5584963A (en) | Semiconductor device manufacturing apparatus and cleaning method for the apparatus | |
JP4916119B2 (en) | Equipment for reducing white powder during silicon nitride deposition using remote plasma source cleaning technology | |
US20070087579A1 (en) | Semiconductor device manufacturing method | |
TWI534863B (en) | Method and apparatus for the selective deposition of epitaxial germanium stressor alloys | |
WO2001003858A9 (en) | Method and system for in situ cleaning of semiconductor manufacturing equipment using combination chemistries | |
KR20180044214A (en) | Technique to prevent aluminum fluoride build up on the heater | |
JPH07176484A (en) | Method of uniformly depositing tungsten silicide on semiconductor wafer by treating suscepter having surface of aluminum nitride after purification of susceptor | |
JPH0260210B2 (en) | ||
US3484311A (en) | Silicon deposition process | |
JP2785745B2 (en) | CVD equipment | |
US20060121746A1 (en) | Semiconductor device manufacturing method and semiconductor manufacturing apparatus | |
EP1154036A1 (en) | Gas reactions to eliminate contaminates in a CVD chamber | |
JPH04323377A (en) | Cleaning method for chemical vapor deposition equipment | |
US4766007A (en) | Process for forming deposited film | |
JP2664886B2 (en) | Silicon film forming method and silicon film forming apparatus | |
JP2504611B2 (en) | Vapor phase growth equipment | |
US11260433B2 (en) | Cleaning method of substrate processing apparatus and substrate processing apparatus | |
JPH08209350A (en) | Thin film forming device and cleaning of the same | |
JP2009088308A (en) | Substrate processing equipment | |
JPS61234531A (en) | Formation of silicon oxide | |
JP3153644B2 (en) | Thin film formation method | |
JPH0382769A (en) | Method and device for forming silicon oxide film | |
JPH09186149A (en) | Cleaning method of semiconductor producing apparatus and manufacturing method of semiconductor device | |
JPS6262529A (en) | Forming method for silicon nitride film | |
KR100191471B1 (en) | Gas feeding device in chemical vapor deposition equipment of semiconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980428 |