JP2784341B2 - Method and apparatus for measuring specific gravity and liquid volume of liquid - Google Patents
Method and apparatus for measuring specific gravity and liquid volume of liquidInfo
- Publication number
- JP2784341B2 JP2784341B2 JP5500096A JP5500096A JP2784341B2 JP 2784341 B2 JP2784341 B2 JP 2784341B2 JP 5500096 A JP5500096 A JP 5500096A JP 5500096 A JP5500096 A JP 5500096A JP 2784341 B2 JP2784341 B2 JP 2784341B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- light receiving
- light
- receiving element
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、液の比重及び液量
の測定方法並びにその装置に関し、特にメンテナンスが
簡単になると共に、メンテナンス費用を大幅に削減でき
るようにした液比重及び液量測定方法並びにその装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the specific gravity and the amount of a liquid, and more particularly to a method for measuring the specific gravity and the amount of a liquid so that maintenance can be simplified and maintenance costs can be greatly reduced. And its device.
【0002】[0002]
【従来技術】尿量および尿比重を、人の健康状態を測る
手段として用いることがある。尿量は容器に目盛った目
盛を読むことによって、あるいは赤外線等を用いた液量
センサによって求められる。尿比重は上記尿量に加えて
重量を測定することによって得られることになる。2. Description of the Related Art Urine volume and urine specific gravity are sometimes used as a means for measuring a person's health condition. The amount of urine can be obtained by reading a graduated scale on a container or by a liquid volume sensor using infrared rays or the like. The specific gravity of urine is obtained by measuring the weight in addition to the urine volume.
【0003】上記尿比重は浮子、振動式密度計、更に、
全反射法による屈折率測定装置などを用いて測定する
と、より正確な値を得ることができる。上記浮子を用い
る場合には、目盛を付けた浮子(浮標)を被検液(尿)
に入れて、液面に位置する目盛を読み取る。[0003] The specific gravity of urine is determined by using a float, a vibratory density meter,
A more accurate value can be obtained by measuring using a refractive index measuring device or the like based on the total reflection method. When using the above floats, graduated floats (buoys) are used as test liquids (urine).
And read the scale at the liquid level.
【0004】振動式密度計は、例えば特公平7−104
247号公報に記載されているように、U字状の細管か
らなる振動セルを有し、この振動セルに被検液(尿)を
充填した時の振動セルの振動数あるいは振動周期を測定
し、この振動セルの振動数あるいは振動周期から被検液
(尿)の比重を算出する構成となっている。A vibration type densitometer is disclosed, for example, in Japanese Patent Publication No. 7-104.
As described in Japanese Patent Publication No. 247, a vibration cell composed of a U-shaped thin tube is provided, and the vibration frequency or the vibration period of the vibration cell when the test liquid (urine) is filled in the vibration cell is measured. The specific gravity of the test liquid (urine) is calculated from the frequency or frequency of the vibration cell.
【0005】又、全反射法による屈折率測定装置は、例
えば特開平6−273329号公報に記載されているよ
うに、測定セルの下面にプリズムを配置し、光源からプ
リズム内を透過してその上面に所定の角度から光を照射
し、プリズムの上面からの反射光の分布を検出すること
によってプリズムの上面と、これに接する試料(尿)と
の境界面からの反射が生じる臨界角を求め、この臨界角
に基づいて試料(尿)の屈折率が算出される。試料
(尿)の屈折率は試料(尿)の比重と対応して増減する
ので、この屈折率から更に試料(尿)の比重が求められ
る。[0005] Further, in a refractive index measuring apparatus based on the total reflection method, a prism is arranged on the lower surface of a measuring cell and transmitted through a prism from a light source as described in, for example, JP-A-6-273329. By irradiating the upper surface with light from a predetermined angle and detecting the distribution of reflected light from the upper surface of the prism, a critical angle at which reflection from a boundary surface between the upper surface of the prism and a sample (urine) in contact with the upper surface is obtained. The refractive index of the sample (urine) is calculated based on the critical angle. Since the refractive index of the sample (urine) increases and decreases corresponding to the specific gravity of the sample (urine), the specific gravity of the sample (urine) is further obtained from the refractive index.
【0006】[0006]
【発明が解決しようとする課題】ところで、上記従来の
方法において、目盛を人の目で読む方法は不正確とな
り、また時間がかかる欠点があった。However, in the above-mentioned conventional method, the method of reading the graduations with human eyes is inaccurate and time-consuming.
【0007】また、振動式密度計によって密度(比重)
を求める方法、あるいは全反射法による屈折率測定装置
によって屈折率から比重を求める方法は、正確ではある
が装置構成が大がかりとなりコストアップとなる欠点が
あった。Further, the density (specific gravity) is measured by a vibrating densitometer.
Or the method of calculating the specific gravity from the refractive index using a refractive index measuring device based on the total reflection method is accurate, but has a drawback that the device configuration becomes large and the cost increases.
【0008】更に、上記いずれの方法においても液量を
何らかの器具あるいは装置で測定した後あるいは、上記
液量を測定する前に、別の装置あるいは器具を使用して
重量、密度、屈折率等を測定する必要があり、たとえ上
記2工程を連続的に実行できるように装置を構成して
も、基本的には2つの装置あるいは器具を必要とするの
で装置構成が大がかりとなり、コストアップとなってい
た。Further, in any of the above methods, the weight, density, refractive index and the like are measured using another device or instrument after measuring the liquid volume with any instrument or device or before measuring the liquid volume. It is necessary to measure, and even if the apparatus is configured so that the above two steps can be performed continuously, basically, two apparatuses or instruments are required, so the apparatus configuration becomes large and the cost increases. Was.
【0009】本発明は、上記の事情を鑑みて提案された
ものであって、液比重及び液量を屈折率と液面高さに関
連した、被検液を透過した平行光線の受光位置を測定す
るのみで被検液の比重と液量を測定出来る方法と装置を
提供することを目的とするものである。The present invention has been proposed in view of the above-described circumstances, and relates to a method for determining the light receiving position of a parallel light beam transmitted through a test liquid, which relates the liquid specific gravity and the liquid amount to the refractive index and the liquid level. It is an object of the present invention to provide a method and an apparatus capable of measuring the specific gravity and the liquid volume of a test liquid only by measuring.
【0010】[0010]
【課題を解決するための手段】本発明に係る液の屈折率
nD及び液量の測定方法は、上記の目的を達成するた
め、以下の手段を採用している。The method for measuring the refractive index nD and the amount of a liquid according to the present invention employs the following means in order to achieve the above object.
【0011】まず、被検液2は下記に説明するような方
法で、プリズム面を構成するようにしておく。この被検
液2の液面Lに平行光線を所定の入射角αで入射し、こ
の液面Lに対して傾斜した被検液2の出射面2aから上
記平行光線を出射させる。この出射光を凸レンズ5を介
して受光素子4に結像させると、図1に示すように、こ
のときの結像位置は液面の高さLには関係なく、屈折率
nDによって異なる位置P0m(m:屈折率に依存する位
置を区分する正の整数)に結像することになる。これに
よって、被検液の屈折率nDが求められることになる。
もっとも、この前提として、屈折率nDの判っている基
準液での結像位置を求めておく必要がある。First, the test liquid 2 forms a prism surface in the following manner. A parallel light beam is incident on the liquid surface L of the test liquid 2 at a predetermined incident angle α, and the parallel light beam is emitted from the output surface 2a of the test liquid 2 inclined with respect to the liquid surface L. When this outgoing light is imaged on the light receiving element 4 via the convex lens 5, as shown in FIG. 1, the image forming position at this time differs depending on the refractive index nD regardless of the liquid level height L. An image is formed at 0m (m: a positive integer that divides a position depending on the refractive index). Thus, the refractive index nD of the test liquid is obtained.
However, as a prerequisite, it is necessary to obtain an image formation position in a reference liquid having a known refractive index nD.
【0012】次に、上記出射光を凸レンズ5を介さない
で受光素子4に受光させると、図2に示すように、この
場合の受光位置は、被検液の屈折率さえ同じであれば液
面の高さLに依存した異なる位置P1n(n:高さに依存
する位置を区分する正の整数)となる。これによって、
被検液の高さが求められることになる。もっとも、液面
Lの高さが異なっても被検液の屈折率nDが異なると同
じ位置に受光する場合もあるので、上記被検液の高さは
被検液の屈折率nDにも依存することになる。従って、
上記高さを求める前提として、屈折率nDが判っている
必要があり、さらに、特定の屈折率nDの下での基準の
液面高さでの受光位置を求めておく必要がある。Next, when the above-mentioned emitted light is received by the light receiving element 4 without passing through the convex lens 5, as shown in FIG. 2, the light receiving position in this case is the liquid if the refractive index of the test liquid is the same. There are different positions P 1n (n: positive integer dividing the position depending on the height) depending on the height L of the surface. by this,
The height of the test liquid will be required. However, even if the liquid level L is different, if the refractive index nD of the test liquid is different, light may be received at the same position. Therefore, the height of the test liquid also depends on the refractive index nD of the test liquid. Will do. Therefore,
As a prerequisite for obtaining the height, it is necessary to know the refractive index nD, and it is necessary to obtain a light receiving position at a reference liquid level under a specific refractive index nD.
【0013】上記の方法を実現する装置には、まず、平
行光線を出射する光源3が備えられ、また、凸レンズ5
が光路に対して出し入れできる構成がとられる。またこ
の凸レンズ5の結像位置には上記受光素子4が配置され
る。An apparatus for realizing the above method is first provided with a light source 3 for emitting parallel rays, and a convex lens 5 is provided.
Can be taken in and out of the optical path. The light receiving element 4 is arranged at an image forming position of the convex lens 5.
【0014】また、上記方法を実現するためには、被検
液が入射光に対してプリズム面、すなわち被検液2の液
面Lに対して出射面2aが傾斜している必要がある。従
って、ここに用いられる被検液容器1は、底面の一部が
傾斜しているか、あるいは、上記の方法を実現する装置
が、底面が偏平な容器を傾斜させて上記光源3と受光素
子4の間に配置する構成になっているか、または、上記
光源3から凸レンズ5に至る光路が容器1の側周面を通
過する構成とする必要がある。In order to realize the above method, the test liquid must have a prism surface with respect to the incident light, that is, the output surface 2a is inclined with respect to the liquid surface L of the test liquid 2. Therefore, the sample liquid container 1 used here has a part of the bottom surface inclined, or the apparatus for realizing the above-described method inclines a container having a flat bottom surface, and thereby the light source 3 and the light receiving element 4 are inclined. Or the optical path from the light source 3 to the convex lens 5 must pass through the side peripheral surface of the container 1.
【0015】[0015]
【発明の実施の形態】尿量・尿比重測定方法に適用され
た本発明に係る方法の一実施例及びこの方法を実施する
ための本発明装置の一実施例を図面に基づいて具体的に
説明すれば、以下の通りである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method according to the present invention applied to the method for measuring urine volume and specific gravity of urine and an embodiment of the apparatus of the present invention for carrying out the method will be described in detail with reference to the drawings. This will be described below.
【0016】図3の構成図に示すように、本発明に係る
屈折率nD及び液量の測定装置は、光源3を備え、該光
源3は装置内の所定の位置に配置される容器1に充填さ
れてプリズムを構成する被検液2の液面Lに所定の入射
角αで平行光線を入射する。又、本発明は上記光源3か
ら上記被検液2を透過した上記平行光線を受光する受光
素子4を備える構成としている。As shown in the block diagram of FIG. 3, the apparatus for measuring the refractive index nD and the liquid amount according to the present invention includes a light source 3, which is mounted on a container 1 arranged at a predetermined position in the apparatus. A parallel light beam is incident on the liquid surface L of the test liquid 2 which is filled and forms a prism at a predetermined incident angle α. Further, the present invention includes a light receiving element 4 for receiving the parallel light beam transmitted from the light source 3 through the test liquid 2.
【0017】上記光源3の構成は特に限定されないが、
この実施例ではレーザ発射装置3aを光源とし、この光
線の平行性を確保するために適当な距離を置いて配置し
た2枚のスリット板3b,3cが光路上に配置される。Although the configuration of the light source 3 is not particularly limited,
In this embodiment, a laser emitting device 3a is used as a light source, and two slit plates 3b and 3c arranged at an appropriate distance to secure parallelism of the light beams are arranged on the optical path.
【0018】この光源3から上記被検液2の液面Lに照
射する平行光線の入射角αは零より大きくとられ、これ
により、上記平行光を液面Lの入射位置で屈折させて被
検液2内に進入させることができる。上記容器1の形状
を下記のようにすることによって、該容器に充填された
被検液2でプリズム面を構成させることができる。The incident angle α of the parallel light beam emitted from the light source 3 to the liquid surface L of the test liquid 2 is set to be larger than zero, whereby the parallel light is refracted at the incident position of the liquid surface L to be irradiated. It can be made to enter the test solution 2. By setting the shape of the container 1 as described below, the prism surface can be constituted by the test liquid 2 filled in the container.
【0019】すなわち、図3の例では、被検液容器1の
底面1aの中央部を、逆円錐状に形成し、周壁1bを装
置の基台6上に載置することにより、この底面1aの中
央部の逆円錐面に一致する出射面2aが液面Lに対して
所定の傾斜角θ(ここでは45°)だけ傾斜するように
している。これにより、屈折率nDが同じであれば、図
1に実線(又は破線)で示すように、液面Lの高さが変
わっても、出射面2aから出射する平行光線の出射角φ
(φ1 、φ2 )は変わらなくなる。 上記容器1の下方
には例えばCCDからなる受光素子4が配置され、上記
光源3から出射され、容器1内の被検液2及び容器1の
底面中央部1aを透過した平行光線が、出射面2aから
出射する時に再度屈折し、上記受光素子4に入射するよ
うにしている。That is, in the example shown in FIG. 3, the central portion of the bottom surface 1a of the test liquid container 1 is formed in an inverted conical shape, and the peripheral wall 1b is placed on the base 6 of the apparatus. The emission surface 2a that coincides with the inverted conical surface at the center of the liquid crystal L is inclined with respect to the liquid surface L by a predetermined inclination angle θ (here, 45 °). As a result, if the refractive index nD is the same, as shown by the solid line (or broken line) in FIG. 1, even if the height of the liquid surface L changes, the output angle φ of the parallel light beam output from the output surface 2a is changed.
(Φ1, φ2) remain unchanged. A light receiving element 4 composed of, for example, a CCD is disposed below the container 1. A parallel light beam emitted from the light source 3 and transmitted through the test liquid 2 in the container 1 and the bottom center 1 a of the container 1 is emitted from the light emitting surface. When the light is emitted from 2a, it is refracted again and is incident on the light receiving element 4.
【0020】更に、上記容器1と受光素子4との間に平
行光線の光路上に出し入れされる凸レンズ5が配置さ
れ、該凸レンズ5が光路上に位置する時には上記被検液
2から出射した上記平行光線が受光素子4上に結像する
構成とする。Further, a convex lens 5 is disposed between the container 1 and the light-receiving element 4 so as to be put in and out of the optical path of the parallel light beam. When the convex lens 5 is located on the optical path, The configuration is such that the parallel rays form an image on the light receiving element 4.
【0021】これによって、上記凸レンズ5を介しての
受光素子4上の結像位置は被検液の液面高さに依存しな
いで、被検液の屈折率のみに依存する位置P01, P02と
なる。[0021] Thus, the imaging position on the light receiving element 4 via the convex lens 5 is not dependent on the liquid level of the test liquid, the position P 01, P depends only on the refractive index of the sample liquid It becomes 02 .
【0022】これによって、上記屈折率nDと受光素子
4の位置関係は所定の関係(後述する図5参照)にある
ので、基準となる屈折率nDの被検液の受光素子4上の
結像位置を把握しておくことによって、上記受光位置P
0m(P01,P02)に基づいて被検液2の屈折率nDを演
算できることになる。As a result, since the positional relationship between the refractive index nD and the light receiving element 4 is in a predetermined relationship (see FIG. 5 described later), an image of the test liquid having the reference refractive index nD on the light receiving element 4 is formed. By knowing the position, the light receiving position P
The refractive index nD of the test liquid 2 can be calculated based on 0m (P 01 , P 02 ).
【0023】次に、上記凸レンズ5を上記光路から外せ
ば、屈折率nDが同じであることを条件にして、図2に
示すように、被検液2の液面Lの高さΔXに応じて液面
Lでの屈折位置が変わるので、結果として受光素子4上
の受光位置P1n(例えばP11,P12)が変化する。従っ
て、上記のようにして得られた被検液2の屈折率nD
と、上記凸レンズ5を介さずに受光させた時の受光素子
4上の受光位置P1nに基づいて被検液2の液面2の高さ
を演算することができる。Next, if the convex lens 5 is removed from the optical path, assuming that the refractive index nD is the same, as shown in FIG. 2, according to the height ΔX of the liquid level L of the test liquid 2, As a result, the refraction position on the liquid surface L changes, and as a result, the light receiving position P 1n (for example, P 11 , P 12 ) on the light receiving element 4 changes. Therefore, the refractive index nD of the test liquid 2 obtained as described above
Then, the height of the liquid surface 2 of the test liquid 2 can be calculated based on the light receiving position P 1n on the light receiving element 4 when light is received without passing through the convex lens 5.
【0024】特定の屈折率nDの下での上記液面Lの高
さと受光素子4上の位置との関係は後述する図6の関係
にあるので、特定の屈折率nDの基準液の基準の高さで
の受光位置P1nを把握しておくことによって、被検液の
高さを演算することができる。The relationship between the height of the liquid surface L and the position on the light receiving element 4 under a specific refractive index nD is as shown in FIG. 6, which will be described later. By knowing the light receiving position P 1n at the height, the height of the test liquid can be calculated.
【0025】そして、これらの演算をするために演算手
段が設けられ(図示しない)、上記凸レンズ5を上記光
路上に位置させた時の上記受光素子4の受光位置P0mに
基づいて被検液2の屈折率nDを演算し、又、この演算
された屈折率nDに基づいて比重を演算する。An arithmetic means (not shown) is provided for performing these calculations, and the liquid to be measured is determined based on the light receiving position P 0m of the light receiving element 4 when the convex lens 5 is positioned on the optical path. 2 is calculated, and the specific gravity is calculated based on the calculated refractive index nD.
【0026】更にこのように演算された屈折率nDと、
上記凸レンズ5を上記光路外に位置させた時の上記受光
素子4の受光位置P1nとに基づいて被検液2の液面Lの
高さを演算し、加えて、この演算された被検液2の液面
Lの高さに基づいて液量を演算する構成となっている。Further, the refractive index nD calculated as described above,
The height of the liquid surface L of the test liquid 2 is calculated based on the light receiving position P 1n of the light receiving element 4 when the convex lens 5 is positioned outside the optical path, and the calculated test object L is added. The liquid amount is calculated based on the height of the liquid level L of the liquid 2.
【0027】上記凸レンズ5を介して受光素子4に平行
光線を入射させた時の処理と、上記凸レンズ5を介さず
に受光素子4に平行光線を入射させた時の処理とのいず
れを先に行うかは自由に選択できるが、処理時間を短縮
するためには、先ず、上記被検液2を透過した平行光線
を凸レンズ5を介して受光する時の受光素子4の受光位
置P0mに基づいて被検液2の屈折率nDを演算し、この
演算された屈折率nDに基づいて被検液の比重を得、こ
の後に、この演算された屈折率nDと、上記凸レンズ5
を介さずに受光する時の受光素子4の受光位置P1mとに
基づいて液量を得ることが好ましい。Either the processing when the parallel light is incident on the light receiving element 4 via the convex lens 5 or the processing when the parallel light is incident on the light receiving element 4 without passing through the convex lens 5 is performed first. Whether or not to perform the treatment can be freely selected, but in order to shorten the processing time, first, based on the light receiving position P 0m of the light receiving element 4 when the parallel light transmitted through the test liquid 2 is received via the convex lens 5. To calculate the refractive index nD of the test liquid 2 and obtain the specific gravity of the test liquid based on the calculated refractive index nD. After that, the calculated refractive index nD and the convex lens 5
It is preferable to obtain the liquid amount based on the light receiving position P1m of the light receiving element 4 when the light is received without passing through.
【0028】図4(a) は本発明装置の更に別の実施例の
主要部を示すものである。この実施例では上記凸レンズ
5を固定にするとともに、上記被検液の出射面から出射
する平行光線の一部を分割する光分割手段10を備えて
いる。この光分割手段10は例えばハーフミラー10h
を用い、該ハーフミラー10hで分割された一方の平行
光線を上記凸レンズ5を介して受光素子4aに受光させ
るとともに、他方の平行光線を直接受光素子4bに入射
するようにしている。これによって、凸レンズ5を回動
することなく、演算に必要な2つの受光位置をもとめる
ことができる。FIG. 4A shows a main part of still another embodiment of the apparatus of the present invention. In this embodiment, the convex lens 5 is fixed, and a light splitting means 10 for splitting a part of the parallel light beam emitted from the emission surface of the test liquid is provided. The light splitting means 10 is, for example, a half mirror 10h
The parallel light split by the half mirror 10h is received by the light receiving element 4a via the convex lens 5, and the other parallel light is directly incident on the light receiving element 4b. As a result, two light receiving positions required for the calculation can be obtained without rotating the convex lens 5.
【0029】上記図4(a) では受光素子4aと受光素子
4bとを別体としたが、図4(b) に示すように、更に、
ミラー10mを使用することによって共通の受光素子4
cを用いることも可能である。In FIG. 4A, the light receiving element 4a and the light receiving element 4b are separated from each other, but as shown in FIG.
By using the mirror 10m, the common light receiving element 4 can be used.
It is also possible to use c.
【0030】このように本発明によれば、プリズムを構
成した被検液に平行光を透過させ、受光素子4上に受光
させているので、該透過光を凸レンズ5を介し受光素子
4上に受光させた場合の受光位置は屈折率のみに依存す
るようになり、該凸レンズ5を介さないで受光させた場
合の受光位置は被検液の高さと屈折率に依存することに
なる。As described above, according to the present invention, since the parallel light is transmitted through the test liquid constituting the prism and is received on the light receiving element 4, the transmitted light is transmitted onto the light receiving element 4 via the convex lens 5. The light receiving position when receiving light depends only on the refractive index, and the light receiving position when receiving light without passing through the convex lens 5 depends on the height and the refractive index of the test solution.
【0031】これによって、被検液の屈折率すなわち比
重と、液面高さすなわち被検液の量を1つの装置で求め
ることができ、装置コストを大幅に低下させることがで
きる。Thus, the refractive index, that is, the specific gravity, and the liquid level, that is, the amount of the test liquid, of the test liquid can be obtained by one apparatus, and the cost of the apparatus can be greatly reduced.
【0032】なお、被検液2として高精度屈折率計で値
付けされたショ糖水溶液を用い、入射角αを20°とし
て、屈折率nDと受光素子4としてのCCDのアドレス
(受光位置)との関係を求めたところ、図5に示すよう
に、相関誤差がnD=±0.0001以内の高精度の測
定ができることが分かった。図5において、横軸はCC
Dのアドレス、縦軸は屈折率nDである。A sucrose solution valued by a high-precision refractometer is used as the test liquid 2, the incident angle α is set to 20 °, the refractive index nD and the address of the CCD as the light receiving element 4 (light receiving position). As a result, as shown in FIG. 5, it was found that a highly accurate measurement with a correlation error of nD = ± 0.0001 or less can be performed. In FIG. 5, the horizontal axis is CC
The address of D, and the vertical axis is the refractive index nD.
【0033】又、被検液2として高精度屈折率計で値付
けされたショ糖水溶液を用い、入射角αを20°とし
て、液面高さと受光素子4としてのCCDのアドレス
(受光位置)との関係を求めたところ、図6に示すよう
に、液面高さ相関誤差が±1mm以内の高精度の測定が
できることが分かった。図6において、横軸はCCDの
アドレス、縦軸は液面高さ(mm)であり、屈折率nD=1.
33299 ,1.33992 ,1.34752 ,1.35637 の4つの異なる
液について液面高さとCCDのアドレス(受光位置)と
の関係が示されている。Further, a sucrose aqueous solution valued by a high-precision refractometer is used as the test liquid 2, the incident angle α is set to 20 °, the liquid level and the address of the CCD as the light receiving element 4 (light receiving position). As a result, as shown in FIG. 6, it was found that the liquid level height correlation error could be measured with high accuracy within ± 1 mm. In FIG. 6, the horizontal axis represents the CCD address, the vertical axis represents the liquid level (mm), and the refractive index nD = 1.
The relationship between the liquid level and the CCD address (light receiving position) is shown for four different liquids 33299, 1.33992, 1.34752, and 1.35637.
【0034】なお、上記実施例において、容器1は装置
に備付けの構成とし、各被検者が自分の尿を該容器に入
れるようにすることができ、この場合は洗浄装置をそな
える構成とし、一回の測定が終了すると上記容器を洗浄
する必要がある。In the above embodiment, the container 1 is provided in the apparatus so that each subject can put his or her own urine in the container. In this case, the apparatus is provided with a washing device. After one measurement, the container needs to be washed.
【0035】また、被検液(尿)2を採取する個々の被
検者に特定の容器1を貸与するようにし、各人が自分の
尿を該容器1に採取して、その容器1を装置の所定の位
置に載置する構成としてもよく、この場合には各人が測
定終了後に自分の容器を洗浄することになる。Also, a specific container 1 is lent to each subject who collects the test liquid (urine) 2, and each person collects his / her own urine in the container 1 and transfers the container 1 The apparatus may be placed at a predetermined position on the apparatus. In this case, each person will wash his / her own container after the measurement is completed.
【0036】[0036]
【発明の効果】以上に説明したように、本発明は被検液
の屈折率すなわち比重と、液面高さすなわち被検液の量
を1つの装置で求めることができ、装置コストを大幅に
低下させることができる効果がある。As described above, according to the present invention, the refractive index, that is, the specific gravity of the test liquid, and the liquid surface height, that is, the amount of the test liquid, can be obtained by one apparatus, and the apparatus cost is greatly reduced. There is an effect that can be reduced.
【図1】本発明の液比重測定の原理図である。FIG. 1 is a principle diagram of a liquid specific gravity measurement of the present invention.
【図2】本発明の液量測定の原理図である。FIG. 2 is a principle diagram of the liquid amount measurement of the present invention.
【図3】本発明の実施例の構成図である。FIG. 3 is a configuration diagram of an embodiment of the present invention.
【図4】本発明の別の実施例の要部拡大図である。FIG. 4 is an enlarged view of a main part of another embodiment of the present invention.
【図5】本発明の入射角20°における屈折率・CCD
アドレス関係図である。FIG. 5 shows a refractive index / CCD at an incident angle of 20 ° according to the present invention.
It is an address relationship diagram.
【図6】本発明の入射角20°における液面高さ・CC
Dアドレス関係図である。FIG. 6 shows the liquid level height CC at an incident angle of 20 ° according to the present invention.
It is a D address relationship diagram.
2 被検液 2a 出射面 3 光源 4 受光素子 5 凸レンズ α 入射角 L 液面 nD 屈折率 Pe ,Pe1,Pe2 受光位置2 test liquid 2a exit surface 3 the light source 4 light receiving element 5 convex α incident angle L liquid surface nD refractive index P e, P e1, P e2 receiving position
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 9/00 - 9/36 G01N 21/17 - 21/61 G01N 33/493 G01F 23/28──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01N 9/00-9/36 G01N 21/17-21/61 G01N 33/493 G01F 23/28
Claims (5)
定の入射角で平行光線を入射し、該被検液よりの透過光
線を凸レンズを介して受光素子上に結像させた時の受光
位置に基づいて液の屈折率を算出するとともに、上記凸
レンズを外した状態で受光素子に受光させた受光位置と
上記算出された屈折率とに基づいて液面の高さを算出
し、上記屈折率と液面の高さより、液比重と液量を求め
ることを特徴とする液の比重及び液量の測定方法。When a parallel light beam is incident on a liquid surface of a test liquid constituting a prism surface at a predetermined incident angle, and a transmitted light from the test liquid is imaged on a light receiving element via a convex lens. The refractive index of the liquid is calculated based on the light receiving position of the liquid crystal, and the height of the liquid surface is calculated based on the light receiving position at which the light receiving element receives light with the convex lens removed and the calculated refractive index, A method for measuring a specific gravity and a liquid amount of a liquid, wherein a liquid specific gravity and a liquid amount are obtained from the refractive index and the height of the liquid surface.
定の入射角で平行光線を照射する光源と、上記被検液よ
りの透過光線を受光する受光素子と、上記被検液と上記
受光素子との間の上記平行光線の光路上に出し入れされ
るとともに、上記平行光線上に位置する時に上記平行光
線を受光素子上に結像させる凸レンズと、上記凸レンズ
を上記光路上に位置させた時の上記受光素子の受光位置
に基づいて液の屈折率を演算するとともに、該演算され
た屈折率と上記凸レンズを上記光路外に位置させた時の
上記受光素子の受光位置とに基づいて被検液の液面の高
さを演算し、上記屈折率と基被検液の液面の高さに基づ
いて液の比重と液量を求めることを特徴とする液の比重
及び液量の測定装置2. A light source for irradiating a parallel light beam at a predetermined incident angle to a liquid surface of a test liquid constituting a prism surface, a light receiving element for receiving a transmitted light from the test liquid, and A convex lens that moves in and out of the optical path of the parallel light beam between the light receiving element and forms an image of the parallel light beam on the light receiving element when located on the parallel light ray, and positions the convex lens on the optical path. Calculating the refractive index of the liquid based on the light receiving position of the light receiving element at the time of, based on the calculated refractive index and the light receiving position of the light receiving element when the convex lens is positioned outside the optical path. Calculating the liquid surface height of the test liquid, and calculating the specific gravity and liquid amount of the liquid based on the refractive index and the liquid surface height of the base test liquid, measuring device
記被検液の出射面から出射する平行光線の一部を分割す
る光分割手段を備え、上記光分割手段によって分割され
た一方の平行光線を上記凸レンズに入射するとともに、
他方の平行光線を直接受光素子に入射する構成とした請
求項2に記載の液の比重及び液量の測定装置。3. A light splitting means for fixing the convex lens and splitting a part of the parallel light beam emitted from the light emitting surface of the test liquid, wherein one of the parallel light beams split by the light splitting means is split. While entering the convex lens,
3. The measuring device according to claim 2, wherein the other parallel light beam is directly incident on the light receiving element.
と、他方の平行光線を受光する受光素子を共通とした請
求項3に記載の液の比重及び液量の測定装置。4. The apparatus for measuring the specific gravity and liquid volume of a liquid according to claim 3, wherein the light receiving element for receiving the one parallel light beam and the light receiving element for receiving the other parallel light beam are common.
受光するそれぞれ別個の受光素子を備えた請求項3に記
載の液の比重及び液量の測定装置。5. An apparatus according to claim 3, further comprising separate light receiving elements for receiving the one parallel light beam and the other parallel light beam, respectively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5500096A JP2784341B2 (en) | 1996-03-12 | 1996-03-12 | Method and apparatus for measuring specific gravity and liquid volume of liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5500096A JP2784341B2 (en) | 1996-03-12 | 1996-03-12 | Method and apparatus for measuring specific gravity and liquid volume of liquid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09243558A JPH09243558A (en) | 1997-09-19 |
JP2784341B2 true JP2784341B2 (en) | 1998-08-06 |
Family
ID=12986396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5500096A Expired - Fee Related JP2784341B2 (en) | 1996-03-12 | 1996-03-12 | Method and apparatus for measuring specific gravity and liquid volume of liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2784341B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6087182A (en) | 1998-08-27 | 2000-07-11 | Abbott Laboratories | Reagentless analysis of biological samples |
JP5196400B2 (en) * | 2008-06-27 | 2013-05-15 | 株式会社Suwaオプトロニクス | Specific gravity measuring device for liquid sample |
US10337994B2 (en) | 2016-09-20 | 2019-07-02 | Kabushiki Kaisha Toshiba | Sample liquid measuring device and measuring method |
JP6386122B2 (en) * | 2016-09-20 | 2018-09-05 | 株式会社東芝 | Sample liquid measuring apparatus and measuring method |
-
1996
- 1996-03-12 JP JP5500096A patent/JP2784341B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09243558A (en) | 1997-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3471804B2 (en) | Inspection equipment for optical components | |
JPH11311504A (en) | Digital range sensor system | |
JP2005513491A (en) | Method and apparatus for the determination of light transport parameters and analytes in biological matrices | |
JPH0652171B2 (en) | Optical non-contact position measuring device | |
RU2171481C1 (en) | Quartz gravity meter | |
JP2784341B2 (en) | Method and apparatus for measuring specific gravity and liquid volume of liquid | |
US20020159050A1 (en) | Hand-held automatic refractometer | |
ES2381519T3 (en) | Procedure and device for the determination and measurement of deviations in the form and undulations in rotationally symmetrical parts | |
WO2012119274A1 (en) | Device and method for surface tension detection | |
US6947145B2 (en) | Measuring apparatus | |
JPH0345322B2 (en) | ||
GB2043389A (en) | Photoelectrical measuring method and apparatus | |
JPS5964022A (en) | Method and apparatus for measuring refractivity | |
JPS6212840A (en) | Method and instrument for measuring concentration of liquid to be examined | |
JP3510215B2 (en) | Tilt angle detecting device and tilt angle measuring method in one-dimensional measuring direction | |
JP2002257706A (en) | Probe for measuring light scattering | |
US3068687A (en) | Method and apparatus for measuring the surface tension of liquids | |
JPH03218442A (en) | Differential refractometer | |
JP4442843B2 (en) | Refractive index measuring device for test lens | |
SU1004755A1 (en) | Optical method of measuring object surface roughness height | |
SU1265472A1 (en) | Device for measuring contour of cross section of transparent optical members | |
JP2001183255A (en) | Lens meter | |
JPS62140029A (en) | Apparatus for measuring surface level of liquid | |
RU2156437C2 (en) | Gear determining surface roughness | |
JPH0545175B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |