[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2782600B2 - Method for forming copper diffusion preventing film having two-layer structure - Google Patents

Method for forming copper diffusion preventing film having two-layer structure

Info

Publication number
JP2782600B2
JP2782600B2 JP8339315A JP33931596A JP2782600B2 JP 2782600 B2 JP2782600 B2 JP 2782600B2 JP 8339315 A JP8339315 A JP 8339315A JP 33931596 A JP33931596 A JP 33931596A JP 2782600 B2 JP2782600 B2 JP 2782600B2
Authority
JP
Japan
Prior art keywords
copper
barrier metal
metal layer
film
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8339315A
Other languages
Japanese (ja)
Other versions
JPH09186157A (en
Inventor
スーン チュン ソウン
ウーク パク チョン
ウォン キム ドン
ジュン リー ウォン
キュン ラ サ
ユン リー セウン
イル リー キュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ERU JII SEMIKON CO Ltd
Original Assignee
ERU JII SEMIKON CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ERU JII SEMIKON CO Ltd filed Critical ERU JII SEMIKON CO Ltd
Publication of JPH09186157A publication Critical patent/JPH09186157A/en
Application granted granted Critical
Publication of JP2782600B2 publication Critical patent/JP2782600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2層構造の銅拡散
障壁膜(diffusion barrier film)を形成する方法に係
るもので、詳しくは、半導体素子の銅配線を行う時、銅
の拡散性を効果的に抑制するように半導体基板と銅配線
用銅薄膜に2層構造の銅拡散防止膜を形成する方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a copper diffusion barrier film having a two-layer structure. The present invention relates to a method for forming a copper diffusion preventing film having a two-layer structure on a semiconductor substrate and a copper thin film for copper wiring so as to effectively suppress the diffusion.

【0002】[0002]

【従来の技術】一般に、半導体素子の配線材料として、
エレクトロマイグレーション(electromigration:以
下、EMと略称する)性の優れたタングステン及び相対
的に電気抵抗の低いアルミニウムが広く用いられてい
る。然るに、このような金属配線は、素子がハーフサブ
ミクロンジオメトリー(half submicron geometry )に
縮小されるに従い、EM性の低下、配線長さの増加、金
属薄膜断面積の減少による抵抗の増加、絶縁膜厚さの減
少、及び金属配線(metal line)間の幅が減少して、素
子の動作速度が低下する欠点があった。
2. Description of the Related Art Generally, as a wiring material of a semiconductor element,
Tungsten having excellent electromigration (hereinafter abbreviated as EM) properties and aluminum having relatively low electric resistance are widely used. However, as the device is reduced to a half submicron geometry, the metal wiring has a reduced EM property, an increased wiring length, an increased resistance due to a reduced metal thin film cross-sectional area, an increased insulation. There is a disadvantage that the operating speed of the device is reduced due to a decrease in the film thickness and a width between metal lines.

【0003】そこで、近年、前記アルミニウム配線に比
べ低い電気抵抗を有しEM性の優れた銅が配線材料とし
て提示されているが、銅は、低い耐酸化性及び速い拡散
性(例えば、990℃のシリコン基板において、アルミ
ニウムの拡散性(Aldiffusivity )は10 -14 cm 2
であるのに対し、銅の拡散性(Cu diffusivity)は
-4 cm 2 /sを有するため、シリコン及び大部分の金
属中で電子の移動が速くなり、その結果、金属膜を通っ
てシリコン内に銅が拡散され素子が断線する虞れがあ
る。
In recent years, copper having low electric resistance and excellent EM properties as compared with the aluminum wiring has been proposed as a wiring material. However, copper has low oxidation resistance and fast diffusion (for example, 990 ° C.). In the silicon substrate, the diffusivity (Aldiffusivity) of aluminum is 10 −14 cm 2 /
s , whereas the copper diffusivity is 1
Since it has 0 -4 cm 2 / s , the movement of electrons in silicon and most metals is accelerated, and as a result, copper is diffused into silicon through the metal film and the element may be disconnected.

【0004】また、前記銅は、シリコン内で再結合中心
(recombination center)として作用し、小数キャリア
(minority carrier)の寿命を減少させ素子の動作にも
影響を与える。従って、前記銅を配線材料として用いる
ためには、以上の欠点を解決すべきであって、特に、前
記シリコン中における大きな拡散係数は、処理時に相互
拡散してCu/Si(又はCu/誘電体膜)界面の熱的
安定性を脅かし、素子の信頼性を大きく減少させるの
で、CuとSi(又はCuと誘電体膜)間にはそれらの
反応を防ぐための拡散防止膜が必要となる。
[0004] The copper also acts as a recombination center in silicon, reducing the lifetime of minority carriers and affecting the operation of the device. Therefore, in order to use the copper as a wiring material, the above-mentioned disadvantages must be solved. In particular, a large diffusion coefficient in the silicon causes interdiffusion during processing to cause Cu / Si (or Cu / dielectric). Since the thermal stability of the (film) interface is threatened and the reliability of the device is greatly reduced, a diffusion preventing film is required between Cu and Si (or Cu and dielectric film) to prevent such a reaction.

【0005】前記拡散防止膜は、銅との化学的親和力が
なく、高温で結晶粒界の欠陥が発生せず、銅及びシリコ
ンの高固溶度及び高拡散度に対し抵抗性を有するべきで
ある。従来の拡散防止膜においては、文献「E.Kolawa.
JS Chen. JS Reid. P J.Pokela, and M.A. Nicolet, "T
antalum-based diffusion barriers in Si/Cu VLSIMeta
llizations" J.Appl.phys.70, 1369(1991)及び J.O.Olo
wolate, C.J. Mogab,R.B. Gregory,and M.Kottle, App
l. phys. 72, 4009, 1992 」に記載されたように、Ta
を用いた元素防止膜と、TiW、TiN及びTaNを用
いた化合物防止膜とが提案されている。
The anti-diffusion film should have no chemical affinity with copper, have no crystal grain boundary defects at high temperatures, and be resistant to high solid solubility and high diffusion of copper and silicon. is there. In the conventional diffusion prevention film, the document `` E. Kolawa.
JS Chen. JS Reid. P J. Pokela, and MA Nicolet, "T
antalum-based diffusion barriers in Si / Cu VLSIMeta
llizations "J. Appl. phys. 70, 1369 (1991) and JOOlo
wolate, CJ Mogab, RB Gregory, and M. Kottle, App
l. phys. 72, 4009, 1992.
And an element prevention film using TiW, TiN and TaN have been proposed.

【0006】しかし、前記TiWは、比較的高温度に至
るまで銅の拡散を防止し得るが、ある温度以上になる
と、Siと一緒に分解反応し、拡散防止膜が破損され
る。又、前記TiNは、比較的広い温度範囲で拡散防止
膜の役割をするが、高温で結晶粒界に欠陥が発生し、銅
が拡散して防止膜が破損される。しかし、このTiN防
止膜は、蒸着方法及び条件に従い電気抵抗、密度、及び
結晶粒の分布が変化して、銅に対する拡散防止膜として
有効な温度が変化されるため、最近、TiN拡散防止膜
を蒸着する途中又は蒸着後に熱処理を施して窒素、酸
素、及び水素を添加し、結晶粒界を遮断して拡散防止膜
の特性を向上させる研究が行われているが、未だよい結
果を得ていない。
[0006] However, the TiW can prevent the diffusion of copper up to a relatively high temperature. However, when the temperature exceeds a certain temperature, the TiW undergoes a decomposition reaction together with Si to damage the diffusion prevention film. In addition, the TiN serves as a diffusion barrier film in a relatively wide temperature range. However, at a high temperature, defects occur in crystal grain boundaries, copper is diffused, and the barrier film is damaged. However, since the electrical resistance, density, and distribution of crystal grains of the TiN prevention film change according to the deposition method and conditions, the effective temperature as a diffusion prevention film for copper is changed. Research has been conducted to add nitrogen, oxygen, and hydrogen by performing heat treatment during or after deposition to improve the characteristics of the diffusion barrier film by blocking crystal grain boundaries, but have not yet obtained good results. .

【0007】更に、前記多結晶拡散防止膜Taは、銅に
対する化学的親和力がなく、固溶度に対する抵抗性はあ
るが、ある程度の温度に至ると銅が結晶粒界に沿って拡
散し、防止膜が破損される。従って、銅の結晶粒界拡散
を防止するため、TaにSiを添加して銅の速い拡散経
路となる結晶粒界の存在しない、比較的高い結晶化温度
を有する非晶質TaSi拡散防止膜が開発されたが、該
非晶質TaSi拡散防止膜は、銅と接触するとき非晶質
拡散防止膜の特性に影響を及ぼす結晶化温度が非常に低
下し、比較的低温度でも銅と反応して拡散防止膜の破損
現象が発生する。
Further, the polycrystalline diffusion preventing film Ta has no chemical affinity for copper and has resistance to solid solubility, but when a certain temperature is reached, copper diffuses along the crystal grain boundaries to prevent the diffusion. The membrane is damaged. Therefore, in order to prevent the crystal grain boundary diffusion of copper, an amorphous TaSi diffusion prevention film having a relatively high crystallization temperature, in which Si is added to Ta and there is no crystal grain boundary which becomes a fast copper diffusion path, is provided. Although developed, the amorphous TaSi diffusion barrier film has a very low crystallization temperature that affects the properties of the amorphous diffusion barrier film when contacted with copper, and reacts with copper even at relatively low temperatures. A damage phenomenon of the diffusion prevention film occurs.

【0008】このような非晶質TaSi拡散防止膜の機
能を改善するため、TaSi化合物に銅との反応がない
2 を添加し、結晶化温度を増加させて結晶粒界の生じ
ない非性質化合物防止膜を形成する研究が行われている
が、前述のように銅と接触した時結晶化温度が低くな
り、比抵抗が1000μΩcm程度に高くなるので、未だ
改善すべき点が多い。
In order to improve the function of such an amorphous TaSi diffusion preventing film, N 2, which does not react with copper, is added to the TaSi compound, and the crystallization temperature is increased so that non-characteristics in which a crystal grain boundary does not occur is obtained. Research has been conducted to form a compound prevention film, but as described above, the crystallization temperature is lowered when contacted with copper, and the specific resistance is increased to about 1000 μΩcm, so that there are still many points to be improved.

【0009】一方、微細構造的における拡散防止膜の特
性を向上させるため、TiN又はTaNに充填処理(st
uffing)を施す実験が、文献「W. Sinke, G.P.A. Frijl
ink,and F.W.Saris, "Oxgen in Titanium Nitride Diff
usion Barrier", Appl.phys.Lett.47,471 (1995)及び
金基凡の”銅配線工程でTiN拡散防止膜の役割に対す
る研究”、ソウル大学校半導体共同研究所、報告書番
号:ISR(94−E−1023)」に提示され、任意
の物質を拡散防止膜として用いる場合、同様な条件下で
微細構造が緻密になるほど優秀な拡散防止膜の性能を得
ることができるし、銅の拡散は拡散防止膜の結晶粒界
(grain boundary)を通って主に発生するということが
証明されている。
On the other hand, in order to improve the characteristics of the diffusion prevention film in the microstructure, TiN or TaN is filled (stN).
uffing) is described in the literature "W. Sinke, GPA Frijl
ink, and FWSaris, "Oxgen in Titanium Nitride Diff
usion Barrier ", Appl. phys. Lett. 47, 471 (1995) and Kim Ki-soon," Study on the Role of TiN Diffusion Prevention Film in Copper Wiring Process ", Seoul National University Semiconductor Joint Research Institute, Report No .: ISR (94- E-1023), when an arbitrary substance is used as a diffusion barrier film, the finer the microstructure is, the more excellent the performance of the diffusion barrier film can be obtained under the same conditions, and the diffusion of copper is a diffusion barrier. It has been proven that it occurs mainly through the grain boundary of the barrier film.

【0010】また、実験の結果、微細構造を充填処理し
ても銅の拡散防止効果は現われなかったが、その理由
は、半導体製造工程において熱処理温度には制限が加え
られ、拡散防止膜の結晶粒界を表面から内部の奥まで十
分に充填することができないためである。
As a result of experiments, the effect of preventing the diffusion of copper did not appear even when the fine structure was filled, because the heat treatment temperature was restricted in the semiconductor manufacturing process, and the crystal of the diffusion prevention film was not crystallized. This is because the grain boundary cannot be sufficiently filled from the surface to the inside.

【0011】[0011]

【発明が解決しようとする課題】然るに、このような従
来の拡散防止膜においては、TiNx、TiWx、T
a、TaNx,及びWNxを用いる場合、500℃で1
時間程度経過すると、障壁(barrier )特性が無くな
る。また、TaSixNy、TiSixNyを用いる場
合は、その組成の変化が甚だしくて実用化が難しい。ま
た、微細構造におけるTiNの結晶粒界を充填処理する
場合は、半導体製造工程中の熱処理温度に制限が加えら
れるため、結晶粒界の表面から内部の奥まで十分に充填
処理を行い得ない等の不都合な点があった。
However, in such a conventional diffusion preventing film, TiNx, TiWx, T
When using a, TaNx, and WNx, 1 at 500 ° C.
After a lapse of time, the barrier characteristics disappear. Further, when TaSixNy or TiSixNy is used, the composition thereof changes significantly, and it is difficult to put it to practical use. Further, in the case of performing the filling treatment of the crystal grain boundary of TiN in the fine structure, since the heat treatment temperature during the semiconductor manufacturing process is limited, the filling treatment cannot be performed sufficiently from the surface of the crystal grain boundary to the inside thereof. There were disadvantages.

【0012】本発明の目的は、基板と銅膜間に、2層構
造の障壁金属を銅拡散防止膜として形成し、銅の拡散性
を良好に抑制し得る2層構造の銅拡散防止膜の形成方法
を提供しようとするものである。
An object of the present invention is to form a two-layer barrier metal between a substrate and a copper film as a copper diffusion prevention film, and to form a two-layer copper diffusion prevention film capable of favorably suppressing copper diffusion. It is intended to provide a forming method.

【0013】[0013]

【課題を解決するための手段】このため、請求項1記載
の本発明の基板と銅膜間に2層構造の銅拡散防止膜を形
成する方法にあっては、前記2層構造の銅拡散防止膜と
して、第1障壁金属層を形成し、次いで、該第1障壁金
属層上に銅合金材質の第2障壁金属層を形成し、該第2
障壁金属層を、Cu−Zn合金、Cu−Mg合金、及び
Cu−Ta合金の何れか1つを用いて形成することを特
徴とする。かかる2層構造の銅拡散防止膜の形成方法に
おいては、基板上に第1障壁金属層を形成し、該第1障
壁金属層上に、Cu−Zn合金、Cu−Mg合金、及び
Cu−Ta合金の何れか1つを用いて第2障壁金属層を
形成し、該第2障壁金属層上に銅膜を蒸着する。
Means for Solving the Problems] Therefore, in the method for forming a copper diffusion preventing film having a two-layer structure between the substrate and the copper film of the present invention of claim 1, wherein the copper diffusion of the two-layer structure Prevention film and
To form a first barrier metal layer, then forming a second barrier metal layer of copper alloy material on the first barrier metal layer, the second
The barrier metal layer is formed using one of a Cu-Zn alloy, a Cu-Mg alloy, and a Cu-Ta alloy. In such a method of forming a copper diffusion prevention film having a two-layer structure, a first barrier metal layer is formed on a substrate, and a Cu—Zn alloy, a Cu—Mg alloy, and a Cu—Ta alloy are formed on the first barrier metal layer. A second barrier metal layer is formed using one of the alloys, and a copper film is deposited on the second barrier metal layer.

【0014】請求項2記載の発明では、前記第1障壁金
属層は、100Å乃至1000Åの厚さに形成する。か
かる構成では、最適な第1障壁金属層が形成できる。請
求項3記載の発明では、前記第2障壁金属層は、100
Å乃至1000Åの厚さに形成する。
According to the second aspect of the present invention, the first barrier metal layer is formed to a thickness of 100 to 1000 degrees. With such a configuration, an optimal first barrier metal layer can be formed. In the invention according to claim 3, the second barrier metal layer has a thickness of 100%.
It is formed to a thickness of {1000}.

【0015】かかる構成では、最適な第2障壁金属層が
形成できる。請求項4記載の発明では、具体的に、前記
第1障壁金属層は、TiNx,TiWx,Ta,TaN
x,WNx,TaSixNy,及びTiSixNyの何
れか1つを用いて形成する。
With such a configuration, an optimum second barrier metal layer can be formed. In the invention according to claim 4, specifically, the first barrier metal layer is made of TiNx, TiWx, Ta, TaN.
x, it formed using WNx, TaSixNy, and any one of TiSixNy.

【0016】請求項記載の発明では、前記第2障壁金
属層は、化学気相蒸着法又は物理蒸着法を用いて形成す
る。かかる構成では、化学気相蒸着法を用いれば、下層
構造に影響を与えないで第2障壁金属層を形成できる。
また、物理蒸着法を用いれば汚染が少なく接触性の優れ
2障壁金属層が得られる。
According to a fifth aspect of the present invention, the second barrier metal layer is formed by using a chemical vapor deposition method or a physical vapor deposition method. In such a configuration, by using the chemical vapor deposition method, the second barrier metal layer can be formed without affecting the lower layer structure.
The second barrier metal layer contamination excellent in less contact resistance by using the physical vapor deposition is obtained.

【0017】前記Cu−Zn合金の場合は、請求項
載のように、Znの含有量が88ー97wt.%とする
とよい。かかる構成では、Cu−Zn合金を使用した時
に最適な第2障壁金属層が形成できる。
[0017] When the Cu-Zn alloy, as claimed in claim 6, wherein the content of Zn is 88 over 97 wt. It is good to be%. In such a configuration, Ru can best second barrier metal layer is formed when using the Cu-Zn alloy.

【0018】前記Cu−Mg合金の場合は、請求項
載のように、Mgの含有量が43.4wt.%以上とす
るとよい。かかる構成では、Cu−Mg合金を使用した
時に最適な第2障壁金属層が形成できる。
[0018] For the Cu-Mg alloy, as claimed in claim 7 wherein, the content of Mg 43.4wt. %. With such a configuration, an optimal second barrier metal layer can be formed when a Cu-Mg alloy is used.

【0019】前記Cu−Ta合金の場合は、請求項
載のように、Taの含有量が30wt.%以上とすると
よい。かかる構成では、Cu−Ta合金を使用した時に
最適な第2障壁金属層が形成できる。請求項記載の発
明では、半導体製造時の基板と配線用銅膜との間に適用
する。
In the case of the Cu-Ta alloy, as claimed in claim 8, 30 wt content of Ta. %. With such a configuration, an optimal second barrier metal layer can be formed when using a Cu-Ta alloy. According to the ninth aspect of the present invention, the present invention is applied between a substrate at the time of manufacturing a semiconductor and a copper film for wiring.

【0020】かかる構成では、半導体素子の銅配線の信
頼性が向上する。
With this configuration, the reliability of the copper wiring of the semiconductor element is improved.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。先ず、本発明は、低抵抗性及び優秀なEM
性を有し銅の速い拡散性を良好に抑制するため、安定し
た組成を有する銅合金を用いて2層構造の銅拡散防止膜
を基板上に形成するものである。特に、銅合金内に銅が
拡散されるときは多くのエネルギーを必要とする特性を
利用し銅の拡散を抑制させたものである。
Embodiments of the present invention will be described below. First, the present invention provides low resistance and excellent EM
In order to satisfactorily suppress the rapid diffusion of copper having a property, a copper diffusion prevention film having a two-layer structure is formed on a substrate using a copper alloy having a stable composition. In particular, when copper is diffused in a copper alloy, the diffusion of copper is suppressed by using a property requiring a large amount of energy.

【0022】この時、用いられる銅合金としては、Eric
A. Brandes の編集した”SmithellsMetals Reference
Book”に提示されたように、抵抗値を落とさず安定した
相を有するCu−Zn合金、Cu−Mg合金、或いはC
u−Ta合金が用いられる。図2及び図3に、Cu−Z
n合金、Cu−Mg合金の具体的な成分組成の平衡状態
図を示す。
At this time, the copper alloy used is Eric
A. Brandes' edited “SmithellsMetals Reference
As presented in Book ", without reducing the resistance Cu-Zn alloy having a stable phase, Cu -Mg alloy, or C
A u-Ta alloy is used. 2 and 3 show Cu-Z
n alloys, shows a equilibrium diagram of a specific composition of Cu -Mg alloy.

【0023】図2中のα相、β相、β′相、γ相、δ
相、ε相及びη相は、各相領域の名称を示した文字であ
る。そして、図2に示したように、Cu−Zn合金は、
Zn2 Cuとε相+η相との共存するZnを88ー97
wt.%有した銅合金であり、図3に示したように、C
−Mg合金は、Mg2 CuとMgとの共存するMgが
43.4wt.%以上の銅合金である。Cu−Ta合金
は、図示しないがTaが30wt.%以上の銅合金であ
る。
In FIG. 2, α phase, β phase, β 'phase, γ phase, δ
Phase, ε-phase and η-phase are characters indicating the name of each phase area.
You. And, as shown in FIG. 2, the Cu—Zn alloy
88-97 Zn coexisting with Zn 2 Cu and ε phase + η phase
wt. A% have copper alloy, as shown in FIG. 3, C
In the u- Mg alloy, Mg coexisting with Mg 2 Cu and Mg is 43.4 wt. % Or more of copper alloy. Although not shown, the Cu—Ta alloy has a content of 30 wt. % Or more of copper alloy.

【0024】このような銅合金を用いて本発明に係る2
構造の拡散防止膜を形成する方法においては、図1に
示したように、基板100上に第1障壁金属層102を
形成する工程と、該第1障壁金属層102上に前述の銅
合金からなる第2障壁金属層104を形成する工程と、
該第2障壁金属層104上に銅膜106を蒸着する工程
と、を順次行うようになっている。
According to the present invention, using such a copper alloy,
In the method of forming a diffusion prevention film having a layered structure, as shown in FIG. 1, a step of forming a first barrier metal layer 102 on a substrate 100 and a step of forming the above-described copper alloy on the first barrier metal layer 102 Forming a second barrier metal layer 104 made of
And a step of depositing a copper film 106 on the second barrier metal layer 104.

【0025】即ち、先ず、基板100上にTiNx、T
iWx,Ta,TaNx,WNx,TsSixNy,及
びTiSixNyの何れか1つを用いて第1障壁金属層
102を100Å乃至1000Åの厚さに形成する。そ
の後、第1障壁金属層102上にCu−Zn合金、Cu
−Mg合金、及びCu−Ta合金の何れか1つを、化学
気相蒸着法(chemical vapour deposition;CVD)又
は物理蒸着法(physical vapour deposition;PVD)
を用いて、第2障壁金属層104を100Å乃至100
0Åの厚さに形成し、第1障壁金属層102及びCu合
金の第2障壁金属層104の積層された2層構造の銅拡
散防止膜を前記基板100上に形成する。前記化学気相
蒸着法は化学ガスを用いる方法であり、下層構造に影響
を与えないで第2障壁金属層104の薄膜を形成するこ
とができる。また、物理蒸着法は物理的なエネルギーを
利用するものでので、例えばスパッタリングが一般的
に使用されるが、この場合、十分に低い温度(25℃〜
35℃)で蒸着ができるため、汚染が少なく、接触性の
優れた第2障壁金属層104が形成できる。
That is, first, TiNx, T
The first barrier metal layer 102 is formed to a thickness of 100 to 1000 using one of iWx, Ta, TaNx, WNx, TsSixNy, and TiSixNy. Thereafter, Cu-Zn alloy on the first barrier metal layer 102, Cu
Any one of a Mg alloy and a Cu-Ta alloy by chemical vapor deposition (CVD) or physical vapor deposition (PVD);
The second barrier metal layer 104 is formed by using
A copper diffusion preventing film having a thickness of 0 ° and having a two-layer structure in which a first barrier metal layer 102 and a second barrier metal layer 104 of a Cu alloy are stacked is formed on the substrate 100. The chemical vapor deposition method uses a chemical gas, and can form a thin film of the second barrier metal layer 104 without affecting the underlying structure. In addition, since the physical vapor deposition method utilizes physical energy, for example, a sputtering method is generally used. In this case, a sufficiently low temperature (25 ° C.
(35 ° C.), so that the second barrier metal layer 104 with little contamination and excellent contact properties can be formed.

【0026】次いで、該第2障壁金属層104上に金属
有機化学気相蒸着法(metal-organicchemical vapor de
position;MOCVD)を用いてCu膜106を蒸着し
本発明に係る2層構造の銅拡散防止膜が形成される。こ
のように、2層構造の銅拡散防止膜を形成すると、前記
第2障壁金属層104上に銅膜を蒸着するとき、銅が銅
合金の第2障壁金属内に拡散しようとしても、多くのエ
ネルギを必要とするため、銅の拡散が抑制される。
Next, a metal-organic chemical vapor deposition method is applied on the second barrier metal layer 104.
position; MOCVD) copper diffusion preventing film having a two-layer structure engaging Ru deposition to the present invention a Cu film 106 by using a is formed. As described above, when the copper diffusion barrier film having the two-layer structure is formed, when the copper film is deposited on the second barrier metal layer 104, even if copper attempts to diffuse into the second barrier metal of the copper alloy, a large amount of copper is prevented. Since energy is required, diffusion of copper is suppressed.

【0027】尚、このような2層構造の銅拡散防止膜形
成方法は、本実施形態では半導体素子製造時の場合につ
いて説明したが半導体素子に限定されず、他の用途にも
使用することができる。
In this embodiment, the method for forming a copper diffusion preventing film having a two-layer structure has been described in the case of manufacturing a semiconductor device. However, the present invention is not limited to a semiconductor device and may be used for other purposes. it can.

【0028】[0028]

【発明の効果】以上、説明したように本発明に係る2層
構造の銅拡散防止膜の形成方法によれば、第1障壁金属
層上に銅合金の第2障壁金属層が積層された2層構造の
銅拡散防止膜を形成するようになっているため、従来の
単層の銅拡散防止膜よりも銅蒸着時の銅拡散を略2倍以
上抑制できる。
As described above, according to the method for forming a copper diffusion preventing film having a two-layer structure according to the present invention, a second barrier metal layer of a copper alloy is laminated on a first barrier metal layer. Since a copper diffusion prevention film having a layered structure is formed, copper diffusion during copper deposition can be suppressed to about twice or more as compared with a conventional single-layer copper diffusion prevention film.

【0029】請求項2、3記載の発明によれば、最適な
銅拡散防止膜を形成できる。請求項記載の発明によれ
ば、化学気相蒸着法を用いると、下層構造に影響を与え
ないで第2障壁金属層を形成できる。また、物理蒸着法
を用いれば汚染が少なく接触性の優れた2障壁金属層
が得られる。請求項6〜8記載の発明によれば、それぞ
れの銅合金を用いた時に最適な第2障壁金属層が形成で
きる。
According to the second and third aspects of the present invention, an optimum copper diffusion preventing film can be formed. According to the fifth aspect of the present invention, by using the chemical vapor deposition method, the second barrier metal layer can be formed without affecting the lower layer structure. The second barrier metal layer contamination excellent in less contact resistance by using the physical vapor deposition is obtained. According to the inventions described in claims 6 to 8 , an optimum second barrier metal layer can be formed when each of the copper alloys is used.

【0030】請求項記載の発明のように、半導体素子
製造時の基板と配線用銅膜との間に適用すれば、半導体
素子の銅配線の信頼性を向上し得るという効果がある。
[0030] As the invention of claim 9, wherein, when applied between the substrate during semiconductor device fabrication and interconnection copper film, there is an effect that can improve the reliability of the copper wiring in a semiconductor device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る銅拡散防止膜構造の一実施例を示
す概略縦断図である。
FIG. 1 is a schematic longitudinal sectional view showing one embodiment of a copper diffusion preventing film structure according to the present invention.

【図2】第2障壁金属層形成用Cu−Zn合金の成分組
成の平衡状態図である。
FIG. 2 is an equilibrium diagram of a component composition of a Cu—Zn alloy for forming a second barrier metal layer.

【図3】第2障壁金属層形成用Cu−Mg合金の成分組
成の平衡状態図である。
FIG. 3 is an equilibrium diagram of a component composition of a Cu—Mg alloy for forming a second barrier metal layer.

【符号の説明】[Explanation of symbols]

100 基板 102 第1障壁金属層 104 第2障壁金属層 106 銅膜 Reference Signs List 100 substrate 102 first barrier metal layer 104 second barrier metal layer 106 copper film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ドン ウォン キム 大韓民国、ソウル、エウンピュンーク、 ブルクワン−ドン、245−111 (72)発明者 ウォン ジュン リー 大韓民国、デジョン、ユーソン−ク、ク スン−ドン、373−1 (72)発明者 サ キュン ラ 大韓民国、ソウル、ジューンラン−ク、 ミュンモク−ドン、161−6 (72)発明者 セウン ユン リー 大韓民国、ソウル、ヨンサン−ク、カル ウォル−ドン、14−24 (72)発明者 キュン イル リー 大韓民国、ソウル、カンドン−ク、ドゥ ーンチョン−ドン、54 (56)参考文献 特開 平7−235538(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 21/3205 H01L 21/3213 H01L 21/768 H01L 21/28 - 21/288 H01L 29/40 - 29/51──────────────────────────────────────────────────の Continued on the front page (72) Inventor Don Wong Kim South Korea, Seoul, Eunpyung, Burgwan-dong, 245-111 -1 (72) Inventor Sa Kyung La Republic of Korea, Seoul, June Land, Mun Mok-dong, 161-6 (72) Inventor Seung Yoon Lee South Korea, Seoul, Yongsan-Kul, Cal Wal-Dong, 14-24 (72) Inventor Kyun Il Lee, Republic of Korea, Seoul, Kangdong-ku, Duncheon-dong, 54 (56) References JP-A-7-235538 (JP, A) (58) Fields investigated (Int. Cl. 6) , DB name) H01L 21/3205 H01L 21/3213 H01L 21/768 H01L 21/28-21/288 H01L 29/40-29/51

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板と銅膜間に、銅の拡散を抑制する2層
構造の銅拡散防止膜を形成する方法であって、 前記2層構造の銅拡散防止膜として、第1障壁金属層を
形成し、次いで、該第1障壁金属層上に銅合金材質の第
2障壁金属層を形成し、該第2障壁金属層を、Cu−Z
n合金、Cu−Mg合金、及びCu−Ta合金の何れか
1つを用いて形成することを特徴とする2層構造の銅拡
散防止膜の形成方法。
1. A method for forming a copper diffusion prevention film having a two-layer structure between a substrate and a copper film, the copper diffusion prevention film having a two-layer structure, the first barrier metal layer being used as the copper diffusion prevention film having the two-layer structure. Then, a second barrier metal layer made of a copper alloy material is formed on the first barrier metal layer, and the second barrier metal layer is formed of Cu-Z
A method for forming a copper diffusion prevention film having a two-layer structure, wherein the method is formed by using any one of an n alloy, a Cu-Mg alloy, and a Cu-Ta alloy.
【請求項2】前記第1障壁金属層は、100Å乃至10
00Åの厚さに形成する請求項1記載の2層構造の銅拡
散防止膜の形成方法。
2. The method according to claim 1, wherein the first barrier metal layer has a thickness of 100 ° to 10 °.
2. The method for forming a copper diffusion prevention film having a two-layer structure according to claim 1, wherein the copper diffusion prevention film is formed to a thickness of 00 °.
【請求項3】前記第2障壁金属層は、100Å乃至10
00Åの厚さに形成する請求項1又は2記載の2層構造
の銅拡散防止膜の形成方法。
3. The method according to claim 1, wherein the second barrier metal layer has a thickness of 100 ° to 10 °.
3. The method for forming a copper diffusion prevention film having a two-layer structure according to claim 1, wherein the copper diffusion prevention film is formed to a thickness of 00 °.
【請求項4】前記第1障壁金属層は、TiNx,TiW
x,Ta,TaNx,WNx,TaSixNy,及びT
iSixNyの何れか1つを用いて形成する請求項1〜
3のいずれか1つに記載の2層構造の銅拡散防止膜の形
成方法。
4. The first barrier metal layer is formed of TiNx, TiW.
x, Ta, TaNx, WNx, TaSixNy, and T
4. The method according to claim 1, wherein the first electrode is formed using any one of iSixNy.
3. The method for forming a copper diffusion prevention film having a two-layer structure according to any one of 3.
【請求項5】前記第2障壁金属層は、化学気相蒸着法又
は物理蒸着法を用いて形成する請求項1〜4のいずれか
1つに記載の2層構造の銅拡散防止膜の形成方法。
5. The formation of the copper diffusion prevention film having a two-layer structure according to claim 1, wherein the second barrier metal layer is formed by using a chemical vapor deposition method or a physical vapor deposition method. Method.
【請求項6】前記Cu−Zn合金は、Znの含有量が8
8ー97wt.%である請求項1記載の2層構造の銅拡
散防止膜の形成方法。
6. The Cu—Zn alloy has a Zn content of 8%.
8-97 wt. 2. The method for forming a copper diffusion preventing film having a two-layer structure according to claim 1.
【請求項7】前記Cu−Mg合金は、Mgの含有量が4
3.4wt.%以上である請求項1記載の2層構造の銅
拡散防止膜の形成方法。
7. The Cu—Mg alloy has a Mg content of 4%.
3.4 wt. %. The method for forming a copper diffusion prevention film having a two-layer structure according to claim 1.
【請求項8】前記Cu−Ta合金は、Taの含有量が3
0wt.%以上である請求項1記載の2層構造の銅拡散
防止膜の形成方法。
8. The Cu—Ta alloy has a Ta content of 3%.
0 wt. %. The method for forming a copper diffusion prevention film having a two-layer structure according to claim 1.
【請求項9】半導体製造時の基板と配線用銅膜との間に
適用する請求項1〜8のいずれか1つに記載の2層構造
の銅拡散防止膜の形成方法。
9. The method for forming a copper diffusion prevention film having a two-layer structure according to claim 1, wherein the method is applied between a substrate and a copper film for wiring at the time of manufacturing a semiconductor.
JP8339315A 1995-12-28 1996-12-19 Method for forming copper diffusion preventing film having two-layer structure Expired - Fee Related JP2782600B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR62058/1995 1995-12-28
KR1019950062058A KR0179795B1 (en) 1995-12-28 1995-12-28 Method of diffusion barrier film

Publications (2)

Publication Number Publication Date
JPH09186157A JPH09186157A (en) 1997-07-15
JP2782600B2 true JP2782600B2 (en) 1998-08-06

Family

ID=19446087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8339315A Expired - Fee Related JP2782600B2 (en) 1995-12-28 1996-12-19 Method for forming copper diffusion preventing film having two-layer structure

Country Status (2)

Country Link
JP (1) JP2782600B2 (en)
KR (1) KR0179795B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100270593B1 (en) 1996-06-11 2000-12-01 포만 제프리 엘 Partially-overlapped interconnect structure and method of making
TW417249B (en) 1997-05-14 2001-01-01 Applied Materials Inc Reliability barrier integration for cu application
JP3149846B2 (en) 1998-04-17 2001-03-26 日本電気株式会社 Semiconductor device and manufacturing method thereof
DE19922557B4 (en) 1999-05-17 2004-11-04 Infineon Technologies Ag Process for depositing a TaN / Ta two-layer diffusion barrier
US6562715B1 (en) 2000-08-09 2003-05-13 Applied Materials, Inc. Barrier layer structure for copper metallization and method of forming the structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2701730B2 (en) * 1994-02-24 1998-01-21 日本電気株式会社 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
KR970053550A (en) 1997-07-31
KR0179795B1 (en) 1999-04-15
JPH09186157A (en) 1997-07-15

Similar Documents

Publication Publication Date Title
US5266521A (en) Method for forming a planarized composite metal layer in a semiconductor device
JP3353874B2 (en) Semiconductor device and manufacturing method thereof
Kolawa et al. Tantalum‐based diffusion barriers in Si/Cu VLSI metallizations
US5391517A (en) Process for forming copper interconnect structure
US6121685A (en) Metal-alloy interconnections for integrated circuits
US6150270A (en) Method for forming barrier layer for copper metallization
US7247946B2 (en) On-chip Cu interconnection using 1 to 5 nm thick metal cap
Wang et al. Formation of aluminum oxynitride diffusion barriers for Ag metallization
Jang et al. Tantalum and niobium as a diffusion barrier between copper and silicon
Yin et al. Oxidation of Ta diffusion barrier layer for Cu metallization in thermal annealing
US6479389B1 (en) Method of doping copper metallization
JP2782600B2 (en) Method for forming copper diffusion preventing film having two-layer structure
US6218295B1 (en) Semiconductor structure with a titanium aluminum nitride layer and method for fabricating the same
US5795796A (en) Method of fabricating metal line structure
Lee et al. Ta-Si-N as a diffusion barrier between Cu and Si
US9711456B2 (en) Composite manganese nitride/low-K dielectric cap
Liu et al. Effects of Ti addition on the morphology, interfacial reaction, and diffusion of Cu on SiO 2
CA2112447A1 (en) Compound with room temperature electrical resistivity comparable to that of elemental copper
US6111318A (en) Semiconductor device comprising Cu--Ta and method for forming the semiconductor device
Lee et al. Effect of Mg content in Cu (Mg)/SiO 2/Si multilayers on the resistivity after annealing in an oxygen ambient
JP4195432B2 (en) Self-sealing silver alloy for interconnection
Takeyama et al. Solid-phase reactions of diffusion barriers of Ti and TiN to copper layers on SiO2
Wang et al. Barrier capabilities of selective chemical vapor deposited W films and WSiN/WSi x/W stacked layers against Cu diffusion
KR930001311A (en) Metal wiring layer formation method of a semiconductor device
US6228764B1 (en) Method of forming wiring in semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

S633 Written request for registration of reclamation of name

Free format text: JAPANESE INTERMEDIATE CODE: R313633

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

S633 Written request for registration of reclamation of name

Free format text: JAPANESE INTERMEDIATE CODE: R313633

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100522

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110522

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110522

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees