[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2755670B2 - Photoelectric conversion element and photovoltaic device - Google Patents

Photoelectric conversion element and photovoltaic device

Info

Publication number
JP2755670B2
JP2755670B2 JP1083109A JP8310989A JP2755670B2 JP 2755670 B2 JP2755670 B2 JP 2755670B2 JP 1083109 A JP1083109 A JP 1083109A JP 8310989 A JP8310989 A JP 8310989A JP 2755670 B2 JP2755670 B2 JP 2755670B2
Authority
JP
Japan
Prior art keywords
electrode film
film
light
radius
receiving surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1083109A
Other languages
Japanese (ja)
Other versions
JPH02260663A (en
Inventor
精一 木山
弘 細川
浩 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP1083109A priority Critical patent/JP2755670B2/en
Publication of JPH02260663A publication Critical patent/JPH02260663A/en
Application granted granted Critical
Publication of JP2755670B2 publication Critical patent/JP2755670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、光照射を受けることにより起電力を発生す
る光電変換素子及びこれを複数個直列接続してなる光起
電力装置に関する。
Description: (a) Industrial application field The present invention relates to a photoelectric conversion element that generates an electromotive force by receiving light irradiation, and a photovoltaic device formed by connecting a plurality of the photoelectric conversion elements in series.

(ロ)従来の技術 光照射を受けると起電力を発生する光起電力装置にお
ける受光面電極膜は、光電変換作用をなす半導体光活性
層への光照射を招くべく透光性であることが好ましい。
従来、透光性を呈すべく受光面側電極はインジューム
(In)やスズ(Sn)の酸化物であるIn2O3、SnO2、ITO等
に代表される透光性導電酸化物(以下TCOと称する)に
より形成されている。このTCOからなる電極にあって
は、そのシート抵抗は約30〜50Ω/□であり、同じ膜厚
のアルミニウム等の金属材料に比べて3桁以上も高いた
め、この電極における電力損失(抵抗損失)が発生し、
集電効率を低下させる原因となる。
(B) Conventional technology The light-receiving surface electrode film in a photovoltaic device that generates an electromotive force upon receiving light irradiation may be translucent to cause light irradiation on a semiconductor photoactive layer that performs a photoelectric conversion action. preferable.
Conventionally, In 2 O 3, SnO 2 , translucent conductive oxide represented by ITO or the like is an oxide of order Teisu the translucent light-receiving surface side electrode is indium (In), tin (Sn) (hereinafter TCO). The electrode made of this TCO has a sheet resistance of about 30 to 50 Ω / □, which is more than three orders of magnitude higher than a metal material such as aluminum having the same film thickness. ) Occurs,
This may cause a reduction in current collection efficiency.

そこで、本願出願人は、受光面電極膜として高抵抗な
TCOを用いるにも係わらず、受光面電極膜による抵抗損
失を減じる構造として、特開昭61−20371号公報、及び
実開昭61−86955号公報を出願している。この光起電力
装置は、光入射側から見て、受光面電極膜、光活性層を
含む半導体膜、第1背面電極膜、絶縁膜及び受光面電極
膜より低抵抗な第2背面電極膜を重畳し、上記第2背面
電極膜が、受光領域の複数箇所において、内周が上記絶
縁膜により囲繞されたコンタクトホールを貫通して受光
面電極膜に到達することにより、上記第2背面電極膜及
び上記受光面電極膜を電気的に結合したものである。
Accordingly, the applicant of the present application has proposed a high-resistance light-receiving surface electrode film.
Japanese Patent Application Laid-Open Nos. 61-20371 and 61-86955 have filed applications as structures for reducing the resistance loss due to the light-receiving surface electrode film despite the use of TCO. This photovoltaic device includes a light receiving surface electrode film, a semiconductor film including a photoactive layer, a first back electrode film, an insulating film, and a second back electrode film having a lower resistance than the light receiving surface electrode film when viewed from the light incident side. The second back electrode film is overlapped with the second back electrode film by reaching the light receiving surface electrode film at a plurality of locations in the light receiving region by passing through the contact hole whose inner periphery is surrounded by the insulating film. And the light receiving surface electrode film is electrically coupled.

(ハ)発明が解決しようとする課題 ところで、光起電力装置を使用するに当っては、透光
性受光面電極膜のシート抵抗、言い替えればその膜厚が
電力損失に影響を与える。
(C) Problems to be Solved by the Invention By the way, in using a photovoltaic device, the sheet resistance of the light-transmitting light-receiving surface electrode film, in other words, the thickness thereof affects power loss.

そこで、本発明は、透光性受光面電極膜の膜厚を最適
化し、電力損失を抑制するものである。
Therefore, the present invention optimizes the thickness of the light-transmitting light-receiving surface electrode film and suppresses power loss.

(ニ)課題を解決するための手段 本発明は、透光性受光面電極膜、光活性層を含む半導
体膜、第1背面電極膜、絶縁膜及び第2背面電極膜を重
畳し、受光領域内の複数の接続箇所において上記第2電
極膜が上記絶縁膜を貫通して受光面電極膜と電気的に結
合した光電変換素子であって、qを素電荷、kをボルツ
マン定数とするときに、上記受光面電極膜の膜厚を、所
定の条件の下でのT(絶対温度)、iph(光電流密
度)、i0(逆方向飽和電流密度)、Rs(直列抵抗)Rsh
(シャント抵抗)、及びn(ダイオード特性のn値)の
値を用いて次式により計算される出力電流に基づく出力
電力が略最大となるRst(シート抵抗)の値から決定さ
れる膜厚としたことを特徴とする。
(D) Means for Solving the Problems The present invention provides a light-receiving area by overlapping a light-transmitting light-receiving surface electrode film, a semiconductor film including a photoactive layer, a first back electrode film, an insulating film, and a second back electrode film. A plurality of connection points in the photoelectric conversion element in which the second electrode film penetrates the insulating film and is electrically coupled to the light-receiving surface electrode film, where q is an elementary charge and k is a Boltzmann constant. , The thickness of the light-receiving surface electrode film under predetermined conditions, T (absolute temperature), i ph (photocurrent density), i 0 (reverse saturation current density), R s (series resistance) R sh
The film thickness determined from the value of R st (sheet resistance) at which the output power based on the output current calculated by the following equation using the values of (shunt resistance) and n (n value of the diode characteristic) is approximately the maximum. It is characterized by having.

i(r)=iph−i0[exp{q(V(r)+Rsi
(r))/nkT}−1] −(V(r)+Rsi(r))/Rsh dV(r)/dr=I(r)・Rst/2πr 但し、 Iout:1個の接続箇所における出力電流 i(r):半径r地点の微小領域で発生する電
流量 I(r):半径r地点のリング状領域において
コンタクトホール方向へ流れる全電流量 V(r):半径r地点の電圧 R :接続箇所の配置間隔に対応した正方
形と同じ面積をなす円の半径 R0 :接続箇所の半径 更に、第1項記載の光電変換素子を、互いに隣接する
光電変換素子の一方の第1背面電極膜と他方の背面電極
膜とでもって半導体膜に対して背面側にて結合すること
により電気的に直列接続したことを特徴とする。
i (r) = i ph −i 0 [exp {q (V (r) + R s i
(R)) / nkT} −1] − (V (r) + R s i (r)) / R sh dV (r) / dr = I (r) · R st / 2πr where I out : 1 Output current at connection point i (r): current amount generated in minute area at radius r point I (r): total current amount flowing in the direction of contact hole in ring-shaped area at radius r point V (r): radius r point R: the radius of a circle having the same area as the square corresponding to the arrangement interval of the connection points R 0 : the radius of the connection points Further, the photoelectric conversion elements described in item 1 are connected to one of the photoelectric conversion elements adjacent to each other. The one back electrode film and the other back electrode film are electrically connected in series by being coupled to the semiconductor film on the back side.

(ホ)作用 本発明によれば、受光面電極膜の膜厚を、所定の関係
式により計算される出力電流に基づく出力電圧が略最大
となるシート抵抗の値から決定される膜厚としたことに
よって最適化され、優れた出力特性の光電変換素子及び
光起電力装置が得られる。
(E) Function According to the present invention, the film thickness of the light receiving surface electrode film is set to a film thickness determined from a sheet resistance value at which an output voltage based on an output current calculated by a predetermined relational expression is substantially maximum. As a result, a photoelectric conversion element and a photovoltaic device which are optimized and have excellent output characteristics can be obtained.

(ヘ)実施例 第1図は本発明の光起電力装置の第1実施例の要部を
光入射方向に対して背面側斜め方向から臨んだ一部断面
斜視図であり、光入射側から見てTCO等の透光性受光面
電極膜(1)、膜面に並行なpin接合、pn接合等の半導
体接合の光活性層を含むアモルファスシリコン等を主体
とする半導体膜(2)、オーミック金属の第1背面電極
膜(3)、絶縁膜(4)、及び受光面電極膜(1)に比
べて低抵抗な金属からなる第2背面電極膜(5)を重畳
し、第2背面電極膜(5)が、受光領域内の複数箇所に
おいて、絶縁膜(4)、第1背面電極膜(3)及び半導
体膜(2)を貫通すると共に内周が絶縁膜(4)により
囲繞された円形のコンタクトホール(6)を貫通して受
光面電極膜(1)に到達することにより、受光面電極膜
(1)と電気的に結合した複数の単位光電変換素子(SC
1)(SC2)(SC3)…を、各単位光電変換素子(SC1
(SC2)(SC3)…の受光面電極膜(1)が分離間隔dを
隔てた状態で支持体かつ受光面保護体となるガラス等の
透光性絶縁基板(7)上に設けている。
(F) Embodiment FIG. 1 is a partial cross-sectional perspective view of a main part of a first embodiment of a photovoltaic device of the present invention viewed obliquely from the back side with respect to the light incident direction. As shown, a transmissive light-receiving surface electrode film such as TCO (1), a semiconductor film mainly composed of amorphous silicon including a photoactive layer of a semiconductor junction such as a pin junction and a pn junction parallel to the film surface (2), ohmic A first back electrode film (3) made of metal, an insulating film (4), and a second back electrode film (5) made of a metal having lower resistance than the light receiving surface electrode film (1) are superimposed to form a second back electrode. The film (5) penetrates the insulating film (4), the first back electrode film (3), and the semiconductor film (2) at a plurality of positions in the light receiving region, and the inner periphery is surrounded by the insulating film (4). By reaching the light-receiving surface electrode film (1) through the circular contact hole (6), the light-receiving surface electrode film (1) is electrically connected to the light-receiving surface electrode film (1). A plurality of unit photovoltaic bound to (SC
1 ) (SC 2 ) (SC 3 ) ... is replaced by each unit photoelectric conversion element (SC 1 )
The light receiving surface electrode films (1) of (SC 2 ) and (SC 3 ) are provided on a translucent insulating substrate (7) such as glass serving as a support and a light receiving surface protector with a separation distance d. I have.

そして、各単位光電変換素子(SC1)(SC2)(SC3
…の隣接する素子の受光面電極膜(1)と第1背面電極
膜(3)とを各光電変換素子(SC1)(SC2)(SC3)…
の隣接間隔部において直接重畳することなく、半導体膜
(2)の背面側において絶縁膜(4)側から、例えばレ
ーザビームの照射あるいはエッチングを行うことにより
開孔した部分の第1背面電極膜(3)に、隣接素子の第
2背面電極膜(5)が延在し埋設することによって、互
いに隣接する単位光電変換素子(SC1)(SC2)(SC3
…は電気的に直列接続されている。
Then, each unit photoelectric conversion element (SC 1 ) (SC 2 ) (SC 3 )
The light-receiving surface electrode film (1) and the first back electrode film (3) of the element adjacent to each other are connected to each photoelectric conversion element (SC 1 ) (SC 2 ) (SC 3 ).
The first back electrode film (in the portion opened by performing, for example, laser beam irradiation or etching) on the back surface side of the semiconductor film (2) from the side of the insulating film (4) without directly overlapping in the adjacent space portion of 3), the second back electrode film (5) of the adjacent element extends and is buried, so that the adjacent unit photoelectric conversion elements (SC 1 ) (SC 2 ) (SC 3 )
Are electrically connected in series.

ところで、斯る構造の光起電力装置において、受光面
電極膜(1)の膜厚を決定するに先立ち、コンタクトホ
ール(6)の径について考慮した。
By the way, in the photovoltaic device having such a structure, the diameter of the contact hole (6) was considered before determining the thickness of the light receiving surface electrode film (1).

第2図はコンタクトホール(6)の径とこの部分の接
触抵抗との関係を示し、第3図はコンタクトホール
(6)の径と光起電力装置の最大出力との関係を示して
いる。コンタクトホール(6)の大きさを小さくする
と、受光領域における無効面積も小さくなる、が加工性
及び作業性に乏しく、更に、コンタクトホール(6)を
小さくしていくと、集電を行うコンタクトホール(6)
の中心部における受光面電極膜(1)と第2背面電極膜
(5)との接触抵抗が増大し(第2図参照)、抵抗損失
は低減されないこととなる。
FIG. 2 shows the relationship between the diameter of the contact hole (6) and the contact resistance of this portion, and FIG. 3 shows the relationship between the diameter of the contact hole (6) and the maximum output of the photovoltaic device. When the size of the contact hole (6) is reduced, the ineffective area in the light receiving region is also reduced. However, workability and workability are poor, and when the contact hole (6) is further reduced, a contact hole for collecting current is formed. (6)
The contact resistance between the light-receiving surface electrode film (1) and the second back electrode film (5) at the center of (2) increases (see FIG. 2), and the resistance loss is not reduced.

一方、加工性及び作業性を容易にするべくコンタクト
ホール(6)を大きくすると、受光領域における無効面
積が大きくなって光起電力装置の最大出力を低下させて
しまう(第3図参照)。
On the other hand, if the contact hole (6) is enlarged to facilitate workability and workability, the ineffective area in the light receiving region becomes large, and the maximum output of the photovoltaic device is reduced (see FIG. 3).

そこで、上述の如き光起電力装置においては、最大出
力を得るに際し、コンタクトホール(6)の径を適宜な
値、本実施例では0.2mmに設定した。
Therefore, in the photovoltaic device as described above, in order to obtain the maximum output, the diameter of the contact hole (6) is set to an appropriate value, in this embodiment, 0.2 mm.

その後、本発明では、このコンタクトホール(6)の
径を用い、光起電力装置の高出力化において、受光面電
極膜(1)のシート抵抗から受光面電極膜(1)の膜厚
を決定した。ここで、受光面電極膜(1)の膜厚を決定
するに当り、コンタクトホール(6)における出力電流
を計算し、これに基づいた出力電力が略最大となるシー
ト抵抗の値から膜厚を決定した。
Thereafter, in the present invention, the thickness of the light receiving surface electrode film (1) is determined from the sheet resistance of the light receiving surface electrode film (1) by using the diameter of the contact hole (6) and increasing the output of the photovoltaic device. did. Here, in determining the film thickness of the light-receiving surface electrode film (1), the output current in the contact hole (6) is calculated, and the film thickness is calculated from the sheet resistance value at which the output power becomes substantially maximum based on this. Decided.

各コンタクトホール(6)により集電される電流は、
半径Rの円の内部で発生するものである。なお、この円
は各コンタクトホール(6)を中心として互いに接する
と共に同一面積で区画された正方形と同じ面積となるよ
うに、コンタクトホール(6)を中心として描かれたも
のであり、これによって円の半径Rも自動的に決定され
る。
The current collected by each contact hole (6) is
It occurs inside a circle having a radius R. This circle is drawn around the contact hole (6) so as to be in contact with each other around each contact hole (6) and to have the same area as a square defined by the same area. Is also automatically determined.

下記第1式は1個のコンタクトホール(6)における
出力電流Ioutを示している。
The first expression below shows an output current I out in one contact hole (6).

但し、上式において R:コンタクトホール(6)の配置間隔に対応した正方形
と同じ面積をなす円の半径 R0:コンタクトホール(6)の半径 i(r):半径r地点の微小領域で発生する電流量 さらに、電流量i(r)は下記第2式及び第3式にて
求められる。
However, in the above equation, R: radius of a circle having the same area as the square corresponding to the arrangement interval of the contact holes (6) R0: radius of the contact holes (6) i (r): generated in a small area at a radius r point Current Amount The current amount i (r) is obtained by the following equations (2) and (3).

但し、上式において iph:光電流密度 io:逆方向飽和電流密度 v(r):半径r地点の電圧 Rs:直列抵抗 Rsh:シャント抵抗 n:ダイオード特性のn値 q:素電荷 k:ボルツマン定数 T:絶対温度 Rst:シート抵抗 I(r):半径r地点のリング状領域においてコンタク
トホール(6)方向へ流れる全電流量 尚、上記q、kは定数であり、T,iph,i0,Rs,Rsh,及び
nの値は所定の条件の下で求めた値を用いれば良い。所
定の条件とは如何なる条件でも良く、例えば、周知の最
新太陽光発電技術(1984年7月1日発行、槙書店、143
頁)に記載された太陽電池の標準測定条件(AM1.5,100m
W/cm2、28℃)を用いることができる。
In the above equation, i ph : photocurrent density i o : reverse saturation current density v (r): voltage at radius r R s : series resistance R sh : shunt resistance n: n value of diode characteristics q: elementary charge k: Boltzmann's constant T: absolute temperature R st : sheet resistance I (r): total amount of current flowing in the direction of the contact hole (6) in the ring-shaped region at radius r where q and k are constants, and T, The values of i ph , i 0 , R s , R sh , and n may be values obtained under predetermined conditions. The predetermined condition may be any condition, for example, a known latest photovoltaic power generation technology (published on July 1, 1984, Maki Shoten, 143
Page) standard measurement conditions for solar cells (AM1.5,100m
W / cm 2 , 28 ° C.).

第4図は、受光面電極膜(1)のシート抵抗(即ち、
膜厚)と光起電力装置の最大出力との関係を示す特性図
であり、本発明においては、コンタクトホールの径を0.
2mm、接触抵抗を15Ωとして、上記各式を用いて装置全
体の出力特性を算出した結果を示すものである。なお、
同図において、実線は本発明の特性を、破線は従来例の
特性を示しており、いづれにおいても、光起電力装置
は、光電変換素子(SC1)(SC2)(SC3)…が10個設け
られた10cm×10cmの大きさのものである。
FIG. 4 shows the sheet resistance of the light-receiving surface electrode film (1) (that is, the sheet resistance of the light-receiving surface electrode film (1)).
FIG. 4 is a characteristic diagram showing a relationship between a film thickness) and a maximum output of a photovoltaic device.
The figure shows the results of calculating the output characteristics of the entire apparatus using the above equations, with 2 mm and a contact resistance of 15Ω. In addition,
In the figure, the solid line shows the characteristics of the present invention, and the broken line shows the characteristics of the conventional example. In each case, the photovoltaic device has the photoelectric conversion elements (SC 1 ) (SC 2 ) (SC 3 ). It is 10cm x 10cm in size provided with 10 pieces.

同図から見て、最大出力が取るためには、受光面電極
膜(1)のシート抵抗の最適値が存在する。従って、光
起電力装置を製造するに当って、受光面電極膜(1)の
膜厚を、このシート抵抗の最適値から決定される膜厚と
することにより、高出力化を計ることができる。
As can be seen from the figure, there is an optimum value of the sheet resistance of the light receiving surface electrode film (1) in order to obtain the maximum output. Therefore, in manufacturing the photovoltaic device, high output can be achieved by setting the thickness of the light receiving surface electrode film (1) to a thickness determined from the optimum value of the sheet resistance. .

従来の例ではシート抵抗が大きくなると、最大出力は
大幅に減少するが、本発明では、従来例に比べて高シー
ト抵抗側(即ち、約1000Å)において、最大出力が最高
となり、更に、この時よりもシート抵抗が1桁程度増加
した場合にあっても、出力は数%程度しか減少しない。
In the conventional example, when the sheet resistance is increased, the maximum output is greatly reduced. However, in the present invention, the maximum output is highest on the high sheet resistance side (that is, about 1000 °) as compared with the conventional example. Even if the sheet resistance increases by about one digit, the output decreases only by about several percent.

第5図は本発明の光起電力装置の第2実施例の要部を
光入射方向に対して背面側斜め方向から臨んだ一部断面
斜視図である。
FIG. 5 is a partial cross-sectional perspective view of a main part of a second embodiment of the photovoltaic device of the present invention viewed obliquely from the rear side with respect to the light incident direction.

この実施例にあっては、先の実施例と比較して、光入
射方向が逆転した点に特徴がある。即ち、表面にホーロ
ーや封孔処理したアルミナ膜等の絶縁膜(72)を配置し
たステンレス鋼、アルミニウム板等の金属板(71)から
なる絶縁基板(70)を用意し、まず各単位光電変換素子
(SC1)(SC2)(SC3)…毎に金属の第2背面電極膜
(5)を分割配置し、次いで絶縁膜(4)、第1背面電
極膜(3)、少なくとも一つの半導体接合を備える光活
性層を含む半導体膜(2)、TCO等の透過性受光面電極
膜(1)を積層する。この時、絶縁膜(4)は各素子
(SC1)(SC2)(SC3)…毎に分割され、露出した第2
背面電極膜(5)に隣の素子の第1背面電極膜(3)が
結合している。半導体膜(2)、第1背面電極膜(3)
及び絶縁膜(4)には第1実施例と同様に受光領域内で
複数個所第2背面電極膜(5)に達するコンタクトホー
ル(6)が穿たれており、コンタクトホール(6)の内
壁は絶縁膜(4)により覆われている。そして、このコ
ンタクトホール(6)を受光面電極膜(1)が埋設する
ことによって、受光面電極膜(1)と第2背面電極膜
(5)とが電気的に結合されると共に、各単位光電変換
素子(SC1)(SC2)(SC3)…が半導体膜(2)の背面
において電気的に直列接続される。
This embodiment is characterized in that the light incident direction is reversed as compared with the previous embodiment. That is, an insulating substrate (70) made of a metal plate (71) such as stainless steel or an aluminum plate having an insulating film (72) such as an enamel or a sealed alumina film on the surface is prepared. A metal second back electrode film (5) is divided and arranged for each of the elements (SC 1 ) (SC 2 ) (SC 3 )... Then, an insulating film (4), a first back electrode film (3), and at least one A semiconductor film (2) including a photoactive layer having a semiconductor junction and a transparent light-receiving surface electrode film (1) such as TCO are laminated. At this time, the insulating film (4) is divided for each element (SC 1 ) (SC 2 ) (SC 3 ).
A first back electrode film (3) of an adjacent element is bonded to the back electrode film (5). Semiconductor film (2), first back electrode film (3)
A contact hole (6) reaching the second back electrode film (5) at a plurality of positions in the light receiving region is formed in the insulating film (4) as in the first embodiment, and the inner wall of the contact hole (6) is It is covered with the insulating film (4). By burying the contact hole (6) with the light-receiving surface electrode film (1), the light-receiving surface electrode film (1) and the second back electrode film (5) are electrically coupled with each other, and The photoelectric conversion elements (SC 1 ) (SC 2 ) (SC 3 ) are electrically connected in series on the back surface of the semiconductor film (2).

この構造の光起電力装置においても、受光面電極膜
(1)の膜厚は、第1実施例と同様に、上記3式に基づ
いてコンタクトホール(6)における出力電流を計算
し、これに基づいた出力電力が略最大となるシート抵抗
の値から決定される膜厚とするのは当然のことである。
Also in the photovoltaic device having this structure, the thickness of the light-receiving surface electrode film (1) is calculated by calculating the output current in the contact hole (6) based on the above-mentioned three equations, as in the first embodiment. It is natural that the film thickness is determined from the sheet resistance value at which the output power based on the sheet resistance becomes substantially maximum.

なお、各コンタクトホール(6)は上述のような円形
に限らず、正方形等任意の形状とすることができる。こ
の場合、例えば正方形のコンタクトホール(6)の夫々
により集電される電流は、各コンタクトホール(6)を
中心として互いに接すると共に同一面積で区画された正
方形内で発生する電流である。従って、上記正方形内で
発生する電流を計算することにより、コンタクトホール
(6)の大きさ及びその配置間隔が決定される。
In addition, each contact hole (6) is not limited to the circular shape as described above, but may be an arbitrary shape such as a square. In this case, for example, the current collected by each of the square contact holes (6) is a current generated in a square that is in contact with each other with each contact hole (6) as a center and divided by the same area. Therefore, the size of the contact hole (6) and the interval between the contact holes are determined by calculating the current generated in the square.

(ト)発明の効果 本発明光電変換素子及び光起電力装置は、受光面電極
膜の膜厚を、所定の関係式により計算される出力電流に
基づく出力電圧が略最大となるシート抵抗の値から決定
される膜厚としたことを特徴とするので、最適な出力特
性を有する光起電力装置を提供することができる。
(G) Effect of the Invention The photoelectric conversion element and the photovoltaic device of the present invention are provided by setting the thickness of the light receiving surface electrode film to a value of a sheet resistance at which an output voltage based on an output current calculated by a predetermined relational expression becomes substantially maximum. Therefore, a photovoltaic device having optimal output characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例の要部を示す一部断面斜視
図、第2図はコンタクトホールの径とこの部分の接触抵
抗との関係を示す特性図、第3図はコンタクトホールの
径と光起電力装置の最大出力との関係を示す特性図、第
4図は受光面電極膜のシート抵抗(即ち、膜厚)と光起
電力装置の最大出力との関係を示す特性図、第5図は本
発明の第2実施例の要部を示す一部断面斜視図である。
FIG. 1 is a partial cross-sectional perspective view showing a main part of a first embodiment of the present invention, FIG. 2 is a characteristic diagram showing a relationship between a diameter of a contact hole and a contact resistance of this portion, and FIG. FIG. 4 is a characteristic diagram showing the relationship between the diameter of the photovoltaic device and the maximum output of the photovoltaic device. FIG. 4 is a characteristic diagram showing the relationship between the sheet resistance (that is, the film thickness) of the light receiving surface electrode film and the maximum output of the photovoltaic device. FIG. 5 is a partially sectional perspective view showing a main part of a second embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−194370(JP,A) 特開 昭59−167056(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 31/04──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-194370 (JP, A) JP-A-59-167056 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 31/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】透光性受光面電極膜、光活性層を含む半導
体膜、第1背面電極膜、絶縁膜及び第2背面電極膜を重
畳し、受光領域内の複数の接続箇所において上記第2電
極膜が上記絶縁膜を貫通して受光面電極膜と電気的に結
合した光電変換素子であって、qを素電荷、kをボルツ
マン定数とするときに、上記受光面電極膜の膜厚を、所
定の条件の下でのT(絶対温度)、iph(光電流密
度)、i0(逆方向飽和電流密度)、Rs(直列抵抗)Rsh
(シャント抵抗)、及びn(ダイオード特性のn値)の
値を用いて次式により計算される出力電流に基づく出力
電力が略最大となるRst(シート抵抗)の値から決定さ
れる膜厚としたことを特徴とする光電変換素子。 i(r)=iph−i0[exp{q(V(r)+Rsi(r))/
nkT}−1] −(V(r)+Rsi(r))/Rsh dV(r)/dr=I(r)・Rst/2πr 但し、Iout :1個の接続箇所における出力電流 i(r):半径r地点の微小領域で発生する電流量 I(r):半径r地点のリング状領域においてコンタク
トホール方向へ流れる全電流量 V(r):半径r地点の電圧 R :接続箇所の配置間隔に対応した正方形と同じ
面積をなす円の半径 R0 :接続箇所の半径
1. A light-transmitting light-receiving surface electrode film, a semiconductor film including a photoactive layer, a first back electrode film, an insulating film, and a second back electrode film are superimposed on each other, and the first and second back electrode films are formed at a plurality of connection locations in a light-receiving region. A photoelectric conversion element in which a two-electrode film penetrates through the insulating film and is electrically coupled to the light-receiving surface electrode film, wherein q is an elementary charge and k is a Boltzmann constant; Is given by T (absolute temperature), i ph (photocurrent density), i 0 (reverse saturation current density), R s (series resistance) R sh under given conditions.
(Shunt resistance) and the film thickness determined from the value of R st (sheet resistance) at which the output power based on the output current calculated by the following equation using the value of n (n value of the diode characteristic) becomes substantially maximum. A photoelectric conversion element, characterized in that: i (r) = i ph −i 0 [exp {q (V (r) + R s i (r)) /
nkT} -1] - (V ( r) + R s i (r)) / R sh dV (r) / dr = I (r) · R st / 2πr However, I out: output current at one connecting point i (r): the amount of current generated in a minute area at a radius r point I (r): the total amount of current flowing in the direction of a contact hole in a ring-shaped area at a radius r point V (r): the voltage at a radius r point R: connection Radius of a circle having the same area as the square corresponding to the arrangement interval of the points R0 : radius of the connection point
【請求項2】第1項記載の光電変換素子を、互いに隣接
する光電変換素子の一方の第1背面電極膜と他方の背面
電極膜とでもって半導体膜に対して背面側にて結合する
ことにより電気的に直列接続したことを特徴とする光起
電力装置。
2. The method according to claim 1, wherein the first and second back electrode films of the photoelectric conversion elements adjacent to each other are coupled to the semiconductor film on the back side. A photovoltaic device, wherein the photovoltaic devices are electrically connected in series.
JP1083109A 1989-03-31 1989-03-31 Photoelectric conversion element and photovoltaic device Expired - Fee Related JP2755670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1083109A JP2755670B2 (en) 1989-03-31 1989-03-31 Photoelectric conversion element and photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1083109A JP2755670B2 (en) 1989-03-31 1989-03-31 Photoelectric conversion element and photovoltaic device

Publications (2)

Publication Number Publication Date
JPH02260663A JPH02260663A (en) 1990-10-23
JP2755670B2 true JP2755670B2 (en) 1998-05-20

Family

ID=13793034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1083109A Expired - Fee Related JP2755670B2 (en) 1989-03-31 1989-03-31 Photoelectric conversion element and photovoltaic device

Country Status (1)

Country Link
JP (1) JP2755670B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100454584C (en) * 2003-01-10 2009-01-21 株式会社钟化 Transparent thin-film solar cell module and its manufacturing method

Also Published As

Publication number Publication date
JPH02260663A (en) 1990-10-23

Similar Documents

Publication Publication Date Title
JP2938634B2 (en) Solar cell module
JPH04276665A (en) Integrated solar battery
JP2986875B2 (en) Integrated solar cell
JP2010232466A (en) Solar cell module
JP3172369B2 (en) Integrated photovoltaic device
JP2755670B2 (en) Photoelectric conversion element and photovoltaic device
JPH09283781A (en) Photovoltaic device
JP2755616B2 (en) Photovoltaic device
JP2968404B2 (en) Method for manufacturing photovoltaic device
JPH073875B2 (en) Photovoltaic device
JPH0328522Y2 (en)
JP2940724B2 (en) Photoelectric conversion element and photovoltaic device
JP2647892B2 (en) Optical super power device
JP2869133B2 (en) Photoelectric conversion element and photovoltaic device
JP2001068696A (en) Thin-film photoelectric conversion module
JP2516438Y2 (en) Solar cell module
JP2940687B2 (en) Photovoltaic device
JP2735864B2 (en) Photoelectric conversion element and photovoltaic device
JPS612372A (en) Photovoltaic device
JP2630657B2 (en) Manufacturing method of integrated multilayer amorphous solar cell
JP2744058B2 (en) Method for manufacturing photovoltaic device
JPH0639457Y2 (en) Photovoltaic device
JPH0642351Y2 (en) Photovoltaic device
JP2003197936A (en) Solar battery
JPH07105509B2 (en) Photovoltaic device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees