[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2759222B2 - Austenitic stainless steel with excellent stress corrosion cracking resistance in chloride environment - Google Patents

Austenitic stainless steel with excellent stress corrosion cracking resistance in chloride environment

Info

Publication number
JP2759222B2
JP2759222B2 JP1241728A JP24172889A JP2759222B2 JP 2759222 B2 JP2759222 B2 JP 2759222B2 JP 1241728 A JP1241728 A JP 1241728A JP 24172889 A JP24172889 A JP 24172889A JP 2759222 B2 JP2759222 B2 JP 2759222B2
Authority
JP
Japan
Prior art keywords
less
steel
stress corrosion
corrosion cracking
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1241728A
Other languages
Japanese (ja)
Other versions
JPH03104842A (en
Inventor
俊郎 足立
寿之 古木
紹泰 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP1241728A priority Critical patent/JP2759222B2/en
Publication of JPH03104842A publication Critical patent/JPH03104842A/en
Application granted granted Critical
Publication of JP2759222B2 publication Critical patent/JP2759222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は、耐応力腐食割れ性と耐隙間腐食性がともに
すぐれ、高温の塩化物環境において使用するに適したオ
ーステナイトステンレス鋼に関する。
Description: FIELD OF THE INVENTION The present invention relates to an austenitic stainless steel having excellent resistance to stress corrosion cracking and crevice corrosion and suitable for use in a high-temperature chloride environment.

(従来の技術と問題点) SUS304、SOS316に代表されるオーステナイトステンレ
ス鋼は、上水や中水道などの塩化物イオンを含む環境に
おいて耐食性を有し、さらに加工性および溶接性にすぐ
れていることから、各種の温水機器、熱交換チューブ、
化学プラント用部材として広く用いられている。しか
し、わずかなCl-イオンが存在しても、比較的高温の環
境では溶接部等で孔食や隙間腐食を発生し、これを起点
に応力腐食割れを生じることがある。
(Conventional technology and problems) Austenitic stainless steels such as SUS304 and SOS316 have corrosion resistance in environments containing chloride ions such as tap water and tap water, and have excellent workability and weldability. From, various hot water equipment, heat exchange tubes,
Widely used as components for chemical plants. However, even in the presence of a small amount of Cl - ions, in a relatively high temperature environment, pitting or crevice corrosion occurs at a weld or the like, which may cause stress corrosion cracking.

オーステナイトステンレス鋼における応力腐食割れの
問題を解決することは、多くの研究者によって検討され
成果が報告されているが、試験液の種類、手法など試験
条件によって合金元素の効果が異なっている。比較的低
濃度の中性塩化物溶液の環境において、P、MoおよびN
は有害で、Cuは応力腐食割れに対して有効であることが
知られている。しかし、Pを応力腐食割れに対して無害
な量のレベルにまで低減しようとすれば、特別な精錬法
を必要とし製造コストが著しく上昇する問題がある。ま
た、応力腐食割れに対して有害とされるMoやNは耐隙間
腐食性や耐孔食性などの耐局部腐食性の向上には有益な
元素である。オーステナイトステンレス鋼をCl-イオン
を含む温水環境で用いる場合、応力腐食割れが局部腐食
を起点に生じることから、耐応力腐食割れとともに耐局
部腐食性を具備していることが要求される。
Solving the problem of stress corrosion cracking in austenitic stainless steel has been studied and reported by many researchers, but the effect of alloying elements differs depending on the test conditions such as the type of test solution and method. In environments of relatively low concentrations of neutral chloride solutions, P, Mo and N
Is harmful and Cu is known to be effective against stress corrosion cracking. However, if P is to be reduced to a level that is harmless to stress corrosion cracking, a special refining method is required, and there is a problem that the production cost is significantly increased. Mo and N, which are harmful to stress corrosion cracking, are useful elements for improving local corrosion resistance such as crevice corrosion resistance and pitting corrosion resistance. When austenitic stainless steel is used in a warm water environment containing Cl - ions, since the stress corrosion cracking starts from local corrosion, it is required that the steel has both the corrosion corrosion resistance and the local corrosion resistance.

本発明者らは、Pを低めることなく耐応力腐食割れに
すぐれ、しかも耐隙間腐食性を兼ね備えた鋼として、先
に特公昭59−45751に18Cr−9Ni系鋼に適量のCuとWを添
加した鋼を開示し、100℃以下の温水用途に有用な鋼を
提供した。
The present inventors have previously added the appropriate amounts of Cu and W to 18Cr-9Ni-based steel in Japanese Patent Publication No. 59-45751 as a steel having excellent stress corrosion cracking resistance without lowering P and also having crevice corrosion resistance. The present invention has disclosed a steel useful for hot water use at 100 ° C. or lower.

また、石油焚き温水ボイラー等のように、使用時、構
成する材料の温度が100℃を若干上回る温水機器用の材
料として、特願昭62−217963および62−217964に適量の
Cuと4%までのSiを添加し、応力腐食割れの限界温度を
より高めたオーステナイトステンレス鋼を開示し、高温
の温水器用途に適切な鋼を提供した。
In addition, when used, such as an oil-fired hot water boiler, the temperature of the constituent materials of which slightly exceeds 100 ° C, is a suitable amount for hot water equipment as disclosed in Japanese Patent Application Nos. 62-217963 and 62-217964.
Austenitic stainless steel with added Cu and up to 4% Si to further increase the critical temperature of stress corrosion cracking was disclosed, providing steel suitable for high temperature water heater applications.

しかし、高濃度のCl-イオン環境では、上述の鋼であ
っても応力腐食割れの限界温度が100℃以下に低下する
傾向にある。したがって、オーステナイトステンレス鋼
をより広範囲の環境で安心して使用するには、高濃度の
Cl-イオン環境においても、高温度域まで耐応力腐食割
れ性を有する鋼の開発が期待される。
However, high concentrations of Cl - in the ionic environment, limit temperature of stress corrosion cracking even above the steel tends to decrease to 100 ° C. or less. Therefore, to use austenitic stainless steel safely in a wider environment, high concentration
The development of steel that has stress corrosion cracking resistance up to high temperatures even in Cl - ion environments is expected.

耐応力腐食割れ性の改善のために、Si添加量をさらに
増加することが有効であることは特願昭62−217963およ
び62−217964で開示した鋼より予測されるが、Si量が4
%を超えると鋼の熱間加工性が著しく低下するという問
題がある。
It is predicted from the steels disclosed in Japanese Patent Application Nos. 62-217963 and 62-217964 that it is effective to further increase the Si content in order to improve the stress corrosion cracking resistance.
%, There is a problem that the hot workability of steel is significantly reduced.

(本発明の目的) 本発明は、以上のような認識のもとに、高濃度Cl-
オンの環境においても、応力腐食割れの限界温度が100
℃以上で耐応力腐食割れ性に優れ、しかも耐隙間腐食性
を十分兼ね備えた製造性に優れるオーステナイトステン
レス鋼を提供することである。
(Object of the present invention) Based on the above recognition, the present invention has a limit temperature of 100% for stress corrosion cracking even in a high-concentration Cl - ion environment.
It is an object of the present invention to provide an austenitic stainless steel excellent in stress corrosion cracking resistance at a temperature of not less than ° C and having sufficient crevice corrosion resistance and excellent manufacturability.

(問題点を解決する技術的手段) 本発明者等は、応力腐食割れ挙動と合金元素の関係に
加え、熱間加工性を詳細に検討した結果、Cu、Siおよび
Alは耐応力腐食割れ性の改善に有効で、とくにSiを4%
を超えて添加すると、応力腐食割れの限界温度がさらに
高くなり、しかも耐応力腐食割れ性のCl-濃度依存性が
小さく、高い温度での耐応力腐食割れ性が維持できるこ
と、また、Moを添加しても耐応力腐食割れ性の低下はご
く小さいことを見出した。
(Technical Means for Solving the Problems) The present inventors have examined in detail the hot workability in addition to the relationship between the stress corrosion cracking behavior and the alloying elements, and found that Cu, Si and
Al is effective for improving stress corrosion cracking resistance, especially 4% of Si
If added in excess of the above, the critical temperature of stress corrosion cracking becomes higher, the dependency of stress corrosion cracking resistance on Cl - concentration is small, stress corrosion cracking resistance at high temperatures can be maintained, and Mo is added. However, it was found that the decrease in stress corrosion cracking resistance was very small.

一方、熱間加工性に関して、一定量のδフェライトを
含むように鋼のオーステナイト安定度を調節することは
熱間応力腐食割れの限界温度と加工性の改善に有効であ
るが、SiをCuと複合して含有する鋼の熱間加工性は低下
し、Si濃度が高いほどその程度は厳しくなる。本発明鋼
のようにSiを4%をこえて含む場合は、δフェライト量
の調節だけでは不十分であり、微量のREMを添加するこ
とによって達成されるを知見し、本発明をなすに至っ
た。
On the other hand, in terms of hot workability, adjusting the austenite stability of the steel so that it contains a certain amount of δ ferrite is effective in improving the limit temperature and workability of hot stress corrosion cracking. The hot workability of the steel contained in the composite decreases, and the degree becomes severe as the Si concentration increases. In the case of containing more than 4% of Si as in the steel of the present invention, it was found that adjustment of the amount of δ ferrite is not sufficient, and that it can be achieved by adding a trace amount of REM. Was.

(発明の構成) 本発明は、 1. C :0.08%以下 Si:4%を超え6.0%以下 Mn:0.8%以下 P :0.045%以下 S :0.005%以下 Ni:10〜25% Cr:16〜25% Cu:1.5〜4.0% N :0.05%以下 REM:0.005〜0.1% を含み残部Feおよび不可避的不純物からるオーステナイ
トステンレス鋼; 2. Si:4%を超え6.0%以下 Mn:0.8%以下 P :0.045%以下 S :0.005%以下 Ni:10〜25% Cr:16〜25% Cu:1.5〜4.0% N :0.05%以下 REM:0.005〜0.1% Mo:0.3%を超え4.0%以下 を含み残部Feおよび不可避的不純物からなるオーステナ
イトステンレス鋼: 3. C:0.08%以下 Si:4%を超え6.0%以下 Mn:0.8%以下 P :0.045%以下 S :0.005%以下 Ni:10〜25% Cr:16〜25% Cu:1.5〜4.0% N :0.05%以下 REM:0.005〜0.1% Al:0.05%〜3.0% を含み残部Feおよび不可避的不純物からなるオーステナ
イトステンレス鋼;および 4. C:0.08%以下 Si:4%を超え6.0%以下 Mn:0.8%以下 P :0.045%以下 S :0.005%以下 Ni:10〜25% Cr:16〜25% Cu:1.5〜4.0% N :0.05%以下 REM:0.005〜0.1% Mo:0.3%を超え4.0%以下 Al:0.05〜3.0% を含み残部Feおよび不可避的不純物からなるオーステナ
イトステンレス鋼であって、それぞれ、 Ni−バランス=Ni(%)+30[C(%)+N(%)] +0.5Mn(%)+0.3Cu(%) −1.1[Cr(%)+1.2Si(%)+Mo(%) +1.5Al(%)]+8.2 として定義されるNi−バランスが −3.4≦Ni−バランス≦−0.6 なる関係を満足するように組成を調製されたことを特徴
とする塩化物環境で耐応力腐食割れ性にすぐれた材料を
提供する。
(Constitution of the Invention) The present invention provides: 1. C: 0.08% or less Si: more than 4% and 6.0% or less Mn: 0.8% or less P: 0.045% or less S: 0.005% or less Ni: 10 to 25% Cr: 16 to 25% Cu: 1.5-4.0% N: 0.05% or less REM: Austenitic stainless steel containing 0.005-0.1% and the balance Fe and unavoidable impurities; 2. Si: more than 4% and 6.0% or less Mn: 0.8% or less P : 0.045% or less S: 0.005% or less Ni: 10 to 25% Cr: 16 to 25% Cu: 1.5 to 4.0% N: 0.05% or less REM: 0.005 to 0.1% Mo: More than 0.3% and less than 4.0% Austenitic stainless steel composed of Fe and inevitable impurities: 3. C: 0.08% or less Si: More than 4% and 6.0% or less Mn: 0.8% or less P: 0.045% or less S: 0.005% or less Ni: 10 to 25% Cr: 16-25% Cu: 1.5-4.0% N: 0.05% or less REM: 0.005-0.1% Al: 0.05% -3.0%, austenitic stainless steel consisting of balance Fe and unavoidable impurities; and 4.C: 0.08% or less Si: more than 4% and 6.0% or less Mn: 0.8% or less P: 0.045 S: 0.005% or less Ni: 10 to 25% Cr: 16 to 25% Cu: 1.5 to 4.0% N: 0.05% or less REM: 0.005 to 0.1% Mo: Over 0.3% to 4.0% Al: 0.05 to 3.0% Is an austenitic stainless steel containing Fe and unavoidable impurities, wherein Ni-balance = Ni (%) + 30 [C (%) + N (%)] + 0.5Mn (%) + 0.3Cu (%) −1.1 [Cr (%) + 1.2Si (%) + Mo (%) + 1.5Al (%)] + 8.2 The Ni-balance defined as +8.2 satisfies the relationship of −3.4 ≦ Ni-balance ≦ −0.6. A material having excellent resistance to stress corrosion cracking in a chloride environment characterized by having a composition prepared in the following manner.

次に本発明における鋼組成限定の理由を説明する。 Next, the reason for limiting the steel composition in the present invention will be described.

C:Cはオーステナイトを安定化する強力な元素であり、
耐応力腐食割れ性や耐隙間腐食性には大きな影響を与え
ないが、溶接部等での粒界腐食感受性を高めるので、上
限を0.08%とした。
C: C is a powerful element that stabilizes austenite,
Although the stress corrosion cracking resistance and crevice corrosion resistance are not significantly affected, the upper limit is set to 0.08% because the intergranular corrosion susceptibility in a welded portion is increased.

Si:Siは本発明鋼では、必須かつ重要な元素の一つであ
り、Cuの存在下で耐応力腐食割れ性を高め、適量のこの
元素が存在する時は、Moを添加しても耐応力腐食性を損
なうことなく、Moの耐隙間腐食性改善効果を利用できる
極めて有用な元素である。またSi自身も耐隙間腐食性を
向上させる作用を有している。濃厚な塩化物環境で100
℃を超える耐応力腐食割れ性を維持するには約4%を超
えて添加する必要がある。上限は熱間加工性を考慮する
と、約6%を限度とする。
Si: Si is one of the essential and important elements in the steel of the present invention, and enhances stress corrosion cracking resistance in the presence of Cu, and when an appropriate amount of this element is present, it is resistant to Mo even when Mo is added. It is an extremely useful element that can utilize the effect of improving the crevice corrosion resistance of Mo without impairing the stress corrosion resistance. Si itself also has the effect of improving crevice corrosion resistance. 100 in a rich chloride environment
In order to maintain stress corrosion cracking resistance exceeding ℃, it is necessary to add more than about 4%. The upper limit is about 6% in consideration of hot workability.

Mn:Mnは腐食の起点となりやすい硫化物を形成し、耐隙
間腐食性や耐孔食性を損ねるので、その含有量は少ない
方がよい。しかし、Mnを極低化するには原料費が高価に
なるので、製鋼上不可避的に混入してくる程度の量とし
て上限を約0.8%とするが、特に高度の耐隙間腐食が要
求される場合には約0.5%以下にすることが望ましい。
Mn: Mn forms a sulfide which easily becomes a starting point of corrosion and impairs crevice corrosion resistance and pitting corrosion resistance. Therefore, the content of Mn is preferably small. However, in order to minimize Mn, the raw material cost becomes expensive, so the upper limit is set to about 0.8% as the amount that is inevitably mixed in steelmaking, but particularly high crevice corrosion resistance is required. In this case, it is desirable that the content be about 0.5% or less.

P:Pは本発明鋼ではとくに低減する必要はないが、耐応
力腐食割れ性に有害な元素であることは明らかであり、
高いのは好ましくなく約0.045%を上限とした。
P: P does not need to be particularly reduced in the steel of the present invention, but it is clear that it is an element harmful to stress corrosion cracking resistance,
Higher values are not preferred and the upper limit is about 0.045%.

S:Sは鋼中のMnと硫化物を形成し、耐隙間腐食性や耐孔
食性に有害であるので出来る限り低い方がよく、上限を
0.005%とする。
S: S forms sulfide with Mn in steel and is harmful to crevice corrosion resistance and pitting corrosion resistance.
0.005%.

Ni:Niはオーステナイト相を保持するための主要な元素
であり、そのために10%を最低限必要とするが、約25%
を超えるとコスト的に不利となるので10〜25%を範囲と
する。また、この範囲においてNiは耐応力腐食割れ性に
は余り影響しないと考えられるが、耐隙間腐食性の改善
には効果があるので、とくに耐隙間腐食性が要求される
用途では14%以上の添加が望ましい。
Ni: Ni is the main element to maintain the austenite phase, so it requires a minimum of 10%, but about 25%
If it exceeds, it is disadvantageous in terms of cost, so the range is 10 to 25%. In this range, Ni is considered to have little effect on stress corrosion cracking resistance, but it is effective in improving crevice corrosion resistance. Addition is desirable.

Cr:Crはステンレス鋼においては必要不可欠の元素で、
塩化物を含む高温水環境の用途では16%以上の添加が必
要である。Crは多ければ多いほど耐食性は向上するが、
オーステナイト相を保持するためのNi等の添加量が増
し、また製造性や加工性が損なわれるので、25%を上限
とする。
Cr: Cr is an essential element in stainless steel,
For applications in high temperature water environments containing chlorides, additions of 16% or more are required. The more Cr, the better the corrosion resistance, but
Since the addition amount of Ni or the like for maintaining the austenite phase increases, and the manufacturability and workability are impaired, the upper limit is 25%.

Cu:Cuは本発明鋼において重要な元素である。NaClを含
む温水環境において、耐応力腐食割れ性の改善に有効に
作用する。その効果はCu量が多いほど大きい。本発明鋼
では比較的高温の用途が対象であるので1.5%以上添加
する。しかし4%を超える添加ではその効果は飽和し、
また熱間加工性が劣化するようになるので、1.5〜4.0%
を範囲とする。
Cu: Cu is an important element in the steel of the present invention. Effectively improves stress corrosion cracking resistance in a hot water environment containing NaCl. The effect increases as the amount of Cu increases. Since the steel of the present invention is intended for use at relatively high temperatures, it is added in an amount of 1.5% or more. However, when the addition exceeds 4%, the effect is saturated,
In addition, hot workability deteriorates, so 1.5-4.0%
Range.

N:Nは耐孔食性の改善効果が著しい元素であるが、耐応
力腐食割れ性の向上に対しては必ずしも有効な元素とは
いいがたく、とくにMoとの共存において耐応力腐食割れ
性が損なわれる。したがって、Nの悪影響が現れない0.
05%を上限とする。
N: N is an element that has a remarkable effect of improving pitting corrosion resistance, but it is not necessarily an effective element for improving stress corrosion cracking resistance, especially when it coexists with Mo. Be impaired. Therefore, no adverse effect of N appears.
The upper limit is 05%.

Mo:Moは耐隙間腐食性と耐孔食性の改善に極めて有効な
元素であるが、耐応力腐食割れ性を損なう。本発明鋼で
はCuと4%を超えるSiを添加することで、Moの耐応力腐
食割れ性に対する有害性は抑えられているが、4%以上
の添加はコスト上昇が大きく経済的でないのでこれを上
限とする。一方、0.3%以下の量では耐隙間耐食性の改
善効果が現われない。
Mo: Mo is an extremely effective element for improving crevice corrosion resistance and pitting corrosion resistance, but impairs stress corrosion cracking resistance. In the steel of the present invention, by adding Cu and Si exceeding 4%, the harmfulness of Mo to stress corrosion cracking resistance is suppressed. However, the addition of 4% or more increases cost greatly and is not economical. Upper limit. On the other hand, if the amount is 0.3% or less, the effect of improving the gap corrosion resistance does not appear.

Al:AlはCuとSiとの共存において、耐応力腐食割れ性を
向上させる作用を示す。本発明鋼では応力腐食割れ抵抗
が高く、Alによる耐応力腐食割れ性の改善作用はとくに
顕著ではないが、耐隙間腐食性において侵食深さを改善
し、隙間腐食による侵食深さは浅くなる。しかし添加量
が増えると熱間加工性や成形性が劣化するので0.05〜3.
0%を範囲とする。
Al: Al has an effect of improving stress corrosion cracking resistance in the coexistence of Cu and Si. In the steel of the present invention, stress corrosion cracking resistance is high, and the effect of improving stress corrosion cracking resistance by Al is not particularly remarkable, but the erosion depth in crevice corrosion resistance is improved, and the erosion depth due to crevice corrosion becomes shallower. However, when the amount of addition increases, hot workability and moldability deteriorate, so 0.05 to 3.
The range is 0%.

REM:REMは、鋼の熱間加工性を改善するのに有効な元素
である。とくに本発明鋼では、REMの添加なしでは熱延
板に大きな耳割れが生じる。その他、耐応力腐食割れ性
と耐隙間腐食性に対するAlの作用をより有効にするため
に0.005%以上添加する。しかし0.1%を超えると鋼中の
介在物が増え、製品の表面性状を損ねるのでこれを上限
とする。
REM: REM is an effective element for improving the hot workability of steel. In particular, in the steel of the present invention, large edge cracks occur in the hot-rolled sheet without the addition of REM. In addition, 0.005% or more is added in order to make the effect of Al on stress corrosion cracking resistance and crevice corrosion resistance more effective. However, if the content exceeds 0.1%, inclusions in the steel increase, which impairs the surface properties of the product.

Ni−バランス:オーステナイトステンレス鋼では、鋳片
の欠陥防止や良好な熱間加工性を得る目的で、鋼塊中に
若干量のδフェライトが残存するようにする。
Ni-balance: In austenitic stainless steel, a small amount of δ ferrite is left in the ingot for the purpose of preventing defects in the slab and obtaining good hot workability.

δフェライト量は鋼成分から計算されるNi−バランス
でほぼ推定される。本発明鋼では、多量のSiとCuを含み
熱間加工性が低下しているが、鋼塊中に2〜9%のδフ
ェライトを残存するようにすることで熱間加工性の改善
がはかれる。本発明鋼の成分範囲では、下記のNi−バラ
ンス式でδフェライト量を推定でき、Ni−バランスの値
を−0.6から−3.4に調整すれば、2〜9%のδフェライ
トが鋼塊中に残存することが実験によって確かめられ
た。
The amount of δ ferrite is almost estimated from the Ni-balance calculated from the steel composition. In the steel of the present invention, although a large amount of Si and Cu is contained, the hot workability is lowered, but the hot workability is improved by leaving 2 to 9% of δ ferrite in the steel ingot. . In the composition range of the steel of the present invention, the amount of δ ferrite can be estimated by the following Ni-balance equation. By adjusting the value of Ni-balance from -0.6 to -3.4, 2 to 9% of δ ferrite is contained in the steel ingot. It has been confirmed by experiment that it remains.

Ni−バランスは、 Ni−バランス=Ni(%)+30[C(%)+N(%)] +0.5Mn(%)+0.3Cu(%) −1.1[Cr(%)+1.2Si(%)+Mo(%) +1.5Al(%)]+8.2 として定義される。Ni-balance is Ni−balance = Ni (%) + 30 [C (%) + N (%)] + 0.5Mn (%) + 0.3Cu (%) − 1.1 [Cr (%) + 1.2Si (%) + Mo (%) + 1. 5Al (%)] + 8.2.

この定義はDe−longの式をもとに本発明の鋼に適用で
きるように元素の係数を調整することによって得られた
ものである。
This definition was obtained by adjusting the coefficient of the element so as to be applicable to the steel of the present invention based on the De-long equation.

(発明の具体的開示) 実施例 第1表に示す組成の鋼を真空溶解法で溶製し、鍛造、
熱延したのち、1mm厚の冷延鋼板を作成した。
(Specific disclosure of the invention) Example A steel having a composition shown in Table 1 was melted by a vacuum melting method and forged.
After hot rolling, a cold-rolled steel sheet having a thickness of 1 mm was prepared.

第1表において、A1〜A5鋼は比較鋼で、A1〜A3鋼は4
%Si鋼、A4鋼は5%Si鋼、A5鋼は3%Si鋼である。B1〜
B6鋼は本発明鋼で、B1〜B4鋼は4%Si鋼、B5およびB6鋼
は5%Si鋼である。
In Table 1, A1-A5 steels are comparative steels, A1-A3 steels are 4
% Si steel, A4 steel is 5% Si steel, and A5 steel is 3% Si steel. B1 ~
B6 steel is the present invention steel, B1 to B4 steels are 4% Si steels, and B5 and B6 steels are 5% Si steels.

第1図は、溶体化熱処理を施した第1表のA3およびA5
鋼とB1〜B6鋼の耐応力腐食割れ性を示したものである。
FIG. 1 shows A3 and A5 in Table 1 subjected to solution heat treatment.
It shows the stress corrosion cracking resistance of steel and B1 to B6 steels.

耐応力腐食割れ性は、スポット溶接試験片を高温の塩
化物溶液に浸漬し、割れの有無により判定した。すなわ
ち、大小2枚のステンレス鋼を重ねスポット溶接を施し
た後、オートクレーブ容器を用いて温度をかえた50〜50
0ppmCl-溶液に10日間浸漬し、割れの有無により応力腐
食割れの限界温度(SCC限界温度)を求めた。この試験
では応力腐食割れは隙間腐食を起点に生じる。そこで、
隙間腐食による侵食深さも合わせてもとめた。
The stress corrosion cracking resistance was determined by immersing a spot welding test piece in a high-temperature chloride solution and determining whether or not cracking occurred. That is, two large and small stainless steel sheets were overlapped and spot-welded, and then the temperature was changed using an autoclave container.
0PpmCl - solution was immersed 10 days to obtain the stress corrosion cracking limit temperature (SCC limit temperature) the presence or absence of cracks. In this test, stress corrosion cracking starts from crevice corrosion. Therefore,
The erosion depth due to crevice corrosion was also determined.

3%Si鋼(A5鋼)は、50ppmCl-では120℃(応力腐食
割れ限界温度)までの耐応力腐食割れ性を示すが、Cl-
濃度が高くなると耐応力腐食割れ性が低下し、500ppmCl
温度では応力腐食割れ限界温度が100℃以下になる。A3
鋼は3.87%のSiを含み、50ppmCl-での応力腐食割れ限界
温度は140℃に上昇しているが、500ppmCl-では140℃の
試験で割れが生じ、耐応力腐食割れ性はCl-濃度に依存
している。一方、Siを4%超えて含むB1〜B4鋼の耐応力
腐食割れ性は優れ、50〜500ppmCl-濃度での応力腐食割
れ限界温度は、140℃〜150℃で、Cl-濃度が高くなって
も耐応力腐食割れ性の低下は殆ど見られず、耐応力腐食
割れ性のCl-濃度依存性はごく小さい。またB1とB3鋼の
比較から、2%のMoを添加しても耐応力腐食割れ性の低
下は見られない。5%のSiを添加したB5およびB6鋼の耐
応力腐食割れ性はさらに優れ、50〜500ppmCl-濃度の範
囲において、150℃までの試験では割れが観察されず、
応力腐食割れ限界温度は150℃もしくは以上である。
3% Si steel (A5 steel) is, 50ppmCl - the exhibit stress corrosion cracking resistance of up to 120 ° C. (stress corrosion cracking limit temperature), Cl -
When the concentration increases, the stress corrosion cracking resistance decreases, and 500 ppm Cl
At the temperature, the stress corrosion cracking limit temperature becomes 100 ° C or less. A3
Steel comprises 3.87% of the Si, 50ppmCl - the stress corrosion cracking limit temperature at has risen to 140 ℃, 500ppmCl - cracks occur in the test of the 140 ° C., stress corrosion cracking resistance Cl - concentration Depends. On the other hand, the B1-B4 steel containing more than 4% of Si has excellent stress corrosion cracking resistance, and the stress corrosion cracking limit temperature at 50-500ppmCl - concentration is 140 ℃ -150 ℃, and the Cl - concentration becomes high. No significant decrease in stress corrosion cracking resistance was observed, and the dependency of stress corrosion cracking resistance on Cl - concentration was very small. From the comparison between B1 and B3 steels, no decrease in stress corrosion cracking resistance is observed even when 2% Mo is added. The stress corrosion cracking resistance of B5 and B6 steels to which 5% Si is added is further excellent, and in the range of 50 to 500 ppm Cl - concentration, no cracks are observed in the test up to 150 ° C,
The limit temperature for stress corrosion cracking is 150 ° C or higher.

以上述べたように、Siを4%を超えて添加することに
よって、含Cuオーステナイトステンレス鋼の耐応力腐食
割れ性は飛躍的に向上し、Cl-濃度依存性が小さく、か
つMoを添加しても耐応力腐食割れ性が損なわれないこと
があきらかとなった。したがって、Moの添加に制約がな
いので耐隙間腐食性のより一層の向上を計ることが出来
る。
As described above, by adding Si in excess of 4%, the stress corrosion cracking resistance of Cu-containing austenitic stainless steel is dramatically improved, the dependency on Cl - concentration is small, and Mo is added. It became clear that the stress corrosion cracking resistance was not impaired. Therefore, since there is no restriction on the addition of Mo, it is possible to further improve the crevice corrosion resistance.

次に、オートクレーブ試験でスポット溶接試験片に生
じた隙間腐食の侵食深さの測定結果から、耐隙間腐食性
におよぼす合金元素の影響について述べる。第2表は、
150℃の200ppmCl-溶液240hrでの試験における、本発明
鋼および比較鋼の隙間腐食による侵食深さを示す。A5
(2.98%Si)、A3(3.87%Si)およびB5(5.10%Si)鋼
の比較から、Si量の3%から5%への増加に伴って、最
大および平均侵食深さはともに減少していることがわか
る。これは、Siの作用に加え、Niバランスの調節のため
にSiとともにNi量を増加させていることも寄与している
と考えられる。Siレベルのほぼ等しいA3(3.87%Si)、
B1(4.26%Si)およびB3(4.34%Si)鋼の比較から、A3
鋼(0.8%Mo)とB1鋼(1.1%Mo)では侵食深さにほとん
ど差が見られないが、B3鋼(2.14%Mo)の侵食深さはこ
れらの鋼に較べて浅く、2%のMo添加で耐隙間腐食性の
改善が明瞭に認められた。A3、B1およびB4鋼(0.147%A
l)を比較すると、B4鋼は侵食深さが最も浅く、Alの添
加は隙間腐食における侵食深さの改善に効果的であるこ
とがわかる。2%のMoを含むB3鋼と比較しても、平均侵
食深さは若干深いものの、最大侵食深さは、0.8%のMo
量ではあるがAlを添加しているB3鋼のほうが浅い。この
ようなAlの作用は、5%Si鋼(B5およびB6(0.209%Al
鋼))についても同様に観察された。
Next, the effect of alloying elements on crevice corrosion resistance will be described based on the measurement results of the erosion depth of crevice corrosion generated in spot welding test pieces in an autoclave test. Table 2
0.99 ° C. of 200PpmCl - in test at solution 240 hours, showing the corrosion depth by crevice corrosion of the present invention steels and comparative steels. A5
(2.98% Si), A3 (3.87% Si) and B5 (5.10% Si) steels show that as the Si content increases from 3% to 5%, both the maximum and average pit depths decrease. You can see that there is. This is thought to be due to the fact that, in addition to the effect of Si, the amount of Ni is increased together with Si to adjust the Ni balance. A3 (3.87% Si) with almost the same Si level,
From comparison of B1 (4.26% Si) and B3 (4.34% Si) steel, A3
There is almost no difference in the erosion depth between steel (0.8% Mo) and B1 steel (1.1% Mo), but the erosion depth of B3 steel (2.14% Mo) is shallower than these steels and 2%. Improvement of crevice corrosion resistance was clearly observed by adding Mo. A3, B1 and B4 steel (0.147% A
Comparison of l) shows that B4 steel has the shallowest erosion depth, and that the addition of Al is effective in improving the erosion depth in crevice corrosion. Compared to B3 steel containing 2% Mo, the average erosion depth is slightly deeper, but the maximum erosion depth is 0.8% Mo.
B3 steel to which Al is added is shallower, albeit in a small amount. The effect of such Al is 5% Si steel (B5 and B6 (0.209% Al
Steel)) was also observed.

第2図は、第1表に示す鋼のうち3%Si鋼(A5鋼)を
除いた4〜5%Si鋼について行った熱間圧延後の耳切れ
程度(エッジクラック)を、下に示すNi−バランスとδ
フェライト量(鋳塊での測定値)の関連において示す。
FIG. 2 shows the degree of edge cracks (edge cracks) after hot rolling performed on 4 to 5% Si steel excluding the 3% Si steel (A5 steel) among the steels shown in Table 1. Ni-balance and δ
It is shown in relation to the amount of ferrite (measured value in ingots).

Ni−バランス=Ni(%)+30[C(%)+N(%)] +0.5Mn(%)+0.3Cu(%) −1.1[Cr(%)+1.2Si(%)+Mo(%) +1.5Al(%)]+8.2 熱間圧延は、厚さ40mmのスラブを1100〜1150℃で加熱
したのち、最終圧延温度が850℃を切らないように、圧
延パススケジュールの調整あるいは中間加熱を適宜加え
て行い、5mmの熱延板を作成した。
Ni−balance = Ni (%) + 30 [C (%) + N (%)] + 0.5Mn (%) + 0.3Cu (%) − 1.1 [Cr (%) + 1.2Si (%) + Mo (%) + 1. 5Al (%)] + 8.2 In hot rolling, after heating a slab with a thickness of 40 mm at 1100 to 1150 ° C, adjust the rolling pass schedule or apply intermediate heating appropriately so that the final rolling temperature does not fall below 850 ° C. In addition, a hot rolled sheet of 5 mm was prepared.

δフェライトのない完全オーステナイト鋼(A2鋼)お
よびδフェライト量が12%の鋼(Al鋼)には5mmを超え
る耳割れが生じ、熱間加工性が劣る。鋳塊のδフェライ
ト量を2〜9%に調節した鋼は、比較的良好な熱間加工
性を示す。しかし、δフェライト量が2〜9%であって
も、A3およびA4鋼では最大5mmの耳割れが生じている。
一方、REMを添加した本発明鋼(B1〜B6鋼)の熱延板
は、耳割れがないか、もしくは程度がごく軽微で、良好
な熱間加工性を示すことがわかる。
The austenitic steel without δ-ferrite (A2 steel) and the steel with 12% δ-ferrite (Al steel) have ear cracks exceeding 5 mm, resulting in poor hot workability. Steel in which the amount of δ ferrite in the ingot is adjusted to 2 to 9% shows relatively good hot workability. However, even when the amount of δ ferrite is 2 to 9%, the A3 and A4 steels have a maximum 5 mm edge crack.
On the other hand, it can be seen that the hot-rolled sheet of the steel of the present invention (B1 to B6 steel) to which REM is added has no or very small edge cracks and exhibits good hot workability.

第2図より、鋳塊のδフェライト量はここで用いたNi
−バランスの式とよく対応し、Ni−バランスの値を、−
0.6〜−3.4にすれば、鋳塊のδフェライト量を2〜9%
にすることが出来る。
From FIG. 2, the amount of δ ferrite in the ingot was
-Corresponds well to the balance equation, and the Ni-balance value is-
0.6 to -3.4, the δ ferrite content of the ingot is 2 to 9%
It can be.

(発明の効果) 本発明鋼はすぐれた耐応力腐食割れ性と耐隙間腐食性
を兼ね備えていることが明らかで、しかも製造性に優
れ、コストの上昇を最小限に抑えることができ経済的な
鋼である。したがって、中性の塩化物溶液を高温に加熱
した状態で取り扱う装置の材料として好適である。
(Effect of the Invention) It is clear that the steel of the present invention has both excellent resistance to stress corrosion cracking and resistance to crevice corrosion, and is excellent in manufacturability, cost increase can be minimized and economical. It is steel. Therefore, it is suitable as a material for an apparatus for handling a neutral chloride solution in a state of being heated to a high temperature.

【図面の簡単な説明】[Brief description of the drawings]

第1図は溶体化熱処理を施したA3およびA5鋼とB1〜B6鋼
の耐応力腐食割れ性をCl-(ppm)と応力腐食割れ限界温
度の関連において示した図。 第2図は、4〜5%Si鋼について熱間圧延後の耳切れ程
度エッジクラックを、Ni−バランスと鋳塊のδフェライ
ト量の関連において示した図である。
FIG. 1 is a diagram showing stress corrosion cracking resistance of A3 and A5 steels and B1 to B6 steels subjected to solution heat treatment in relation to Cl (ppm) and stress corrosion cracking limit temperature. FIG. 2 is a diagram showing edge cracks at the edge degree after hot rolling of 4-5% Si steel in relation to the Ni-balance and the amount of δ ferrite in the ingot.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−159351(JP,A) 特開 昭63−65058 (JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 - 38/60────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-159351 (JP, A) JP-A-63-65058 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 38/00-38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.08%以下 Si:4%を超え6.0%以下 Mn:0.8%以下 P:0.045%以下 S:0.005%以下 Ni:10〜25% Cr:16〜25% Cu:1.5〜4.0% N:0.05%以下 REM:0.005〜0.1% を含み残部Feおよび不可避的不純物からなり、かつ下記
のNi−バランスを満足するように組成を調整したことを
特徴とする塩化物環境での耐応力腐食割れ性にすぐれた
オーステナイトステンレス鋼。 −3.4≦Ni−バランス≦−0.6 ただし、 Ni−バランス=Ni(%)+30[C(%)+N(%)] +0.5Mn(%)+0.3Cu(%) −1.1[Cr(%)+1.2Si(%)+Mo(%) +1.5Al(%)]+8.2
[Claim 1] C: 0.08% or less Si: more than 4% and 6.0% or less Mn: 0.8% or less P: 0.045% or less S: 0.005% or less Ni: 10 to 25% Cr: 16 to 25% Cu: 1.5 to 4.0% N: 0.05% or less REM: 0.005 to 0.1%, with the balance being Fe and unavoidable impurities and having a composition adjusted to satisfy the following Ni-balance, resistant to chloride environment. Austenitic stainless steel with excellent stress corrosion cracking properties. −3.4 ≦ Ni−balance ≦ −0.6, where Ni−balance = Ni (%) + 30 [C (%) + N (%)] + 0.5Mn (%) + 0.3Cu (%) −1.1 [Cr (%) + 1 .2Si (%) + Mo (%) + 1.5Al (%)] + 8.2
【請求項2】C:0.08%以下 Si:4%を超え6.0%以下 Mn:0.8%以下 P:0.045%以下 S:0.005%以下 Ni:10〜25% Cr:16〜25% Cu:1.5〜4.0% N:0.05%以下 REM:0.005〜0.1% を含むとともに、さらに Mo:0.3%を超え4.0%以下 を含み残部Feおよび不可避的不純物からなり、かつ下記
のNi−バランスを満足するように組成を調整したことを
特徴とする塩化物環境での耐応力腐食割れ性にすぐれた
オーステナイトステンレス鋼。 −3.4≦Ni−バランス≦−0.6 ただし、 Ni−バランス=Ni(%)+30[C(%)+N(%)] +0.5Mn(%)+0.3Cu(%) −1.1[Cr(%)+1.2Si(%)+Mo(%) +1.5Al(%)]+8.2
C: 0.08% or less Si: more than 4% and 6.0% or less Mn: 0.8% or less P: 0.045% or less S: 0.005% or less Ni: 10 to 25% Cr: 16 to 25% Cu: 1.5 to 4.0% N: 0.05% or less REM: 0.005 to 0.1%, Mo: more than 0.3% and 4.0% or less, balance Fe and unavoidable impurities, and composition to satisfy the following Ni-balance Austenitic stainless steel with excellent resistance to stress corrosion cracking in chloride environments, characterized by the following: −3.4 ≦ Ni−balance ≦ −0.6, where Ni−balance = Ni (%) + 30 [C (%) + N (%)] + 0.5Mn (%) + 0.3Cu (%) −1.1 [Cr (%) + 1 .2Si (%) + Mo (%) + 1.5Al (%)] + 8.2
【請求項3】C:0.08%以下 Si:4%を超え6.0%以下 Mn:0.8%以下 P:0.045%以下 S:0.005%以下 Ni:10〜25% Cr:16〜25% Cu:1.5〜4.0% N:0.05%以下 REM:0.005〜0.1% を含むとともに、さらに Al:0.05〜3.0% を含み残部Feおよび不可避的不純物からなり、かつ下記
のNi−バランスを満足するように組成を調整したことを
特徴とする塩化物環境での耐応力腐食割れ性にすぐれた
オーステナイトステンレス鋼。 −3.4≦Ni−バランス≦−0.6 ただし、 Ni−バランス=Ni(%)+30[C(%)+N(%)] +0.5Mn(%)+0.3Cu(%) −1.1[Cr(%)+1.2Si(%)+Mo(%) +1.5Al(%)]+8.2
C: 0.08% or less Si: more than 4% and 6.0% or less Mn: 0.8% or less P: 0.045% or less S: 0.005% or less Ni: 10 to 25% Cr: 16 to 25% Cu: 1.5 to 4.0% N: 0.05% or less REM: 0.005 to 0.1%, Al: 0.05 to 3.0%, the balance is made up of Fe and unavoidable impurities, and the composition was adjusted to satisfy the following Ni-balance. Austenitic stainless steel with excellent resistance to stress corrosion cracking in chloride environments. −3.4 ≦ Ni−balance ≦ −0.6, where Ni−balance = Ni (%) + 30 [C (%) + N (%)] + 0.5Mn (%) + 0.3Cu (%) −1.1 [Cr (%) + 1 .2Si (%) + Mo (%) + 1.5Al (%)] + 8.2
【請求項4】C:0.08%以下 Si:4%を超え6.0%以下 Mn:0.8%以下 P:0.045%以下 S:0.005%以下 Ni:10〜25% Cr:16〜25% Cu:1.5〜4.0% N:0.05%以下 REM:0.005〜0.1% を含むとともに、さらに Mo:0.3%を超え4.0%以下 Al:0.05〜3.0% を含み残部Feおよび不可避的不純物からなり、かつ下記
のNi−バランスを満足するように組成を調整したことを
特徴とする塩化物環境での耐応力腐食割れ性にすぐれた
オーステナイトステンレス鋼。 −3.4≦Ni−バランス≦−0.6 ただし、 Ni−バランス=Ni(%)+30[C(%)+N(%)] +0.5Mn(%)+0.3Cu(%) −1.1[Cr(%)+1.2Si(%)+Mo(%) +1.5Al(%)]+8.2
C: 0.08% or less Si: more than 4% and 6.0% or less Mn: 0.8% or less P: 0.045% or less S: 0.005% or less Ni: 10 to 25% Cr: 16 to 25% Cu: 1.5 to 4.0% N: 0.05% or less REM: 0.005 to 0.1%, Mo: more than 0.3% and 4.0% or less Al: 0.05 to 3.0%, the balance being Fe and unavoidable impurities, and the following Ni-balance An austenitic stainless steel excellent in stress corrosion cracking resistance in a chloride environment, characterized by having a composition adjusted to satisfy the following. −3.4 ≦ Ni−balance ≦ −0.6, where Ni−balance = Ni (%) + 30 [C (%) + N (%)] + 0.5Mn (%) + 0.3Cu (%) −1.1 [Cr (%) + 1 .2Si (%) + Mo (%) + 1.5Al (%)] + 8.2
JP1241728A 1989-09-20 1989-09-20 Austenitic stainless steel with excellent stress corrosion cracking resistance in chloride environment Expired - Lifetime JP2759222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1241728A JP2759222B2 (en) 1989-09-20 1989-09-20 Austenitic stainless steel with excellent stress corrosion cracking resistance in chloride environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1241728A JP2759222B2 (en) 1989-09-20 1989-09-20 Austenitic stainless steel with excellent stress corrosion cracking resistance in chloride environment

Publications (2)

Publication Number Publication Date
JPH03104842A JPH03104842A (en) 1991-05-01
JP2759222B2 true JP2759222B2 (en) 1998-05-28

Family

ID=17078653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1241728A Expired - Lifetime JP2759222B2 (en) 1989-09-20 1989-09-20 Austenitic stainless steel with excellent stress corrosion cracking resistance in chloride environment

Country Status (1)

Country Link
JP (1) JP2759222B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69623488T2 (en) * 1996-06-17 2003-04-24 Sumitomo Metal Industries, Ltd. HIGH CHROME NICKEL ALLOY WITH HIGH SULFURIZED HYDROGEN CORROSION RESISTANCE

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116556B2 (en) * 1986-09-08 1995-12-13 日新製鋼株式会社 Austenitic heat resistant steel for processing
JP2756545B2 (en) * 1987-09-02 1998-05-25 日新製鋼株式会社 Austenitic stainless steel with excellent corrosion resistance in hot water

Also Published As

Publication number Publication date
JPH03104842A (en) 1991-05-01

Similar Documents

Publication Publication Date Title
EP2100983B1 (en) Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness
KR101632516B1 (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
KR20150015049A (en) Ferrite-based stainless steel for use in components of automobile exhaust system
KR102520119B1 (en) Welded structure and its manufacturing method
WO2014050011A1 (en) Ferritic stainless steel
JP4190993B2 (en) Ferritic stainless steel sheet with improved crevice corrosion resistance
JPH06279951A (en) Ferritic stainless steel for water heater
JP3512304B2 (en) Austenitic stainless steel
JP4494245B2 (en) Low Ni austenitic stainless steel with excellent weather resistance
JP2774709B2 (en) Sulfuric acid dew point corrosion resistant stainless steel with excellent hot workability
JP2759222B2 (en) Austenitic stainless steel with excellent stress corrosion cracking resistance in chloride environment
JP5012194B2 (en) Ferritic stainless steel sheet for water heater with high welded joint strength and manufacturing method thereof
CN113631732B (en) Duplex stainless steel welded joint and method for manufacturing same
JP3266247B2 (en) Duplex stainless steel with excellent hot workability
JPH0635615B2 (en) Manufacturing method of ferritic stainless steel with excellent corrosion resistance of welds
JP2756545B2 (en) Austenitic stainless steel with excellent corrosion resistance in hot water
JP3890223B2 (en) Austenitic stainless steel
JPH09104953A (en) Austenitic stainless clad steel plate excellent in corrosion resistance and its production
JP2668116B2 (en) Austenitic stainless steel with excellent corrosion resistance in hot water
JPH0534419B2 (en)
KR102249965B1 (en) Austenitic stainless steel having excellent corrosion resistance of weld
JPS61136662A (en) Austenitic stainless steel having superior resistance to stress corrosion cracking
JP7390865B2 (en) Duplex stainless hot rolled steel and welded structures
JP2953303B2 (en) Martensite stainless steel
JP3525014B2 (en) Austenitic stainless steel with excellent stress corrosion cracking resistance