JP2761096B2 - Manufacturing method of high ductility and high strength alloyed hot-dip galvanized steel sheet - Google Patents
Manufacturing method of high ductility and high strength alloyed hot-dip galvanized steel sheetInfo
- Publication number
- JP2761096B2 JP2761096B2 JP29915990A JP29915990A JP2761096B2 JP 2761096 B2 JP2761096 B2 JP 2761096B2 JP 29915990 A JP29915990 A JP 29915990A JP 29915990 A JP29915990 A JP 29915990A JP 2761096 B2 JP2761096 B2 JP 2761096B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- cooling
- temperature
- hot
- dip galvanized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、加工性に優れた高強度合金化溶融亜鉛めっ
き鋼板の製造方法に関し、より詳しくは、引張強さ60〜
120kgf/mm2級の複合組織合金化溶融亜鉛めっき鋼板の製
造方法に関する。The present invention relates to a method for producing a high-strength alloyed hot-dip galvanized steel sheet excellent in workability, and more specifically, to a tensile strength of 60 to 60.
The present invention relates to a method for producing a 120 kgf / mm 2 class composite structure alloyed hot-dip galvanized steel sheet.
(従来の技術) 近年、自動車の安全性及び軽量化対策として加工性の
優れた高強度冷延鋼板が使用されるに至っている。ま
た、自動車の寿命向上のために冷延鋼板に防錆力の向上
が強く望まれており、このような溶融亜鉛めっき鋼板、
及びスポット溶接性と塗装性に優れる合金化溶融亜鉛め
っき鋼板の開発が必要とされている。特に、最近におい
ては、自動車バンパー、ドアインパクトバー等の補強部
材についても、引張強さ60〜100kgf/mm2の合金化溶融亜
鉛めっき鋼板が要望されている。(Prior Art) In recent years, high-strength cold-rolled steel sheets having excellent workability have been used as measures for reducing the safety and weight of automobiles. Further, it is strongly desired that cold-rolled steel sheets have an improved rust-preventive force in order to extend the life of automobiles.
There is also a need for the development of galvannealed steel sheets having excellent spot weldability and paintability. In particular, recently, there has been a demand for alloyed hot-dip galvanized steel sheets having a tensile strength of 60 to 100 kgf / mm 2 for reinforcing members such as automobile bumpers and door impact bars.
(発明が解決しようとする課題) 従来、引張強さが60kgf/mm2級のものは、固溶強化及
び析出強化により製造されているため、添加元素が多く
なって、コストアップになるという問題があった。ま
た、80kgf/mm2以上のものを得るには、これらの強化方
法では、延性の劣化が大きいばかりでなく圧延も困難と
なる。したがって、このような高強度薄鋼板で高延性を
得るためには、ベイナイト或いはマルテンサイトのよう
な硬質相を含む変態組織強化が有利なことが知られてい
る。(Problems to be Solved by the Invention) Conventionally, the tensile strength of 60 kgf / mm 2 class is manufactured by solid solution strengthening and precipitation strengthening, so that there is a problem that the added element increases and the cost increases. was there. Further, in order to obtain a steel sheet having a weight of 80 kgf / mm 2 or more, these strengthening methods not only greatly reduce ductility, but also make rolling difficult. Therefore, in order to obtain high ductility with such a high-strength thin steel sheet, it is known that strengthening of the transformation structure including a hard phase such as bainite or martensite is advantageous.
かゝる問題を解決するために、例えば、特開昭55-504
55号公報では、Mn等を添加した鋼板をAc1〜Ac3の2相域
加熱し、この加熱温度からめっき浴温度までの冷却速度
及びめっき処理後の冷却速度を限定することによりフェ
ライト・マルテンサイトの複合組織にし、加工性に優れ
た高強度亜鉛めっき鋼板を得る方法が提案されている。
しかし、この方法では、合金化処理するとパーライト或
いは粗いベイナイトを生じ、加工性に優れた高強度合金
化溶融亜鉛めっき鋼板を得ることができない。In order to solve such a problem, for example, JP-A-55-504
No. 55 discloses that a steel sheet to which Mn or the like is added is heated in a two-phase region of A c1 to A c3 , and a cooling rate from the heating temperature to a plating bath temperature and a cooling rate after the plating treatment are limited to thereby reduce the ferrite / martennel. There has been proposed a method of obtaining a high-strength galvanized steel sheet having excellent workability by forming a composite structure of a site.
However, in this method, pearlite or coarse bainite is generated by alloying treatment, and a high-strength galvannealed steel sheet excellent in workability cannot be obtained.
また、特開昭55-122820号公報では、合金化温度をAc1
〜Ac3の2相域にし、その後の冷却速度を制御すること
により複合組織鋼板とすることが提案されている。しか
し、この方法においては、合金化温度が高いために、合
金層の鉄濃度が高くなり、パウダリング性不良等が生じ
て材質劣化させるという問題点がある。In Japanese Patent Application Laid-Open No. 55-122820, the alloying temperature is set to A c1
It has been proposed to obtain a composite structure steel sheet by setting a two-phase region of ~ Ac3 and controlling the cooling rate thereafter. However, in this method, there is a problem that since the alloying temperature is high, the iron concentration of the alloy layer is increased, and poor powdering properties and the like are caused to deteriorate the material.
一方、特開昭56-142821号公報では、Ac1〜900℃の加
熱を行い、冷却速度を制御することによりパーライト及
びベイナイトの生成を抑制し、組織をフェライト・マル
テンサイト(一部残留オーステナイトを含む)の複合組
織にすることにより、加工性の優れた溶融亜鉛めっき鋼
板を製造する方法が提案されている。しかし、この方法
では、フェライトとマルテンサイトの硬さの差が大き
く、局部伸びや曲げ加工性が低い。特に、引張強さが70
kgf/mm2以上ではマルテンサイト体積率が大きくなり、
穴広げ率が著しく低下するため、バンパー等のチャンネ
ル型成形で行なわれる厳しい曲げ加工では、加工性が不
十分である。On the other hand, in Japanese Patent Application Laid-Open No. 56-142821, heating of A c1 to 900 ° C. and controlling the cooling rate suppress the formation of pearlite and bainite, and change the structure to ferrite / martensite (partially retained austenite). A method has been proposed for producing a hot-dip galvanized steel sheet having excellent workability by forming a composite structure of the present invention. However, in this method, the difference in hardness between ferrite and martensite is large, and local elongation and bending workability are low. In particular, a tensile strength of 70
At kgf / mm 2 or more, the martensite volume ratio increases,
Since the hole expansion ratio is remarkably reduced, the workability is insufficient in severe bending performed in channel-type molding such as a bumper.
以上のように、高延性高強度合金化溶融亜鉛めっき鋼
板を製造するに際しては、高強度を得る点で有利な複合
組織強化が必要となるが、単に、化学成分や冷却速度に
着目した方法では、高延性高強度合金化溶融亜鉛めっき
鋼板を製造することは困難である。As described above, when manufacturing a high-ductility high-strength alloyed hot-dip galvanized steel sheet, it is necessary to strengthen the composite structure, which is advantageous in obtaining high strength.However, simply by focusing on chemical components and cooling rates, It is difficult to produce a high-ductility, high-strength alloyed hot-dip galvanized steel sheet.
本発明は、上記従来技術の問題点を解決して、複合組
織化により優れた高延性と高強度を有する合金化溶融亜
鉛めっき鋼板を製造する方法を提供することを目的とす
るものである。An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for producing an alloyed hot-dip galvanized steel sheet having excellent high ductility and high strength by forming a composite structure.
(課題を解決するための手段) 本発明者らは、前記課題を解決するために鋭意研究を
重ねた結果、鋼の化学成分及び連続溶融亜鉛めっきライ
ンの加熱温度、加熱温度からめっき浴温度までの冷却を
徐冷と急冷の2段階の冷却にすること、更には合金化温
度及び合金化温度からMs点までの冷却速度を制御するこ
とにより、組織を微細かつ均一なフェライト・ベイナイ
ト・マルテンサイト(一部残留オーステナイトを含む)
の複合組織にし、高延性高強度合金化溶融亜鉛めっき鋼
板が得られることを見い出して、本発明に至ったもので
ある。(Means for Solving the Problems) As a result of intensive studies to solve the problems, the present inventors have found that the chemical composition of steel and the heating temperature of the continuous galvanizing line, from the heating temperature to the plating bath temperature. The microstructure of the ferrite, bainite, and martensite is fine and uniform by controlling the cooling of the alloy into two stages of slow cooling and quenching, and controlling the alloying temperature and the cooling rate from the alloying temperature to the Ms point. (Including some retained austenite)
The present inventors have found that a high ductility and high strength alloyed hot-dip galvanized steel sheet can be obtained in the composite structure of the present invention, which has led to the present invention.
すなわち、本発明は、C:0.06〜0.30%、Si:0.6%以
下、P:0.1%以下、Nb:0.01〜0.20%及びsol.Al:0.01〜
0.10%を含有し、更にMn:0.6〜3.0%、Cr:0.1〜1.5%及
びMo:0.1〜1.0%の1種又は2種以上を含有し、残部が
鉄及び不可避的不純物よりなる鋼を、通常の方法で熱間
圧延、酸洗、冷間圧延した後、連続溶融亜鉛めっきライ
ンにて再結晶焼鈍する際に、その加熱温度をAc3点−50
℃〜900℃にし、めっき浴までの冷却を、20℃/s以下の
冷却速度にて500〜650℃の温度域に冷却し、次いで、め
っき浴温度まで lnCR=−1.18Meq+3.37 ここで、Meq(%)=Mn+1.52Mo+1.10Cr+0.10Si+
2.1P で示される臨界冷却速度CR(℃/s)以上にて冷却した
後、溶融亜鉛めっきし、次いで500℃〜Ac1点の温度にて
合金化処理を施した後、CR以上の冷却速度にてMs点以下
に冷却することを特徴とする高延性強度合金化溶融亜鉛
めっき鋼板の製造方法を要旨とするものである。That is, in the present invention, C: 0.06 to 0.30%, Si: 0.6% or less, P: 0.1% or less, Nb: 0.01 to 0.20%, and sol.
Containing 0.10%, and further containing one or more of Mn: 0.6 to 3.0%, Cr: 0.1 to 1.5% and Mo: 0.1 to 1.0%, with the balance being iron and unavoidable impurities, After hot rolling, pickling and cold rolling in the usual manner, when performing recrystallization annealing in a continuous hot-dip galvanizing line, the heating temperature is set to A c3 point −50.
To 900 ° C., and cooling to the plating bath is cooled to a temperature range of 500 to 650 ° C. at a cooling rate of 20 ° C./s or less, and then to the plating bath temperature lnCR = −1.18Meq + 3.37 Meq (%) = Mn + 1.52Mo + 1.10Cr + 0.10Si +
After cooling at a critical cooling rate CR (° C / s) or higher indicated by 2.1P, hot-dip galvanizing, and then performing an alloying treatment at a temperature between 500 ° C and Ac1 point, then a cooling rate higher than CR The gist of the present invention is a method for producing a high ductility alloyed hot-dip galvanized steel sheet, characterized in that the steel sheet is cooled to an Ms point or lower.
以下に本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.
(作用) 第1図は本発明における連続亜鉛めっきラインの熱履
歴を示している。ここで、均熱温度から500〜650℃まで
の冷却を1次冷却、次のめっき浴温度までの冷却を2次
冷却、合金化処理後の冷却を3次冷却とし、それぞれの
冷却速度を1次冷却速度、2次冷却速度、3次冷却速度
と呼ぶ。なお、1次冷却から2次冷却に変わる時の温度
を急冷開始温度と呼ぶ。(Action) FIG. 1 shows the thermal history of the continuous galvanizing line in the present invention. Here, the cooling from the soaking temperature to 500 to 650 ° C. is the primary cooling, the cooling to the next plating bath temperature is the secondary cooling, and the cooling after the alloying treatment is the tertiary cooling. It is called the secondary cooling rate, the secondary cooling rate, and the tertiary cooling rate. The temperature at which the primary cooling is changed to the secondary cooling is referred to as a rapid cooling start temperature.
まず、本発明における化学成分の限定理由について説
明する。First, the reasons for limiting the chemical components in the present invention will be described.
C: Cは鋼板の強化に不可欠な元素であって、目的とする
強度を有する鋼板を得るには、少なくとも0.06%を添加
する必要があるが、0.30%を超えると硬質なマルテンサ
イトの体積率が高くなり、加工性が劣化するばかりでな
く、スポット溶接性も低下する。したがって、C量は0.
06〜0.30%の範囲とする。C: C is an indispensable element for strengthening the steel sheet. To obtain a steel sheet having the desired strength, it is necessary to add at least 0.06%, but if it exceeds 0.30%, the volume fraction of hard martensite Not only deteriorates the workability but also decreases the spot weldability. Therefore, the amount of C is 0.
The range is from 06 to 0.30%.
Si: Siはフェライト中の固溶Cをオーステナイト中へ排出
する効果を有するため、フェライト延性を向上させるこ
とができる。しかし、過多に添加するとめっき不良を生
じるので、Si量は0.6%以下とする。Si: Since Si has an effect of discharging solid solution C in ferrite into austenite, ferrite ductility can be improved. However, excessive addition causes poor plating, so the Si content is set to 0.6% or less.
P: Pは、0.02%以上の添加によってSiと同様の作用を有
し、強度と伸びとのバランスを確保するために有効であ
るが、0.1%を超えて添加するとめっき不良等が発生す
るので、P量は0.1%以下とする。P: P has the same effect as Si when added in an amount of 0.02% or more, and is effective for ensuring a balance between strength and elongation. However, if added in excess of 0.1%, plating failure or the like will occur. , P content is 0.1% or less.
Nb: Nbは鋼板の強度を高めるための有効な元素であり、単
に析出強化として寄与するだけでなく、焼入性を向上さ
せる。また、組織を超微細均一にする効果があり、均一
伸びを低下することなく局部伸びを高める効果がある。
このような効果を発揮するためには、0.01%以上が必要
である。しかし0.20%よりも過多に添加すると延性を劣
化させるので好ましくない。したがつて、Nb量は0.01〜
0.20%の範囲とする。Nb: Nb is an effective element for increasing the strength of a steel sheet, and not only contributes to precipitation strengthening but also improves hardenability. Further, it has the effect of making the structure ultrafine and uniform, and has the effect of increasing local elongation without reducing uniform elongation.
In order to exhibit such effects, 0.01% or more is required. However, if it is added in excess of 0.20%, ductility is deteriorated, which is not preferable. Therefore, the Nb amount is 0.01 to
The range is 0.20%.
sol.Al: Alは鋼の脱酸のために添加され、少なくとも0.01%が
必要である。しかし、過多に添加してもこの効果が飽和
するのみならず、めっか不良を招くので好ましくない。
したがって、添加量はsol.Alで0.01〜0.1%の範囲とす
る。sol.Al: Al is added for deoxidation of steel and requires at least 0.01%. However, excessive addition not only saturates the effect but also causes inconvenience, which is not preferable.
Therefore, the amount of sol.Al is in the range of 0.01 to 0.1%.
また、本発明において用いる鋼は、上記元素に加え
て、Mn、Cr及びMoの1種又は2種以上を適量で含有させ
なければならない。Further, the steel used in the present invention must contain an appropriate amount of one or more of Mn, Cr and Mo, in addition to the above elements.
Mn: Mnはオーステナイト相を安定化し、冷却過程において
硬質相の生成を容易にし、高強度を得るために添加され
る。しかし、添加量が少ないと高強度を達成するための
十分な硬質相を得ることができないので、その下限を0.
6%とする。一方、過多に添加するとバンド組織が発達
し、加工性が劣化するばかりでなく、コスト高になるの
で、上限を3.0%とする。Mn: Mn is added to stabilize the austenite phase, facilitate the formation of a hard phase in the cooling process, and obtain high strength. However, if the addition amount is small, it is not possible to obtain a sufficient hard phase to achieve high strength, so the lower limit is 0.1.
6%. On the other hand, if it is added excessively, the band structure develops and not only the workability deteriorates, but also the cost increases, so the upper limit is made 3.0%.
Cr: CrはMnと同様な効果を有し、オーステナイト相を安定
化し、硬質相の生成を容易にして高強度を得るために、
必要に応じて添加される。しかし、その効果を得るには
少なくとも0.1%が必要であるが、過多に添加すると均
一伸び及び局部伸びを低下させるので、添加量の上限を
1.5%とする。Cr: Cr has the same effect as Mn, stabilizes the austenite phase, facilitates the formation of a hard phase, and obtains high strength.
It is added as needed. However, at least 0.1% is required to obtain the effect. However, if added excessively, uniform elongation and local elongation are reduced.
1.5%.
Mo: Moはオーステナイト相を著しく安定化し、冷却過程に
おいて硬質相の生成を容易にし、高強度化するために添
加される。しかし、添加量が少ないと高強度を達成する
ための硬質相を得ることができないので、その下限を0.
1%とする。一方、1.0%を超えて添加すると、マルテン
サイトがバンド状で多量に生成するため、加工性が劣化
するので、1.0%を上限とする。Mo: Mo is added to significantly stabilize the austenite phase, facilitate the formation of a hard phase in the cooling process, and increase the strength. However, if the addition amount is small, a hard phase for achieving high strength cannot be obtained, so the lower limit is set to 0.1.
1%. On the other hand, if it is added in excess of 1.0%, a large amount of martensite is formed in a band-like form, thereby deteriorating workability. Therefore, the upper limit is 1.0%.
次に、本発明の方法における製造条件について説明す
る。Next, the manufacturing conditions in the method of the present invention will be described.
上記の化学成分を有する鋼は、通常の工程により、製
鋼、分塊又は連続鋳造を経てスラブとした後、熱間圧延
を経て、ホットコイルにする。熱間圧延については、そ
の条件は特に限定する必要はないが、均一微細なフェラ
イトとマルテンサイト等の複合組織の溶融亜鉛めっき高
強度鋼板を得るには、熱間圧延の巻取温度を低くし、均
一なフェライトとベイナイトの組織にした方が好まし
い。The steel having the above-mentioned chemical composition is formed into a slab by a normal process through steelmaking, lumping or continuous casting, and then into a hot coil through hot rolling. With regard to hot rolling, the conditions do not need to be particularly limited.However, in order to obtain a hot-dip galvanized high-strength steel sheet having a composite structure of fine and uniform ferrite and martensite, the winding temperature of hot rolling should be lowered. It is preferable to have a uniform ferrite and bainite structure.
熱間圧延後、常法に従って、酸洗し、冷間圧延を施し
て薄鋼板を得る。冷間加工率は30%以上が望ましい。After hot rolling, according to a conventional method, pickling and cold rolling are performed to obtain a thin steel sheet. The cold working rate is desirably 30% or more.
次いで、この薄鋼板を連続溶融亜鉛めっきラインに導
いて、以下の条件で再結晶焼鈍、溶融亜鉛めっき及び合
金化処理を施す。Next, the thin steel sheet is led to a continuous hot-dip galvanizing line, and subjected to recrystallization annealing, hot-dip galvanizing, and alloying under the following conditions.
再結晶焼鈍は、その加熱温度をAc3点−50℃〜900℃に
する必要がある。加熱温度がAc3点−50℃よりも低い
と、未変態の再結晶フェライトが多く、均一微細な組織
にすることができないので、高い局部伸びを得ることが
困難となる。他方、加熱温度が900℃よりも高いと、オ
ーステナイト粒が粗大化し、1次、2次冷却過程でのフ
ェライトの核が少なくなり、フェライト粒が粗大化し、
組織が不均一となるため、局部伸びが劣化する。In the recrystallization annealing, it is necessary to set the heating temperature to an Ac3 point of −50 ° C. to 900 ° C. If the heating temperature is lower than the Ac3 point −50 ° C., a large amount of untransformed recrystallized ferrite cannot be obtained to form a uniform and fine structure, so that it is difficult to obtain high local elongation. On the other hand, when the heating temperature is higher than 900 ° C., the austenite grains are coarsened, the nuclei of ferrite in the primary and secondary cooling processes are reduced, and the ferrite grains are coarsened.
Due to the non-uniform structure, local elongation deteriorates.
この再結晶焼鈍からめっき浴までの冷却は、まず、50
0〜650℃の温度域に20℃/s以下の冷却速度で冷却する。
この1次冷却過程は、伸び及び局部伸びを高めるに重要
な工程である。すなわち、Nb添加による変態抑止効果及
び粒成長抑止効果により、低温でフェライトを微細かつ
均一に析出させ、残りのオーステナイトのC濃度を高め
る。このため、オーステナイトは安定化し、めっき浴温
度以上でベイナイトの生成を抑制する。しかし、冷却速
度で20℃/sを超えると、十分にフェライトが析出でき
ず、オーステナイトのC濃度が低いために、冷却過程で
ベイナイトの生成量が多くなり、均一伸び及び局部伸び
は劣化するので好ましくない。Cooling from the recrystallization annealing to the plating bath is first performed by 50
Cool to a temperature range of 0 to 650 ° C at a cooling rate of 20 ° C / s or less.
This primary cooling step is an important step for increasing elongation and local elongation. That is, due to the transformation inhibiting effect and the grain growth inhibiting effect by the addition of Nb, ferrite is finely and uniformly precipitated at a low temperature, and the C concentration of the remaining austenite is increased. For this reason, austenite is stabilized, and the formation of bainite is suppressed at a plating bath temperature or higher. However, if the cooling rate exceeds 20 ° C / s, ferrite cannot be sufficiently precipitated, and the C concentration of austenite is low, so that the amount of bainite generated in the cooling process increases, and uniform elongation and local elongation deteriorate. Not preferred.
次いで、急冷開始温度から、めっき槽の温度まで、 lnCR=−1.18Meq+3.37 ここで、Meq(%)=Mn+1.52Mo+1.10Cr+0.10Si+
2.1P で示される臨界冷却速度CR(℃/s)以上にて冷却する。
次いで、溶融亜鉛めっきを施した後、500℃〜Ac1点の温
度にて合金化処理した後、臨界冷却速度CR以上の冷却速
度にてMs点以下に冷却することにより、微細均一な複合
組織鋼板を得ることができる。この2次冷却と3次冷却
のいずれの冷却速度ともCRよりも小さいと、パーライト
の生成或いはベイナイト体積率が多くなり、高延性高強
度を得るのが困難である。Then, from the quenching start temperature to the temperature of the plating tank, lnCR = −1.18Meq + 3.37 where Meq (%) = Mn + 1.52Mo + 1.10Cr + 0.10Si +
Cool at a critical cooling rate CR (° C / s) or higher indicated by 2.1P.
Next, after hot-dip galvanizing, after alloying at a temperature of 500 ° C. to A c1 point, by cooling to a Ms point or less at a cooling rate of the critical cooling rate CR or more, a fine uniform composite structure Steel sheet can be obtained. If both the cooling rates of the secondary cooling and the tertiary cooling are smaller than CR, the generation of pearlite or the bainite volume ratio increases, and it is difficult to obtain high ductility and high strength.
以下に本発明の一実施例を示す。 An embodiment of the present invention will be described below.
(実施例) 第1表に示す化学成分を有する鋼を40kg真空溶製し、
20mm厚のスラブにした。このスラブを1200℃に加熱し、
仕上温度850℃、巻取温度560℃で熱間圧延し、3.2mm厚
の熱延鋼板とした。得られた鋼板を酸洗、冷間圧延し
て、1.2mm厚(圧下率62.5%)の冷延鋼板を得た。(Example) 40 kg of steel having the chemical components shown in Table 1 was vacuum-melted,
The slab was 20 mm thick. Heat this slab to 1200 ° C,
Hot rolling was performed at a finishing temperature of 850 ° C. and a winding temperature of 560 ° C. to obtain a 3.2 mm-thick hot-rolled steel sheet. The obtained steel sheet was pickled and cold-rolled to obtain a cold-rolled steel sheet having a thickness of 1.2 mm (a reduction ratio of 62.5%).
これらの冷延鋼板について第2表に示す条件で連続亜
鉛めっき処理して合金化溶融亜鉛めっき鋼板を得た。These cold-rolled steel sheets were subjected to continuous galvanization under the conditions shown in Table 2 to obtain alloyed hot-dip galvanized steel sheets.
得られた合金化溶融亜鉛めっき鋼板について引張特性
及び10φmm打抜き穴広げ率を調べた。その結果を第2表
に併記する。The obtained alloyed hot-dip galvanized steel sheet was examined for tensile properties and 10 mm hole punching hole expansion ratio. The results are shown in Table 2.
第2表より以下の如く考察される。 The following is considered from Table 2.
本発明材のNo.1〜No.2はいずれも85kgf/mm2以上の高
強度で、22%以上の高い伸びと40%以上の高い穴広げ率
(λ)を示している。No. 1 and No. 2 of the present invention material have high strength of 85 kgf / mm 2 or more, high elongation of 22% or more and high hole expansion ratio (λ) of 40% or more.
一方、No.1及びNo.2と同じ化学成分を有する比較材N
o.3は、急冷開始温度が800℃と高いため、フェライトの
析出が不十分であり、伸びが劣っている。On the other hand, comparative material N having the same chemical components as No. 1 and No. 2
In the case of o.3, since the quenching start temperature was as high as 800 ° C., precipitation of ferrite was insufficient and elongation was poor.
比較材No.4、No.7、No.9はいずれも、Nbが添加されて
いないので、本発明材よりも組織が粗く、強度及び穴広
げ率が劣っている。Since the comparative materials No. 4, No. 7, and No. 9 did not contain Nb, the structure was coarser than that of the material of the present invention, and the strength and the hole expansion ratio were inferior.
比較材No.6は、冷却速度がCRよりも遅いため、パーラ
イトが生成し、本発明材No.5よりも強度及び穴広げ率が
劣っている。The comparative material No. 6 has a cooling rate lower than CR, so that pearlite is generated, and the strength and the hole expanding ratio are inferior to the material No. 5 of the present invention.
比較材No.10は、Mn量が3.51%と多いため、多量のマ
ルテンサイトが生成し、伸び及び穴広げ率が低い。Comparative material No. 10 has a large Mn content of 3.51%, so that a large amount of martensite is generated, and the elongation and hole expansion rate are low.
比較材No.11は、C量が低く、また冷却速度がCRより
も遅いため、マルテンサイトが得られず、目的とする強
度が得られていない。Comparative material No. 11 had a low C content and a lower cooling rate than CR, so that martensite was not obtained and the desired strength was not obtained.
また、本発明材No.8は80kgf/mm2の高強度で、伸び及
び穴拡げ率が優れている。Further, the material No. 8 of the present invention has a high strength of 80 kgf / mm 2 and is excellent in elongation and hole expansion rate.
(発明の効果) 以上詳述したように、本発明によれば、再結晶焼鈍の
加熱温度から亜鉛めっき温度までの冷却速度を徐冷と急
冷の2段階に制御することにより、均一伸び、局部伸び
の向上に寄与するフェライトを微細均一に十分析出さ
せ、また、この過程で残部オーステナイトのC濃度を高
め、安定化することにより、亜鉛めっきから合金化処理
までの間でパーライトの生成を抑制し、ベイナイトの多
量の生成を防ぎ、合金化処理後の冷却により、オーステ
ナイトをマルテンサイトに変態させることにより、フェ
ライト、マルテンサイトを主体とした微細均一な組織に
することができる。 (Effects of the Invention) As described above in detail, according to the present invention, by controlling the cooling rate from the heating temperature of the recrystallization annealing to the galvanizing temperature in two stages of slow cooling and rapid cooling, uniform elongation and local cooling are achieved. Precipitates ferrite, which contributes to the improvement of elongation, finely and uniformly, and also increases the C concentration of the remaining austenite in this process and stabilizes it, thereby suppressing the generation of pearlite from galvanization to alloying. A large amount of bainite is prevented, and austenite is transformed into martensite by cooling after the alloying treatment, whereby a fine and uniform structure mainly composed of ferrite and martensite can be obtained.
したがって、60〜120kgf/mm2級で高延性高強度合金化
溶融亜鉛めっき鋼板を得ることができるので、めっきむ
ら、パラダリング等、表面性状の向上に加えて、エネル
ギー費用の低減も可能である。Therefore, it is possible to obtain a high ductility and high strength galvannealed steel sheet with 60~120kgf / mm 2 grade, Mekkimura, Parada rings, etc., in addition to the improvement of surface properties, reduced is also possible energy costs .
第1図は本発明における連続亜鉛めっきラインの熱履歴
を示す図である。FIG. 1 is a diagram showing the thermal history of a continuous galvanizing line in the present invention.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−39770(JP,A) 特開 昭63−195222(JP,A) 特開 平4−128320(JP,A) (58)調査した分野(Int.Cl.6,DB名) C23C 2/02 C23C 2/06 C21D 9/46────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-58-39770 (JP, A) JP-A-63-195222 (JP, A) JP-A-4-128320 (JP, A) (58) Field (Int.Cl. 6 , DB name) C23C 2/02 C23C 2/06 C21D 9/46
Claims (1)
%、Si:0.6%以下、P:0.1%以下、Nb:0.01〜0.20%及び
sol.Al:0.01〜0.10%を含有し、更にMn:0.6〜3.0%、C
r:0.1〜1.5%及びMo:0.1〜1.0%の1種又は2種以上を
含有し、残部が鉄及び不可避的不純物よりなる鋼を、通
常の方法で熱間圧延、酸洗、冷間圧延した後、連続溶融
亜鉛めっきラインにて再結晶焼鈍する際に、その加熱温
度をAc3点−50℃〜900℃にし、めっき浴までの冷却を、
20℃/s以下の冷却速度にて500〜650℃の温度域に冷却
し、次いで、めっき浴温度まで lnCR=−1.18Meq+3.37 ここで、Meq(%)=Mn+1.52Mo+1.10Cr+0.10Si+2.1
P で示される臨界冷却速度CR(℃/s)以上にて冷却した
後、溶融亜鉛めっきし、次いで500℃〜Ac1点の温度にて
合金化処理を施した後、CR以上の冷却速度にてMs点以下
に冷却することを特徴とする高延性高強度合金化溶融亜
鉛めっき鋼板の製造方法。(1) C: 0.06-0.30% by weight (hereinafter the same)
%, Si: 0.6% or less, P: 0.1% or less, Nb: 0.01 to 0.20% and
sol.Al: 0.01 to 0.10%, Mn: 0.6 to 3.0%, C
r: 0.1-1.5% and Mo: 0.1-1.0% steel containing one or more kinds, the balance being iron and unavoidable impurities, hot rolling, pickling, cold rolling in the usual way After that, when recrystallization annealing in a continuous hot-dip galvanizing line, the heating temperature is set to Ac3 point -50 ℃ ~ 900 ℃, cooling to the plating bath,
Cool to a temperature range of 500 to 650 ° C. at a cooling rate of 20 ° C./s or less, and then up to the plating bath temperature lnCR = −1.18Meq + 3.37 where Meq (%) = Mn + 1.52Mo + 1.10Cr + 0.10Si + 2. 1
After cooling at a critical cooling rate CR (° C / s) or higher indicated by P, hot-dip galvanizing, and then performing alloying treatment at a temperature of 500 ° C to A c1 point, A high ductility and high strength alloyed hot-dip galvanized steel sheet, wherein the steel sheet is cooled to an Ms point or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29915990A JP2761096B2 (en) | 1990-11-05 | 1990-11-05 | Manufacturing method of high ductility and high strength alloyed hot-dip galvanized steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29915990A JP2761096B2 (en) | 1990-11-05 | 1990-11-05 | Manufacturing method of high ductility and high strength alloyed hot-dip galvanized steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04173946A JPH04173946A (en) | 1992-06-22 |
JP2761096B2 true JP2761096B2 (en) | 1998-06-04 |
Family
ID=17868897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29915990A Expired - Fee Related JP2761096B2 (en) | 1990-11-05 | 1990-11-05 | Manufacturing method of high ductility and high strength alloyed hot-dip galvanized steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2761096B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001053554A1 (en) * | 2000-01-24 | 2001-07-26 | Nkk Corporation | Hot dip zinc plated steel sheet and method for producing the same |
WO2008123561A1 (en) | 2007-03-30 | 2008-10-16 | Jfe Steel Corporation | High-strength hot-dip zinc-coated steel sheet |
WO2009081997A1 (en) | 2007-12-20 | 2009-07-02 | Jfe Steel Corporation | Processes for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2806121B2 (en) * | 1992-01-08 | 1998-09-30 | 日本鋼管株式会社 | Method for producing high-strength hot-dip galvanized steel with excellent workability and material stability |
US6709535B2 (en) | 2002-05-30 | 2004-03-23 | Kobe Steel, Ltd. | Superhigh-strength dual-phase steel sheet of excellent fatigue characteristic in a spot welded joint |
FR2844281B1 (en) * | 2002-09-06 | 2005-04-29 | Usinor | HIGH MECHANICAL STRENGTH STEEL AND METHOD OF MANUFACTURING SHEET OF ZINC-COATED STEEL OR ZINC ALLOY STEEL |
MX2017009192A (en) * | 2015-01-14 | 2018-04-30 | Ak Steel Properties Inc | Dual phase steel with improved properties. |
-
1990
- 1990-11-05 JP JP29915990A patent/JP2761096B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001053554A1 (en) * | 2000-01-24 | 2001-07-26 | Nkk Corporation | Hot dip zinc plated steel sheet and method for producing the same |
US6440584B1 (en) | 2000-01-24 | 2002-08-27 | Nkk Corporation | Hot-dip galvanized steel sheet and method for producing the same |
WO2008123561A1 (en) | 2007-03-30 | 2008-10-16 | Jfe Steel Corporation | High-strength hot-dip zinc-coated steel sheet |
US8076008B2 (en) | 2007-03-30 | 2011-12-13 | Jfe Steel Corporation | Galvanized high strength steel sheet |
WO2009081997A1 (en) | 2007-12-20 | 2009-07-02 | Jfe Steel Corporation | Processes for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JPH04173946A (en) | 1992-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8747577B2 (en) | High yield ratio and high-strength thin steel sheet superior in weldability and ductility, high-yield ratio high-strength hot-dip galvanized thin steel sheet, high-yield ratio high-strength hot-dip galvannealed thin steel sheet, and methods of production of same | |
US7959747B2 (en) | Method of making cold rolled dual phase steel sheet | |
JP2011063883A (en) | Ultra high strength steel composition, process of production of ultrahigh strength steel product, and the product obtained | |
JP2021504576A (en) | High-strength steel sheet with excellent collision characteristics and formability and its manufacturing method | |
WO1994000615A1 (en) | Cold-rolled steel plate having excellent baking hardenability, non-cold-ageing characteristics and moldability, and molten zinc-plated cold-rolled steel plate and method of manufacturing the same | |
JP5394306B2 (en) | High-strength steel plate with excellent plating properties and manufacturing method thereof | |
JP3587126B2 (en) | High tensile hot-dip galvanized steel sheet excellent in ductility and method for producing the same | |
JP2761095B2 (en) | Method for producing high strength galvanized steel sheet with excellent bending workability | |
JP5764498B2 (en) | High-strength cold-rolled steel sheet having excellent deep drawability and high yield ratio, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet using the same, and production method thereof | |
JP7502466B2 (en) | Ultra-high tensile cold-rolled steel sheet with excellent spot weldability and formability, ultra-high tensile plated steel sheet, and manufacturing method thereof | |
JP4265153B2 (en) | High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same | |
JP2024500521A (en) | Hot-forming steel materials, hot-forming parts, and methods of manufacturing them | |
JP3879440B2 (en) | Manufacturing method of high strength cold-rolled steel sheet | |
JP2761096B2 (en) | Manufacturing method of high ductility and high strength alloyed hot-dip galvanized steel sheet | |
JP3473480B2 (en) | Hot-dip galvanized steel sheet excellent in strength and ductility and method for producing the same | |
JP2862186B2 (en) | Manufacturing method of hot-dip galvanized high-strength thin steel sheet with excellent elongation | |
JP2862187B2 (en) | Manufacturing method of hot-dip galvanized high-strength thin steel sheet with excellent hole expansion properties | |
JP6843245B2 (en) | High-strength galvanized steel sheet with excellent bendability and stretch flangeability and its manufacturing method | |
JP2621744B2 (en) | Ultra-high tensile cold rolled steel sheet and method for producing the same | |
JP2003193189A (en) | High tensile strength galvanized steel sheet with composite structure having excellent deep drawability and production method therefor | |
JP2003193191A (en) | High tensile strength cold rolled steel sheet with composite structure having excellent deep drawability and production method therefor | |
JPH05117834A (en) | Manufacture of hot dip galvannealed steel sheet having excellent stretch-flanging property using high strength hot-rolled original sheet | |
JPH11193419A (en) | Production of galvannealed high strength cold rolled steel sheet excellent in formability | |
JPH0344423A (en) | Manufacture of galvanized hot rolled steel sheet having excellent workability | |
JP2007119842A (en) | Method for producing high-strength galvanized steel sheet excellent in stretch-flanging property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080320 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090320 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |