[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2761284B2 - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JP2761284B2
JP2761284B2 JP2188666A JP18866690A JP2761284B2 JP 2761284 B2 JP2761284 B2 JP 2761284B2 JP 2188666 A JP2188666 A JP 2188666A JP 18866690 A JP18866690 A JP 18866690A JP 2761284 B2 JP2761284 B2 JP 2761284B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
optical semiconductor
refractive index
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2188666A
Other languages
Japanese (ja)
Other versions
JPH0473957A (en
Inventor
修次 西森
克実 嶋田
忠昭 原田
康彦 山本
信行 広森
保守 吉村
克哉 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2188666A priority Critical patent/JP2761284B2/en
Publication of JPH0473957A publication Critical patent/JPH0473957A/en
Application granted granted Critical
Publication of JP2761284B2 publication Critical patent/JP2761284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光学むらのない光半導体装置に関するも
のである。
Description: TECHNICAL FIELD The present invention relates to an optical semiconductor device without optical unevenness.

〔従来の技術〕[Conventional technology]

従来から、固体撮像素子等の受光素子は、一般にセラ
ミツクパツケージによつて中空状に封止され装置化され
ている。しかしながら、上記セラミツクパツケージは、
構成材料が比較的高価なものであることと、量産性に劣
る欠点があるため、プラスチツクパツケージを用いた樹
脂封止が検討されている。上記プラスチツクパツケージ
を用いた樹脂封止のなかでも、特に、エポキシ樹脂組成
物を用いた樹脂封止が検討されている。上記エポキシ樹
脂組成物は、エポキシ樹脂,硬化剤,硬化促進剤および
その他の添加剤を加熱しながら溶融混合して得られる。
2. Description of the Related Art Conventionally, a light-receiving element such as a solid-state imaging device is generally sealed in a hollow shape by a ceramic package to form a device. However, the above ceramic packaging is
Resin sealing using a plastic package is being studied because of the relatively high cost of the constituent materials and the disadvantage of poor mass productivity. Among resin sealing using the plastic package, resin sealing using an epoxy resin composition is being studied. The epoxy resin composition is obtained by melting and mixing an epoxy resin, a curing agent, a curing accelerator and other additives while heating.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上記方法により得られる光半導体封止
用エポキシ樹脂組成物は、エポキシ樹脂,硬化剤および
硬化促進剤の各成分の分散性が不充分であり、分子レベ
ルまで均一に混合分散されていない。そのため、例え
ば、上記のような光半導体封止用エポキシ樹脂組成物を
用いてトランスフアー成形を行うと、つぎのような問題
が生じる。すなわち、第3図に示すように、カル1内に
タブレツト状の光半導体封止用エポキシ樹脂組成物を投
入しプランジヤー2で押圧すると、上記光半導体封止用
エポキシ樹脂組成物は矢印に示すように流動しランナー
3を通過してキヤビテイー4内に流入する。そして、第
4図に示すように、光半導体封止用エポキシ樹脂組成物
は矢印に示すように、ゲート5を通過しキヤビテイー4
内のフレーム6上に搭載された固体撮像素子7を樹脂封
止する。この樹脂封止に際して、キヤビテイー4内で光
半導体封止用エポキシ樹脂組成物を硬化させると、光半
導体封止用エポキシ樹脂組成物の各成分の分散状態が分
子レベルで均一分散していず不均一なため、硬化反応の
速い部分と遅い部分とが存在し、その硬化反応の速度差
により、硬化密度の差が生じるため、屈折率の分布が広
くなり、封止樹脂に、樹脂の流れ方向に沿つて延びる縞
模様の光学むらが形成されるという問題が生じる。この
ような光学むらは、例えば固体撮像素子7のエリアセン
サーを上記のように従来の光半導体封止用エポキシ樹脂
組成物で樹脂封止したものに強い平行光を当て絞りをF
−32まで絞つた場合、その撮像に縞模様となつて現れ
る。
However, the epoxy resin composition for encapsulating an optical semiconductor obtained by the above method has insufficient dispersibility of the epoxy resin, the curing agent and the curing accelerator, and is not uniformly mixed and dispersed to the molecular level. Therefore, for example, when transfer molding is performed using the epoxy resin composition for encapsulating an optical semiconductor as described above, the following problem occurs. That is, as shown in FIG. 3, when a tablet-shaped epoxy resin composition for encapsulating an optical semiconductor is put into a cull 1 and pressed by a plunger 2, the epoxy resin composition for optical semiconductor encapsulation is indicated by an arrow. And flows into the cavity 4 through the runner 3. Then, as shown in FIG. 4, the epoxy resin composition for optical semiconductor encapsulation passes through the gate 5 and passes through the cavity 4 as shown by the arrow.
The solid-state imaging device 7 mounted on the inner frame 6 is sealed with resin. At the time of this resin sealing, when the epoxy resin composition for optical semiconductor encapsulation is cured in the cavity 4, the dispersion state of each component of the epoxy resin composition for optical semiconductor encapsulation is not uniform at the molecular level and is non-uniform. Therefore, there are a portion where the curing reaction is fast and a portion where the curing reaction is slow, and a difference in curing density occurs due to a difference in the speed of the curing reaction. A problem arises in that optical irregularities of striped patterns extending along are formed. Such optical unevenness is obtained by applying strong parallel light to an area sensor of the solid-state imaging device 7 resin-sealed with the conventional epoxy resin composition for encapsulating an optical semiconductor as described above.
When the aperture is stopped down to −32, the image appears as a stripe pattern.

この発明は、このような事情に鑑みなされたもので、
光学むらがない光半導体装置の提供をその目的とする。
The present invention has been made in view of such circumstances,
It is an object of the present invention to provide an optical semiconductor device without optical unevenness.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的を達成するため、この発明の光半導体装置
は、光半導体素子が透明エポキシ樹脂組成物硬化体によ
り被覆されてなる光半導体装置において、上記透明エポ
キシ樹脂組成物硬化体が下記の屈折率分布(A)〜
(C)を有するという構成をとる。
In order to achieve the above object, an optical semiconductor device according to the present invention is an optical semiconductor device in which an optical semiconductor element is covered with a transparent epoxy resin composition cured product, wherein the transparent epoxy resin composition cured product has the following refractive index: Distribution (A) ~
(C).

(A) 屈折率の山形分布曲線における最大のピーク点
(a)の高さを100とし、その100に対する相対ピーク高
さが20になる左右両点(b),(c)の間隔(b点とc
点の屈折率の差)Xが0.0018以下。
(A) The height of the maximum peak point (a) in the peak distribution curve of the refractive index is 100, and the interval between the left and right points (b) and (c) at which the relative peak height to 100 is 20 (point b) And c
The difference in refractive index between points) X is 0.0018 or less.

(B) 上記の最大ピーク点(a)の屈折率から、上記
(b)点または(c)点の屈折率を減じた値のいずれか
大きい値Yが0.0012以下。
(B) The larger value Y of the value obtained by subtracting the refractive index at the point (b) or (c) from the refractive index at the maximum peak point (a) is 0.0012 or less.

(C) 屈折率の山形分布曲線が最大ピーク点(a)以
外に他のピーク点(d,…dn)を有する場合には、最大ピ
ーク点(a)の屈折率と、これよりも最も屈折率差の大
きくなる上記他のピーク点(d)との屈折率差Zが0.00
10以下。
(C) When the peak distribution curve of the refractive index has other peak points (d,... Dn) in addition to the maximum peak point (a), the refractive index at the maximum peak point (a) and the refractive index more than this The refractive index difference Z from the other peak point (d) where the index difference becomes large is 0.00
less than 10.

〔作用〕[Action]

すなわち、本発明者らは、光半導体素子封止用のエポ
キシ樹脂組成物硬化体の光学むらの除去を目的として一
連の研究を重ねた結果、上記光学むらの形成には上記硬
化体の屈折率分布が大きく影響することをつきとめた。
そして、この屈折率分布についてさらに研究を重ねた結
果、上記硬化体の屈折率分布をシヤープにして上記要件
(A),(B)および(C)を全て満たすようにする
と、光学むらが形成されなくなることを見出しこの発明
に到達した。
That is, the present inventors have conducted a series of studies for the purpose of removing optical unevenness of the cured epoxy resin composition for encapsulating an optical semiconductor element, and as a result, the formation of the optical unevenness has a refractive index of the cured body. We found that the distribution had a significant effect.
As a result of further study on the refractive index distribution, optical unevenness is formed when the refractive index distribution of the cured product is made to be the sharp to satisfy all of the requirements (A), (B) and (C). The inventor of the present invention has found that it has disappeared.

つぎにこの発明を詳しく説明する。 Next, the present invention will be described in detail.

この発明の光半導体装置は、上記要件(A),(B)
および(C)を満たす透明エポキシ樹脂組成物硬化体で
光半導体素子を封止したものである。
According to the optical semiconductor device of the present invention, the above requirements (A) and (B)
And an optical semiconductor element sealed with a cured transparent epoxy resin composition satisfying (C).

上記要件(A),(B),(C)を満たす硬化体は、
通常のエポキシ樹脂組成物硬化体の屈折率分布よりも分
布幅の狭いシヤープな屈折率分布を有するものである。
このような要件(A),(B),(C)に関し図面にも
とづいて説明する。第1図はこの発明に用いる透明エポ
キシ樹脂組成物硬化体の一例の屈折率の山形分布曲線を
示しており、Kは山形分布曲線、aはその最大ピーク
点、b,cは最大ピーク点aの高さを100としたとき相対ピ
ーク高さが20になる左右両点、Xはb点とc点との屈折
率の差、Yは最大ピーク点aの屈折率からb点またはc
点の屈折率を減じた値のいずれか大きい値である(図で
はb点よりもc点の屈折率を減じたほうが値が大きいた
め、a点の屈折率からc点の屈折率を減じた値をYとし
ている)。上記Yは最大ピーク点aの屈折率とc点(ま
たはb点)の屈折率との差ともいえる。上記の要件
(A),(B)を満たしている限り、屈折率の山形分布
曲線が、第2図に示すように、最大ピーク点a以外に他
のピーク点a′を有している場合であつても光学むらは
発生しない。しかし、固体撮像素子の画素数が現在のも
のよりも飛躍的に増加したり、マイクロレンズで屈折率
の差を強調するような機能が付与されたりする場合に
は、上記要件(A)のXの値が0.0010以下、かつ上記要
件(B)のYの値が0.0007以下に設定されるのが好適で
ある。特に好適なのは上記Xの値が0.0007以下に、かつ
Yの値が0.0004以下である。このように設定することに
より、将来、固体撮像素子の画素数が飛躍的に増加した
り等しても光学むらの障害が生じることがない。また、
上記のように最大ピーク点a以外に他のピーク点a′を
有しているとそれが光学むらの障害になる可能性があ
る。しかし、このように複数のピーク点を有している場
合であつても、最大ピーク点aと、この最大ピーク点a
の屈折率に対して屈折率差が最も大きくなる他のピーク
点(第2図の場合はa′点)とを比較し、両点間の屈折
率差(第2図では点aとa′の屈折率差Z)が0.0010以
下、好適には0.0003以下になるように設定することによ
り、将来、固体撮像素子の画素数が飛躍的に増加したり
等しても光学むらの障害が生じることはない。
The cured product satisfying the above requirements (A), (B) and (C)
It has a sharp refractive index distribution having a narrower distribution width than the refractive index distribution of a normal cured epoxy resin composition.
Such requirements (A), (B), and (C) will be described with reference to the drawings. FIG. 1 shows a peak distribution curve of the refractive index of one example of the cured transparent epoxy resin composition used in the present invention, where K is a peak distribution curve, a is its maximum peak point, and b and c are maximum peak points a. X is the difference between the refractive indices at points b and c, and Y is the point b or c from the refractive index at the maximum peak point a, where the relative peak height is 20 when the height of the point is 100.
It is the larger of the values obtained by subtracting the refractive index of the point (in the figure, the value of the refractive index of the point c is smaller than the value of the point a because the value of the refractive index of the point c is smaller than that of the point b). The value is Y). The above Y can be said to be the difference between the refractive index at the maximum peak point a and the refractive index at the point c (or point b). As long as the above requirements (A) and (B) are satisfied, the peak distribution curve of the refractive index has another peak point a 'other than the maximum peak point a as shown in FIG. However, optical unevenness does not occur. However, when the number of pixels of the solid-state imaging device is dramatically increased compared to the current one, or when a function of enhancing the difference in refractive index is provided by a microlens, the above-mentioned requirement (A) X Is preferably set to 0.0010 or less, and the value of Y in the requirement (B) is set to 0.0007 or less. It is particularly preferable that the value of X is 0.0007 or less and the value of Y is 0.0004 or less. By setting in this way, even if the number of pixels of the solid-state imaging device increases dramatically in the future, there will be no obstacle to optical unevenness. Also,
As described above, if there is another peak point a ′ other than the maximum peak point a, it may cause an obstacle to optical unevenness. However, even when a plurality of peak points are provided, the maximum peak point a and the maximum peak point a
Is compared with another peak point (point a 'in FIG. 2) at which the difference in refractive index is the largest, and the difference in refractive index between the two points (points a and a' in FIG. 2). The refractive index difference Z) is set to be 0.0010 or less, preferably 0.0003 or less, so that in the future, even if the number of pixels of the solid-state imaging device is dramatically increased, optical unevenness may occur. There is no.

上記第1図および第2図の屈折率は、第6図に示す原
理を応用した屈折率測定装置を用いて測定できる。図に
おいて、Fは干渉フイルタ、SLはスペクトル光源ラン
プ、S1は入口スリツト、S2は出口スリツト、L1はコリメ
ータレンズ、L2はテレメータレンズ、PはVブロツクプ
リズム、SMは測定試料、P.Mは光電子増倍管、Nはテレ
メータ部である。この装置では、透明エポキシ樹脂組成
物硬化体を例えば立方体の試料SMに仕上げ、その隣接す
る2面を研磨度バフ仕上げにより表面粗さを1.5μm以
下に研磨し、これをV字溝を有するVブロツクプリズム
Pに、両研磨面をV字溝に合わせて装着し、光源SLから
光を投射する。光源SLから出た光は、干渉フイルタFで
単色光となり、入口スリツトS1を通り、コリメータレン
ズL1で平行光束となつて、VブロツクプリズムP→試料
SM→VブロツクプリズムPの順に通過して、Vブロツク
プリズムPと試料SMとの屈折率差により光軸の上方〜下
方に偏光されて通過する。テレメータレンズL2,出口ス
リツトS2,光電子増倍管P.Mを備えたテレメータ部Nは、
図示の矢印のように、パルスモータ(図示せず)で首振
り運動し、各首振り位置において、上記偏光された光を
受光しその受光量をエネルギー量としてデイスプレイ
(図示せず)に表示する。この場合、上記首振り運動に
おける各角度と屈折率との相関関係は予め求められてお
り、ある角度における受光量はその角度に対応する屈折
率のそれとなる。この屈折率測定装置は、カルニユー光
学社(日本)から自動屈折率測定装置KPR−200として製
造発売されている。この発明では、この装置を用い、光
源としてはナトリウムD線(587.6nm)を使用し、上記
屈折率を測定している。
The refractive index shown in FIGS. 1 and 2 can be measured using a refractive index measuring apparatus to which the principle shown in FIG. 6 is applied. In FIG., F is an interference filter, SL spectrum light source lamp, S 1 is the entrance slit, S 2 is the exit slit, L 1 is a collimator lens, L 2 is telemeter lens, P is V Bro poke prism, SM is a measurement sample, PM Is a photomultiplier tube, and N is a telemeter unit. In this apparatus, a cured product of a transparent epoxy resin composition is finished into, for example, a cubic sample SM, and two adjacent surfaces are polished to a surface roughness of 1.5 μm or less by buffing with a degree of polishing, and the surface is polished into a V-shaped groove. The two polished surfaces are mounted on the block prism P so as to match the V-shaped grooves, and light is projected from the light source SL. Light emitted from the light source SL becomes a monochromatic light by the interference filter F, through the inlet slit S 1, and summer and parallel beam by a collimator lens L 1, V Bro poke prism P → Sample
The light passes through the order of SM → V block prism P and is polarized upward and downward along the optical axis due to the difference in refractive index between the V block prism P and the sample SM. A telemeter unit N including a telemeter lens L 2 , an exit slit S 2 , and a photomultiplier tube PM includes:
As shown by the arrow in the drawing, the head is swung by a pulse motor (not shown), and the polarized light is received at each swing position, and the amount of received light is displayed on a display (not shown) as an energy amount. . In this case, the correlation between each angle and the refractive index in the swinging motion is obtained in advance, and the amount of received light at a certain angle is that of the refractive index corresponding to that angle. This refractive index measuring device is manufactured and sold as an automatic refractive index measuring device KPR-200 by Carneuux Optical Co., Ltd. (Japan). In the present invention, this apparatus is used, and the refractive index is measured using a sodium D line (587.6 nm) as a light source.

光学むらを生じない透明エポキシ樹脂組成物硬化体
は、上記のようにして求められる屈折率の分布がシヤー
プで前記要件(A),(B),(C)を満たすものであ
る。
The transparent epoxy resin composition cured body that does not cause optical unevenness has a refractive index distribution obtained as described above, which satisfies the above requirements (A), (B), and (C).

このような屈折率分布のシヤープな硬化体を作りうる
エポキシ樹脂組成物を製造するための具体的な手法とし
ては、例えばエポキシ樹脂組成物の構成成分を均一に分
散させることが行われる。その均一に分散させる手法と
しては、エポキシ樹脂組成物をBステージ状(半硬化
状)にしてなる従来の封止用エポキシ樹脂組成物粉末を
有機溶媒に充分混合して各成分を溶解させ、ついで有機
溶媒を蒸発させるか、あるいはエポキシ樹脂,硬化
剤,硬化促進剤等の各成分原料を有機溶媒に混合して均
一に溶解させ、この溶液を溶解段階で加熱しBステージ
状化し、ついで溶媒を蒸発させるか、溶媒の蒸発後に
緩やかに加熱しBステージ状化して光半導体封止用エポ
キシ樹脂組成物を作製するという方法などがある。ま
た、上記各方法では、エポキシ樹脂組成物ないしはその
原料を一旦有機溶媒に溶解するため、この溶液を濾過す
ることにより、従来では除去不可能な塵等の微細な異物
をも簡単に除去することが可能になる。また、得られる
組成物を微粉状に均一混合することにより、屈折率の山
形分布曲線において、最大ピーク点aと他のピーク点
a′とが併存するようなものであつても、それが緩和さ
れ第1図に示すように最大ピーク点aのみを有する山形
分布曲線になり、さらに、山形分布曲線自体がシヤープ
になるため、第1図に示すXおよびYの値が小さくな
る。ここで微粉とは、通常、最大粒径30μm以下、好ま
しくは10μm以下の粒子の占める割合が90重量%以上の
もののことをいう。
As a specific method for producing an epoxy resin composition capable of producing such a sharp cured product having a refractive index distribution, for example, the components of the epoxy resin composition are uniformly dispersed. As a method of uniformly dispersing the epoxy resin composition, a conventional epoxy resin composition powder for encapsulation, which is a B-stage (semi-cured) epoxy resin composition, is sufficiently mixed with an organic solvent to dissolve each component. Evaporate the organic solvent or mix each component material such as epoxy resin, curing agent, curing accelerator, etc. with the organic solvent to dissolve uniformly, and heat this solution in the dissolving stage to make it B-staged. There is a method of producing the epoxy resin composition for encapsulating an optical semiconductor by evaporating or evaporating the solvent and then gently heating the mixture to form a B stage. Further, in each of the above methods, since the epoxy resin composition or its raw material is once dissolved in an organic solvent, by filtering this solution, it is possible to easily remove fine foreign matter such as dust which cannot be removed conventionally. Becomes possible. Further, by uniformly mixing the obtained composition into a fine powder, even if the maximum peak point a and the other peak point a ′ coexist in the peak distribution curve of the refractive index, it is relaxed. As a result, as shown in FIG. 1, the peak distribution curve has only the maximum peak point a, and the peak distribution curve itself becomes sharp, so that the values of X and Y shown in FIG. 1 become small. Here, the fine powder generally refers to a powder having a maximum particle size of 30 μm or less, preferably 10 μm or less, at a proportion of 90% by weight or more.

この発明に用いる光半導体封止用エポキシ樹脂組成物
は、エポキシ樹脂と硬化剤と硬化促進剤とを用いて得ら
れるものであり、シリカ粉末等の無機質充填剤は使用し
ない。
The epoxy resin composition for optical semiconductor encapsulation used in the present invention is obtained using an epoxy resin, a curing agent and a curing accelerator, and does not use an inorganic filler such as silica powder.

上記エポキシ樹脂としては、従来公知のもので着色の
少ないものであれば特に制限するものではない。例え
ば、ビスフエノールA型エポキシ樹脂、ビスフエノール
F型エポキシ樹脂、フエノールノボラツク型エポキシ樹
脂、脂環式エポキシ樹脂、トリグリルシジルイソシアヌ
レート、ヒダントインエポキシ等の含複素環エポキシ樹
脂、水添加ビスフエノールA型エポキシ樹脂、脂肪族系
エポキシ樹脂、グリシジルエーテル型エポキシ樹脂等が
あげられ、単独でもしくは併せて用いられる。
The epoxy resin is not particularly limited as long as it is a conventionally known epoxy resin having little coloring. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolak type epoxy resin, alicyclic epoxy resin, heterocyclic epoxy resin such as triglycidyl isocyanurate, hydantoin epoxy, etc., and water-added bisphenol A Type epoxy resin, aliphatic epoxy resin, glycidyl ether type epoxy resin, and the like, which are used alone or in combination.

上記硬化剤としては、硬化時または硬化後に樹脂組成
物の硬化体に着色の少ない酸無水物が好適であるが特に
制限するものでない。例えば、上記酸無水物としては、
無水フタル酸,無水マレイン酸,無水トリメリツト酸,
無水ピロメリツト酸,ヘキサヒドロ無水フタル酸,テト
ラヒドロ無水フタル酸,無水メチルナジツク酸,無水ナ
ジツク酸,無水グルタル酸等があげられ、アミン系硬化
剤としては、メタフエニレンジアミン,ジメチルジフエ
ニルメタン,ジアミノジフエニルスルホン,m−キシレン
ジアミン,テトラエチレンペンタミン,ジエチルアミ
ン,プロピルアミン等があげられる。さらに、フエノー
ル樹脂系硬化剤等があげられ、いずれを用いても差し支
えない。
As the above-mentioned curing agent, an acid anhydride with little coloring in the cured product of the resin composition during or after curing is suitable, but is not particularly limited. For example, as the acid anhydride,
Phthalic anhydride, maleic anhydride, trimellitic anhydride,
Examples include pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, and glutaric anhydride. Examples of the amine-based curing agent include metaphenylenediamine, dimethyldiphenylmethane, and diaminodiphenyl. Sulfone, m-xylenediamine, tetraethylenepentamine, diethylamine, propylamine and the like can be mentioned. Further, a phenolic resin-based curing agent may be used, and any of them may be used.

上記硬化促進剤としては、三級アミン,イミダゾール
類,カルボン酸金属塩,リン化合物等があげられる。
Examples of the curing accelerator include tertiary amines, imidazoles, metal salts of carboxylic acids, and phosphorus compounds.

なお、この発明に用いる光半導体封止用エポキシ樹脂
組成物には、上記各成分以外に必要に応じて着色防止
剤,変性剤,劣化防止剤,離型剤等の従来公知の添加剤
が用いられる。
In the epoxy resin composition for encapsulating an optical semiconductor used in the present invention, conventionally known additives such as a coloring inhibitor, a denaturing agent, a deterioration preventing agent, a release agent, etc. may be used in addition to the above-mentioned components. Can be

上記着色防止剤としては、フエノール系化合物,アミ
ン系化合物,有機硫黄系化合物,ホスフイン系化合物等
従来公知のものがあげられる。
Examples of the coloring inhibitor include conventionally known compounds such as phenol compounds, amine compounds, organic sulfur compounds, and phosphine compounds.

上記有機溶媒としては、Bステージ状の光半導体封止
用エポキシ樹脂組成物を完全に溶解することができるも
のであれば特に制限するものではない。例えば、トルエ
ン,キシレン等の炭化水素系有機溶媒、ジクロロメタ
ン、1,1,1−トリクロロエタン、1,1,2−トリクロロエタ
ン等のハロゲン化炭化水素系有機溶媒、ジエチルエーテ
ル,ジオキサン,テトラヒドロフラン等のエーテル系有
機溶媒、アセトン,メチルエチルケトン,ジエチルケト
ン等のケトン系有機溶媒およびこれらの混合溶液等があ
げられる。また、光半導体封止用エポキシ樹脂組成物に
対する有機溶媒の混合比率および混合温度も、上記光半
導体封止用エポキシ樹脂組成物を完全に溶解することが
できる範囲であれば特に限定するものではないが、有機
溶媒の混合比率は、通常、Bステージ状の光半導体封止
用エポキシ樹脂組成物の1〜50倍量(重量比)が好まし
く、より好ましくは1〜10倍量である。また、混合温度
は、あまり高温であると光半導体封止用エポキシ樹脂組
成物がゲル化するため、100℃以下に保つことが好まし
い。
The organic solvent is not particularly limited as long as it can completely dissolve the B-staged epoxy resin composition for optical semiconductor encapsulation. For example, hydrocarbon-based organic solvents such as toluene and xylene, halogenated hydrocarbon-based organic solvents such as dichloromethane, 1,1,1-trichloroethane and 1,1,2-trichloroethane, and ether-based solvents such as diethyl ether, dioxane and tetrahydrofuran Organic solvents, ketone-based organic solvents such as acetone, methyl ethyl ketone, diethyl ketone and the like, and a mixed solution thereof and the like can be mentioned. Further, the mixing ratio and the mixing temperature of the organic solvent with respect to the epoxy resin composition for optical semiconductor encapsulation are not particularly limited as long as the epoxy resin composition for optical semiconductor encapsulation can be completely dissolved. However, the mixing ratio of the organic solvent is usually preferably 1 to 50 times (weight ratio), more preferably 1 to 10 times, that of the B-staged epoxy resin composition for encapsulating an optical semiconductor. The mixing temperature is preferably kept at 100 ° C. or lower, because if the temperature is too high, the epoxy resin composition for encapsulating an optical semiconductor gels.

さらに、上記製法において有機溶媒を除去する方法と
しては、常温あるいは必要に応じて加熱し、ついで減圧
することにより除去する方法、真空凍結乾燥法により除
去する方法等があげられるが、特に制限するものではな
い。なお、有機溶媒の残存量は、光半導体封止用エポキ
シ樹脂組成物全体の3重量%以下に設定する必要があ
る。好ましくは1.5重量%以下、より好ましくは0.05重
量%以下である。すなわち、有機溶媒の残存量が3重量
%を超えると、光半導体封止用エポキシ樹脂組成物のポ
ツトライフが著しく短くなつたり、その硬化物のガラス
転移温度が低下し、線膨張係数が増大し、その結果、封
止樹脂の耐湿性およびヒートサイクル性が低下するから
である。
Further, as a method for removing the organic solvent in the above-mentioned production method, a method of removing the organic solvent by heating at room temperature or if necessary, and then reducing the pressure, a method of removing the organic solvent by a vacuum freeze-drying method, and the like can be mentioned. is not. The residual amount of the organic solvent needs to be set to 3% by weight or less of the entire epoxy resin composition for optical semiconductor encapsulation. It is preferably at most 1.5% by weight, more preferably at most 0.05% by weight. That is, when the residual amount of the organic solvent exceeds 3% by weight, the pot life of the epoxy resin composition for encapsulating an optical semiconductor becomes extremely short, the glass transition temperature of the cured product decreases, and the linear expansion coefficient increases, As a result, the moisture resistance and the heat cycle property of the sealing resin are reduced.

上記の方法によつて得られる光半導体封止用エポキシ
樹脂組成物は、各成分が分子レベルで均一に混合された
状態になつているため、その硬化体の屈折率の分布はシ
ヤープとなり光学むらが生じない。また、製造過程にお
いて各成分原料を有機溶媒に溶解させるため、既存の濾
紙フイルター等を用い、容易に減圧吸引濾過あるいは加
圧濾過を行うことができ、従来では除去が困難であつた
樹脂組成物中のゲル状物,微細な塵等の異物を容易に除
去することが可能である。なお、このような光半導体封
止用エポキシ樹脂組成物は、受光素子等の光半導体の樹
脂封止に用いられるため、光学的観点から透明のものが
好ましい。この場合の「透明」とは、光半導体封止用エ
ポキシ樹脂組成物の硬化物の400nmにおける透過率が、
通常90%以上、好ましくは95%以上、特に好ましくは98
%以上(硬化物厚み1mm)のことをいう。
Since the epoxy resin composition for optical semiconductor encapsulation obtained by the above method is in a state where each component is uniformly mixed at the molecular level, the distribution of the refractive index of the cured product becomes a shear and the optical unevenness is obtained. Does not occur. In addition, in order to dissolve each component material in an organic solvent during the manufacturing process, a resin composition which can be easily subjected to reduced pressure suction filtration or pressure filtration using an existing filter paper filter or the like, which has conventionally been difficult to remove. It is possible to easily remove foreign substances such as gel-like substances and fine dust therein. In addition, since such an epoxy resin composition for optical semiconductor encapsulation is used for resin encapsulation of an optical semiconductor such as a light receiving element, a transparent one is preferable from an optical viewpoint. "Transparent" in this case, the transmittance at 400 nm of the cured product of the epoxy resin composition for optical semiconductor encapsulation,
Usually 90% or more, preferably 95% or more, particularly preferably 98%
% (The thickness of the cured product is 1 mm).

このような光半導体封止用エポキシ樹脂組成物を用い
ての受光素子等の封止は、特に制限するものではなく、
通常のトランスフアー成形等の公知のモールド方法によ
り行うことができる。上記トランスフアー成形を行う
際、粉末状の組成物は、通常、常温にてタブレツト化さ
れて用いられる。
The sealing of the light receiving element and the like using the epoxy resin composition for optical semiconductor sealing is not particularly limited,
It can be performed by a known molding method such as ordinary transfer molding. When carrying out the transfer molding, the powdery composition is usually used as a tablet at room temperature.

このようにして得られる光半導体装置は、例えば、第
5図に示すように、ボンデイングパツト11上に接着剤12
を介して受光素子である固体撮像素子13を搭載し、その
上部に透明接着剤14を用いてカラーフイルター15を接着
し、これらを、光半導体封止用エポキシ樹脂組成物16で
樹脂封止して構成されている。なお、上記カラーフイル
ター15はカラー画像を得るために設けられるものであ
り、モノクロームでは不用である。図において、17はガ
ラス板、18はボンデイングワイヤー、19はリードフレー
ムである。
The optical semiconductor device obtained in this manner is, for example, as shown in FIG.
The solid-state imaging device 13 which is a light receiving device is mounted through, and a color filter 15 is adhered to the upper portion thereof using a transparent adhesive 14, and these are resin-sealed with an optical semiconductor sealing epoxy resin composition 16. It is configured. Note that the color filter 15 is provided to obtain a color image, and is unnecessary in monochrome. In the figure, 17 is a glass plate, 18 is a bonding wire, and 19 is a lead frame.

この光半導体装置は、各成分が分子レベルまで均一に
混合されている光半導体封止用エポキシ樹脂組成物で樹
脂封止されているため、屈折率の分布がシヤープであ
り、封止樹脂16に光学むらが生じていない。したがつ
て、これを作動させて得られた画像には、光学むらによ
る縞模様や、混入異物による黒点がみられない。ちなみ
に、カラーフイルター15上の封止樹脂の厚みlを通常の
0.5〜2mmに設定して得られた光半導体装置を用いた場
合、光学むらは生じなかつた。
Since this optical semiconductor device is resin-encapsulated with an epoxy resin composition for optical semiconductor encapsulation in which each component is uniformly mixed to the molecular level, the refractive index distribution is sharp, and the encapsulating resin 16 No optical unevenness has occurred. Therefore, in the image obtained by operating this, no striped pattern due to optical unevenness and no black spot due to the contaminated foreign matter are observed. By the way, the thickness l of the sealing resin on the color filter 15 is
When an optical semiconductor device obtained by setting the thickness to 0.5 to 2 mm was used, optical unevenness did not occur.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明の光半導体装置は、透明エポ
キシ樹脂硬化体の屈折率分布が上記(A),(B),
(C)のようになつているため、光学むらが生じない。
また、上記透明エポキシ樹脂硬化体を、有機溶媒を用い
てエポキシ樹脂組成物を溶解し、これを用いて作製する
ときには、濾過による異物除去が可能であり、従来では
除去が困難であつた、樹脂組成物中のゲル状物,微細な
塵等の異物の除去のされたものとなり、高品質になる。
したがつて、例えば固体撮像素子のような受光素子等を
樹脂封止してなるこの発明の光半導体装置は、形成画像
に樹脂の光学むらに起因する縞模様や封止樹脂中の異物
に起因する黒点が現れることのない高性能品であり、封
止樹脂品でありながら、セラミツクパツケージ品と同等
かそれ以上の性能を発揮する。
As described above, according to the optical semiconductor device of the present invention, the refractive index distribution of the transparent epoxy resin cured product has the above-mentioned (A), (B),
Since it is as shown in (C), optical unevenness does not occur.
In addition, when the transparent epoxy resin cured product is prepared by dissolving an epoxy resin composition using an organic solvent and using the same, it is possible to remove foreign substances by filtration, and it has conventionally been difficult to remove the resin. Foreign matters such as gel-like substances and fine dust in the composition are removed, resulting in high quality.
Therefore, for example, the optical semiconductor device of the present invention in which a light receiving element such as a solid-state image sensor is sealed with a resin is formed on a formed image by a stripe pattern caused by optical unevenness of the resin or by a foreign matter in the sealing resin. It is a high-performance product that does not show black spots, and exhibits the same or better performance as a ceramic package product, even though it is a sealing resin product.

つぎに、実施例について比較例と併せて説明する。 Next, examples will be described together with comparative examples.

まず、実施例に先立つて後記の第1表に示す6種類の
エポキシ樹脂組成物用の配合を準備した。
First, prior to the examples, formulations for six types of epoxy resin compositions shown in Table 1 below were prepared.

つぎに、上記配合例に従つて下記のエポキシ樹脂組成
物A〜Fをつくつた。
Next, the following epoxy resin compositions A to F were prepared according to the above formulation examples.

〔エポキシ樹脂組成物A〕[Epoxy resin composition A]

上記の第1表に示す配合例に示す割合で各原料を加
熱溶融混合した後、エポキシ樹脂の硬化反応を進行さ
せ、温度150℃におけるゲル化時間30秒のBステージ状
の光半導体封止用エポキシ樹脂組成物を作製した。この
Bステージ状の光半導体封止用エポキシ樹脂組成物を、
後記の第2表に示す配合量の有機溶媒に完全に溶解し、
ついで45℃に加温しながら減圧した後、粉砕することに
より、後記の第2表に示す残存有機溶媒量で、温度150
℃におけるゲル化時間が25秒の粉末状の光半導体封止用
エポキシ樹脂組成物A(実施例1用)を得た。
After heating and melting and mixing the respective raw materials at the ratios shown in the mixing examples shown in Table 1 above, the curing reaction of the epoxy resin was allowed to proceed, and a B-stage optical semiconductor encapsulation having a gel time of 30 seconds at a temperature of 150 ° C. An epoxy resin composition was prepared. This B-staged epoxy resin composition for encapsulating an optical semiconductor is
It was completely dissolved in the organic solvent in the amount shown in Table 2 below,
Then, the pressure was reduced while heating to 45 ° C., and the mixture was pulverized to obtain a residual organic solvent having a temperature of 150
Powdered epoxy resin composition A for optical semiconductor encapsulation (for Example 1) having a gelation time at 25 ° C. of 25 seconds was obtained.

〔エポキシ樹脂組成物B〕[Epoxy resin composition B]

上記の第1表に示す配合例およびに従つて、2種
類の配合物をつくつた。つぎに、これらについてそれぞ
れエポキシ樹脂の硬化反応を進行させ、温度150℃にお
けるゲル化時間30秒のBステージ状の光半導体封止用エ
ポキシ樹脂組成物をそれぞれ作製した。この2種類のB
ステージ状の光半導体封止用エポキシ樹脂組成物を50部
ずつ混ぜ合わせ、後記の第2表に示す配合量の有機溶媒
に完全に溶解混合した。つぎに、これを45℃に加温しな
がら減圧した後、粉砕することにより第2表に示す残存
有機溶媒量で、温度150℃におけるゲル化時間が25秒の
粉末状の光半導体封止用エポキシ樹脂組成物B(実施例
2用)を得た。
In accordance with the formulation examples shown in Table 1 above, two formulations were made. Next, a curing reaction of the epoxy resin was progressed for each of these, and a B-stage epoxy resin composition for encapsulating an optical semiconductor having a gelation time of 30 seconds at a temperature of 150 ° C. was produced. These two types of B
50 parts of the stage-shaped epoxy resin composition for encapsulating an optical semiconductor were mixed, and completely dissolved and mixed in an organic solvent having a compounding amount shown in Table 2 below. Next, after reducing the pressure while heating the mixture to 45 ° C., it was pulverized to obtain a powdery optical semiconductor encapsulation having a gelling time of 25 seconds at a temperature of 150 ° C. with the amount of the remaining organic solvent shown in Table 2. An epoxy resin composition B (for Example 2) was obtained.

〔エポキシ樹脂組成物C〕[Epoxy resin composition C]

上記第1表に示す配合例に従つて各原料を加熱溶融
混合した後、エポキシ樹脂の硬化反応を進行させ、温度
150℃におけるゲル化時間30秒のBステージ状の光半導
体封止用エポキシ樹脂組成物を作製した。このBステー
ジ状の光半導体封止用エポキシ樹脂組成物を後記の第2
表に示す配合量の有機溶媒に完全に溶解混合した。つぎ
に、これを45℃に加温しながら減圧した後、粉砕するこ
とにより、後記の第2表に示す残存有機溶媒量で、温度
150℃におけるゲル化時間が25秒の粉末状の光半導体封
止用エポキシ樹脂組成物を得た。このエポキシ樹脂組成
物40部と前記エポキシ樹脂組成物A60部とをドライブレ
ンドし、実施例3の光半導体封止用エポキシ樹脂組成物
C(実施例3用)を得た。
After heating and melting and mixing the respective raw materials according to the formulation examples shown in Table 1 above, the curing reaction of the epoxy resin is advanced,
An epoxy resin composition for optical semiconductor encapsulation in the form of a B-stage having a gel time of 30 seconds at 150 ° C. was prepared. This B-staged epoxy resin composition for encapsulating an optical semiconductor was prepared by the following second step.
It was completely dissolved and mixed in an organic solvent having the compounding amount shown in the table. Next, the pressure was reduced while heating the mixture to 45 ° C., and the resulting mixture was pulverized to obtain the remaining organic solvent in the amount shown in Table 2 below.
A powdered epoxy resin composition for encapsulating an optical semiconductor having a gelation time at 150 ° C. of 25 seconds was obtained. 40 parts of this epoxy resin composition and 60 parts of the epoxy resin composition A were dry-blended to obtain an epoxy resin composition C for optical semiconductor encapsulation of Example 3 (for Example 3).

〔エポキシ樹脂組成物D〕[Epoxy resin composition D]

上記第1表に示す配合例に従つて各原料を加熱溶融
混合した後、エポキシ樹脂の硬化反応を進行させ、温度
150℃におけるゲル化時間30秒のBステージ状の光半導
体封止用エポキシ樹脂組成物を作製した。このBステー
ジ状の光半導体封止用エポキシ樹脂組成物を後記の第2
表に示す配合量の有機溶媒に完全に溶解混合した。つい
で、これを45℃に加温しながら減圧した後、粉砕するこ
とにより、後記の第2表に示す残存有機溶媒量で、温度
150℃におけるゲル化時間が25秒の粉末状の光半導体封
止用エポキシ樹脂組成物を得た。このエポキシ樹脂組成
物40部と前記エポキシ樹脂組成物A60部とをドライブレ
ンドし光半導体封止用エポキシ樹脂組成物D(実施例4
用)を得た。
After heating and melting and mixing the respective raw materials according to the formulation examples shown in Table 1 above, the curing reaction of the epoxy resin is advanced,
An epoxy resin composition for optical semiconductor encapsulation in the form of a B-stage having a gel time of 30 seconds at 150 ° C. was prepared. This B-staged epoxy resin composition for encapsulating an optical semiconductor was prepared by the following second step.
It was completely dissolved and mixed in an organic solvent having the compounding amount shown in the table. Then, the mixture was decompressed while being heated to 45 ° C., and then pulverized to obtain the remaining organic solvent in the amount shown in Table 2 below.
A powdered epoxy resin composition for encapsulating an optical semiconductor having a gelation time at 150 ° C. of 25 seconds was obtained. 40 parts of this epoxy resin composition and 60 parts of the epoxy resin composition A were dry blended to obtain an epoxy resin composition D for encapsulating an optical semiconductor (Example 4).
For) obtained.

〔エポキシ樹脂組成物E〕[Epoxy resin composition E]

前記エポキシ樹脂組成物Aを、最大粒径30μm以下の
占める割合が90重量%以下で平均粒径10μmになるよう
ジエツトミル粉砕し、光半導体封止用エポキシ樹脂組成
物E(実施例5用)を得た。
The epoxy resin composition A was subjected to jet mill pulverization so that the ratio of the maximum particle size of 30 μm or less occupied 90% by weight or less and the average particle size was 10 μm, to obtain an epoxy resin composition E for optical semiconductor encapsulation (for Example 5). Obtained.

〔エポキシ樹脂組成物F〕[Epoxy resin composition F]

前記エポキシ樹脂組成物Aを、最大粒径10μm以下の
占める割合が90重量%以下で平均粒径4μmになるよう
ジエツトミル粉砕し、光半導体封止用エポキシ樹脂組成
物F(実施例6用)を得た。
The epoxy resin composition A was subjected to jet mill pulverization so that the proportion occupying a maximum particle diameter of 10 μm or less was 90% by weight or less and the average particle diameter was 4 μm, to obtain an epoxy resin composition F for optical semiconductor encapsulation (for Example 6). Obtained.

〔エポキシ樹脂組成物G〕[Epoxy resin composition G]

上記の第1表に示す配合例に従つて各原料を配合
し、有機溶媒を用いず加熱溶融混合した後、エポキシ樹
脂の硬化反応を進行させた。これを粉砕して温度150℃
におけるゲル化時間が25秒の粉末状の光半導体封止用エ
ポキシ樹脂組成物G(比較例1用)を得た。
The respective raw materials were blended according to the blending examples shown in Table 1 above, and were heated and melt-mixed without using an organic solvent, and then the curing reaction of the epoxy resin was allowed to proceed. Crush this to a temperature of 150 ° C
, A powdered epoxy resin composition G for optical semiconductor encapsulation (for Comparative Example 1) having a gelation time of 25 seconds was obtained.

〔エポキシ樹脂組成物H〕[Epoxy resin composition H]

上記の第1表に示す配合に従つて各原料を加熱溶融
混合した後、エポキシ樹脂の硬化反応を進行させ、温度
150℃におけるゲル化時間30秒のBステージ状の光半導
体封止用エポキシ樹脂組成物を作製し、これを粉砕し
た。つぎに、上記エポキシ樹脂組成物35部と、前記組成
物A65部とをドライブレンドしてエポキシ樹脂組成物H
(比較例2用)を得た。
After heating and melting and mixing the raw materials according to the composition shown in Table 1 above, the curing reaction of the epoxy resin is advanced,
A B-stage epoxy resin composition for encapsulating an optical semiconductor having a gelation time of 30 seconds at 150 ° C. was prepared and pulverized. Next, 35 parts of the epoxy resin composition and 65 parts of the composition A were dry blended to obtain an epoxy resin composition H
(For Comparative Example 2) was obtained.

〔エポキシ樹脂組成物I〕 上記の第1表に示す配合に従つて各原料を加熱溶融
混合した後、エポキシ樹脂の硬化反応を進行させ、温度
150℃におけるゲル化時間30秒のBステージ状の光半導
体封止用エポキシ樹脂組成物を作製し粉砕した。このエ
ポキシ樹脂組成物20部と前記エポキシ樹脂組成物A80部
とをドライブレンドしエポキシ樹脂組成物I(比較例3
用)を得た。
[Epoxy resin composition I] After heating and melting and mixing the respective raw materials according to the composition shown in Table 1 above, the curing reaction of the epoxy resin was advanced,
A B-staged epoxy resin composition for encapsulating an optical semiconductor having a gelation time of 30 seconds at 150 ° C. was prepared and pulverized. 20 parts of this epoxy resin composition and 80 parts of the epoxy resin composition A were dry-blended to obtain an epoxy resin composition I (Comparative Example 3).
For) obtained.

〔実施例,比較例〕 〈屈折率測定〉 つぎに、上記のようにして得られた9種類の粉末状の
エポキシ樹脂組成物(A〜I)をそれぞれ常温でタブレ
ツト状に成形し、これを用い150℃×6分のトランスフ
アー成形した後、さらに150℃×3時間硬化させ12mm角
の立方体の硬化体を7個つくつた。これらの硬化体につ
いて、その隣接する2面をバフ仕上げで研磨し、研磨表
面の表面粗さを1.5μm以下に仕上げ、これを試料(A
〜I)とし、第5図に示す装置(カルニユー光学社製,K
PR−200自動屈折率測定機)に掛けて屈折率分布を調べ
た。その結果を上記試料A〜Gに対応して第7図〜第15
図に示す。試料A〜Fは実施例品で、試料G〜Iは比較
例品である。試料A〜Fに対応する第7図〜第12図の屈
折率分布曲線図および第2表のX,YおよびZの値から明
らかなように、上記試料A〜Fは、本発明の要件
(A),(B)および(C)を満たしている。特に、試
料CおよびDに対応する第9図および第10図には最大ピ
ーク点a以外に他のピーク点a′が現れているが、両点
a,a′間の屈折率差Zは第9図および第10図および第2
表のZの値から明らかなように0.0010以下に収まつてい
る。これに対して、比較例品である試料G,Hは、対応す
る第13図,第14図の屈折率分布曲線図および第2表のX,
Yの値から明らかなように、本発明の要件(A),
(B)を満たしていない。また、同じく比較例品である
試料Iは、第15図の屈折率分布曲線図および第2表のX,
Yの値から明らかなように上記要件(A),(B)を満
たしてはいるが、その最大ピーク点aと、それ以外の他
のピーク点a′とにおいて、両点a,a′間の屈折率差Z
が0.0010を超えている。したがつて、本発明の要件
(C)を満たしていない。
[Examples and Comparative Examples] <Measurement of Refractive Index> Next, the nine types of powdery epoxy resin compositions (A to I) obtained as described above were each formed into a tablet at room temperature, and this was molded. After transfer molding at 150 ° C. for 6 minutes, the mixture was further cured at 150 ° C. for 3 hours to form seven 12 mm square cubes. For these cured products, two adjacent surfaces were polished by buffing, and the polished surface was finished to a surface roughness of 1.5 μm or less.
To I), and the apparatus shown in FIG.
(PR-200 automatic refractometer). The results are shown in FIGS.
Shown in the figure. Samples A to F are examples and samples GI are comparative examples. As is clear from the refractive index distribution curves of FIGS. 7 to 12 corresponding to Samples A to F and the values of X, Y and Z in Table 2, the above Samples A to F satisfy the requirements of the present invention ( A), (B) and (C) are satisfied. In particular, in FIGS. 9 and 10 corresponding to samples C and D, other peak points a 'appear in addition to the maximum peak point a.
9 and 10, the refractive index difference Z between a and a '
As is clear from the value of Z in the table, the value falls within 0.0010 or less. On the other hand, Samples G and H, which are comparative examples, have corresponding refractive index distribution curves in FIGS. 13 and 14 and X,
As is apparent from the value of Y, the requirement (A) of the present invention,
(B) is not satisfied. Sample I, which is also a comparative example, has a refractive index distribution curve diagram in FIG. 15 and X,
As is apparent from the value of Y, although the above requirements (A) and (B) are satisfied, the maximum peak point a and the other peak points a 'between the two points a and a' Index difference Z
Exceeds 0.0010. Therefore, the requirement (C) of the present invention is not satisfied.

〈光半導体装置の製造〉 上記9種類の粉末状エポキシ樹脂組成物(A〜I)を
用い、実際に固体撮像素子であるエリアセンサーをダイ
レクトモールド(150℃×6分、アフターキユア150×3
時間)してつくつた。つぎに、これを用いてカメラを組
み立て、それに強い平行光(光度10カンデラ)を直角に
当てカメラの絞りをF−32迄絞つたときの画像をデイス
プレイ画面に写した。その結果、第2表の光学むらAの
欄に示すように、組成物A〜Fを各別に用いた6種類の
実施例品については、画像に光学むらが全くみられなか
つた。これに対して組成物G〜Iを各別に用いた3種類
の比較例品については画像に光学むらが認められ、画像
の一部に縞模様が現れていた。
<Manufacture of Optical Semiconductor Device> Using the above nine types of powdered epoxy resin compositions (A to I), an area sensor, which is actually a solid-state imaging device, is directly molded (150 ° C. × 6 minutes, after-cure 150 × 3).
Time). Next, a camera was assembled using this, and strong parallel light (luminous intensity of 10 candela) was applied to the camera at right angles, and the image obtained when the camera aperture was stopped down to F-32 was displayed on a display screen. As a result, as shown in the column of optical nonuniformity A in Table 2, no optical nonuniformity was observed in the images of the six examples using compositions A to F separately. In contrast, optical unevenness was observed in the images of three types of comparative examples using each of the compositions G to I, and stripes appeared in a part of the images.

また、上記ダイレクトモールドの際に、金型のランナ
ー部分に残つたランナー形状の平板(厚み3.0mm,幅5m
m)を対象とし、光学むらの発生をつぎのようにして調
べた。すなわち、カメラに組み込まれた1/2インチで38
万画素タイプの固体撮像素子であるエリアセンサー封止
体上に、表面が研磨され研磨表面の表面粗さが1.5μm
以下の凹凸状差を有し120゜のわん曲部をもつランナー
形状の平板を置き、これに強い平行光(光度10カンデ
ラ)を直角に当て、カメラの絞りをF−32迄絞つたとき
の画像の縦模様の有無を調べた。ランナー部分のポリマ
ーは厚みが3.0mmと厚く縞模様が現れやすいのであり、
したがつて、この測定は、光学むらの評価としては光学
むらAの評価よりも厳しく、将来の固体撮像素子の画素
数の増大等を予測し、それに対応できるか否かを調べた
こととなる。その結果、第2表の光学むらBの欄に示す
ように、上記エポキシ樹脂組成物A,C,E,Fを各別に用い
た実施例品には縞模様が現れていず、したがつて光学む
らの発生は認められなかったが、組成物B,Dを各別に用
いた実施例品には若干縞模様が現れていた。これに対し
て組成物G〜Iを各別に用いた比較例品には、いずれも
縞模様が現れていた。上記光学むらBの評価において平
行光の光度を20カンデラとし、この光を直角に当てカメ
ラの絞りをF−45まで絞つたときの画像の縞模様の有無
を調べ、これを光学むらCの評価とした。この光学むら
Cの評価は、上記光学むらBの評価をさらに厳しくした
ものである。その結果、第2表の光学むらCの欄に示す
ように、上記エポキシ樹脂組成物A,B,C,Dを各別に用い
た実施例品1〜4には若干縞模様が現れたが、微粉砕を
施したエポキシ樹脂組成物E,Fを各別に用いた実施例品
には光学むらの発生は認められなかつた。これに対して
組成物G〜Iを格別に用いた比較例品にはいずれも縞模
様が現れていた。
In addition, a runner-shaped flat plate (thickness 3.0 mm, width 5 m) left on the runner part of the mold during the above direct molding
For m), the occurrence of optical unevenness was examined as follows. That is, 38 in 1/2 inch built into the camera
The surface is polished on the area sensor encapsulant, which is a 10,000 pixel solid-state image sensor, and the polished surface has a surface roughness of 1.5 μm
When a runner-shaped flat plate with the following irregularities and a curved portion of 120 ° is placed, strong parallel light (luminous intensity 10 candela) is applied at a right angle, and the aperture of the camera is reduced to F-32. The image was examined for the presence of a vertical pattern. The polymer in the runner part has a thickness of 3.0 mm and it is easy for striped patterns to appear,
Therefore, this measurement is more strict than the evaluation of the optical nonuniformity A in the evaluation of the optical nonuniformity, and predicts an increase in the number of pixels of the solid-state imaging device in the future, and examines whether or not it can cope with it. . As a result, as shown in the column of optical unevenness B in Table 2, no striped pattern appeared in Examples using each of the epoxy resin compositions A, C, E, and F. No unevenness was observed, but a striped pattern appeared slightly in Examples using Compositions B and D separately. On the other hand, strips appeared in Comparative Examples using each of Compositions GI. In the evaluation of the optical unevenness B, the luminous intensity of the parallel light was set to 20 candelas, and this light was applied at a right angle to check the presence or absence of a stripe pattern in the image when the aperture of the camera was stopped down to F-45. And The evaluation of the optical unevenness C is a further strict evaluation of the optical unevenness B. As a result, as shown in the column of optical unevenness C in Table 2, slightly striped patterns appeared in Examples 1 to 4 using the epoxy resin compositions A, B, C, and D separately. No optical unevenness was observed in the products of Examples using the finely pulverized epoxy resin compositions E and F separately. On the other hand, striped patterns appeared in all of the comparative examples using compositions G to I.

上記屈折率測定に用いた12mm角の立方体の硬化体7個
の隣接しない2面(平行な2面)を研磨し、研磨表面の
表面粗さを1.5μm以下に仕上げ、これを試料(A〜
I)とした。この試料を用いて、島津社製,島津自記分
光光度計UV−3101PCにて光透過率を測定した。その結果
を第2表に示す。これらのことから、第7図〜第12図に
示すように、屈折率分布がシヤープになるほど、光の透
過性が良好となる事が判る。
The non-adjacent two surfaces (two parallel surfaces) of the seven cured cubes of 12 mm square used in the refractive index measurement were polished, and the polished surface was finished to have a surface roughness of 1.5 μm or less.
I). Using this sample, the light transmittance was measured with a Shimadzu self-recording spectrophotometer UV-3101PC manufactured by Shimadzu Corporation. Table 2 shows the results. From these facts, it can be seen that as shown in FIGS. 7 to 12, the sharper the refractive index distribution, the better the light transmittance.

【図面の簡単な説明】[Brief description of the drawings]

第1図は最大ピークのみを有する屈折率分布図、第2図
は最大ピークと他のピークとを有する屈折率分布図、第
3図は従来の光半導体封止用エポキシ樹脂組成物を用い
てトランスフアー成形する際の樹脂組成物の流動状態
図、第4図はその要部の樹脂組成物の流動状態図、第5
図は本発明の光半導体封止用エポキシ樹脂組成物で樹脂
封止された光半導体装置の縦断面図、第6図は屈折率測
定装置の原理図、第7図,第8図,第9図,第10図,第
11図,第12図,第13図,第14図および第15図は屈折率分
布曲線図である。 11……ボンデイングパツド、12……接着剤、13……固体
撮像素子、14……透明接着剤、15……カラーフイルタ
ー、16……光半導体封止用エポキシ樹脂組成物、17……
ガラス板、18……ボンデイングワイヤー、19……リード
フレーム
FIG. 1 is a refractive index distribution diagram having only a maximum peak, FIG. 2 is a refractive index distribution diagram having a maximum peak and other peaks, and FIG. 3 is a diagram showing a conventional optical semiconductor encapsulating epoxy resin composition. FIG. 4 is a flow diagram of the resin composition at the time of transfer molding, FIG.
The figure is a longitudinal sectional view of an optical semiconductor device encapsulated with the epoxy resin composition for optical semiconductor encapsulation of the present invention, FIG. 6 is a principle diagram of a refractive index measuring device, FIGS. 7, 8, and 9 Fig. 10, Fig. 10,
FIG. 11, FIG. 12, FIG. 13, FIG. 14 and FIG. 15 are refractive index distribution curves. 11: bonding pad, 12: adhesive, 13: solid-state image sensor, 14: transparent adhesive, 15: color filter, 16: epoxy resin composition for encapsulating optical semiconductors, 17:
Glass plate, 18 ... Bonding wire, 19 ... Lead frame

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 康彦 大阪府茨木市下穂積1丁目1番2号 日 東電工株式会社内 (72)発明者 広森 信行 大阪府茨木市下穂積1丁目1番2号 日 東電工株式会社内 (72)発明者 吉村 保守 大阪府茨木市下穂積1丁目1番2号 日 東電工株式会社内 (72)発明者 村松 克哉 大阪府茨木市下穂積1丁目1番2号 日 東電工株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yasuhiko Yamamoto 1-1-2 Shimohozumi, Ibaraki-shi, Osaka Nippon Denko Corporation (72) Inventor Nobuyuki Hiromori 1-2-1, Shimohozumi, Ibaraki-shi, Osaka (1) 1-2, Shimohozumi, Ibaraki-shi, Osaka Prefecture, Japan No. 1 1-2-1, Shimohozumi, Ibaraki-shi, Osaka Japan-72 Katsuya Muramatsu, 1-2-1, Shimohozumi, Ibaraki-shi, Osaka, Japan No. Japan Todenko Co., Ltd.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光半導体素子が透明エポキシ樹脂組成物硬
化体により被覆されてなる光半導体装置において、上記
透明エポキシ樹脂組成物硬化体が下記の屈折率分布
(A)〜(C)を有することを特徴とする光半導体装
置。 (A) 屈折率の山形分布曲線における最大のピーク点
(a)の高さを100とし、その100に対する相対ピーク高
さが20になる左右両点(b),(c)の間隔(b点とc
点の屈折率の差)Xが0.0018以下。 (B) 上記の最大ピーク点(a)の屈折率から、上記
(b)点または(c)点の屈折率を減じた値のいずれか
大きい値Yが0.0012以下。 (C) 屈折率の山形分布曲線が最大ピーク点(a)以
外に他のピーク点(d,…dn)を有する場合には、最大ピ
ーク点(a)の屈折率と、これよりも最も屈折率差の大
きくなる上記他のピーク点(d)との屈折率差Zが0.00
10以下。
1. An optical semiconductor device comprising an optical semiconductor element covered with a cured transparent epoxy resin composition, wherein the cured transparent epoxy resin composition has the following refractive index distributions (A) to (C). An optical semiconductor device characterized by the above-mentioned. (A) The height of the maximum peak point (a) in the peak distribution curve of the refractive index is 100, and the interval between the left and right points (b) and (c) at which the relative peak height to 100 is 20 (point b) And c
The difference in refractive index between points) X is 0.0018 or less. (B) The larger value Y of the value obtained by subtracting the refractive index at the point (b) or (c) from the refractive index at the maximum peak point (a) is 0.0012 or less. (C) When the peak distribution curve of the refractive index has other peak points (d,... Dn) in addition to the maximum peak point (a), the refractive index at the maximum peak point (a) and the refractive index more than this The refractive index difference Z from the other peak point (d) where the index difference becomes large is 0.00
less than 10.
【請求項2】上記要件(C)のZの値が0.0003以下に設
定される請求項(1)記載の光半導体装置。
2. The optical semiconductor device according to claim 1, wherein the value of Z in the requirement (C) is set to 0.0003 or less.
【請求項3】上記要件(A)のXの値が0.0015以下に設
定される請求項(1)または(2)記載の光半導体装
置。
3. The optical semiconductor device according to claim 1, wherein the value of X in the requirement (A) is set to 0.0015 or less.
【請求項4】上記要件(A)のXの値が0.0010以下に、
かつ上記要件(B)のYの値が0.0007以下に設定される
請求項(1)または(2)記載の光半導体装置。
4. The value of X in the requirement (A) is 0.0010 or less,
3. The optical semiconductor device according to claim 1, wherein the value of Y in the requirement (B) is set to 0.0007 or less.
【請求項5】上記要件(A)のXの値が0.0007以下に、
かつ上記要件(B)のYの値が0.0004以下に設定される
請求項(1)または(2)記載の光半導体装置。
5. The value of X in the requirement (A) is 0.0007 or less,
The optical semiconductor device according to claim 1, wherein the value of Y in the requirement (B) is set to 0.0004 or less.
JP2188666A 1990-07-16 1990-07-16 Optical semiconductor device Expired - Fee Related JP2761284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2188666A JP2761284B2 (en) 1990-07-16 1990-07-16 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2188666A JP2761284B2 (en) 1990-07-16 1990-07-16 Optical semiconductor device

Publications (2)

Publication Number Publication Date
JPH0473957A JPH0473957A (en) 1992-03-09
JP2761284B2 true JP2761284B2 (en) 1998-06-04

Family

ID=16227729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2188666A Expired - Fee Related JP2761284B2 (en) 1990-07-16 1990-07-16 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2761284B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092002A (en) * 2005-09-30 2007-04-12 Hitachi Chem Co Ltd Epoxy resin composition, hollow package for semiconductor device and semiconductor part device by using the same

Also Published As

Publication number Publication date
JPH0473957A (en) 1992-03-09

Similar Documents

Publication Publication Date Title
JP2656336B2 (en) Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor used therein
US7307286B2 (en) Epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device using the same
CN105531824B (en) Advanced light extraction structures
EP1853943A2 (en) Method for producing an optical, radiation-emitting component and optical, radiation-emitting component
CN1550047A (en) Surface-mountable, radiation-emitting component and method for the production thereof
CN110283561B (en) Packaging resin composition for LED display screen patch type discrete device and application thereof
JPH10292094A (en) Epoxy resin composition, resin-sealed semiconductor device prepared by using the sane, epoxy resin molding material, and composite epoxy resin tablet
EP0466950B1 (en) Method for producing an epoxy resin composition for use in molding photosemiconductor
JP2001261367A (en) Glass filler for transparent resin
JPH1117073A (en) Optical coupler and sealing resin composition
JPS6274924A (en) Epoxy resin composition for sealing semiconductor device
JP2761284B2 (en) Optical semiconductor device
KR102125023B1 (en) Epoxy resin composition for photosemiconductor element molding and method for preparation of the same
JP2656350B2 (en) Optical semiconductor device, method for producing the same, and resin composition for encapsulating optical semiconductor used therein
JP2001323135A (en) Epoxy resin composition for sealing optical semiconductor and optical semiconductor device
JPH07206983A (en) Epoxy resin composition, its production and semiconductor apparatus obtained by using the composition
JPH11111741A (en) Epoxy resin tablet for sealing optical semiconductor and optical semiconductor sealed with same tablet
JP2007154064A (en) Method for producing resin composition for sealing photosemiconductor element, resin composition for sealing photosemiconductor element obtained thereby and photosemiconductor device
JPH04142070A (en) Semiconductor device
JP2005179582A (en) Resin composition for optical semiconductor encapsulation, preform for optical semiconductor encapsulation and optical semiconductor device
JPH02261856A (en) Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith
JPH0726121A (en) Resin composition for sealing optically functional element
JP7510843B2 (en) Resin molding for sealing optical semiconductors, optical semiconductor sealing material, and optical semiconductor device
JPH03259948A (en) Light-transmitting resin composition and photosemiconductor device
TWI843873B (en) Resin molded article for optical semiconductor sealing and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees