[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2748121B2 - Variable damping force type hydraulic shock absorber - Google Patents

Variable damping force type hydraulic shock absorber

Info

Publication number
JP2748121B2
JP2748121B2 JP9280088A JP9280088A JP2748121B2 JP 2748121 B2 JP2748121 B2 JP 2748121B2 JP 9280088 A JP9280088 A JP 9280088A JP 9280088 A JP9280088 A JP 9280088A JP 2748121 B2 JP2748121 B2 JP 2748121B2
Authority
JP
Japan
Prior art keywords
pressure
damping force
shock absorber
pressure signal
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9280088A
Other languages
Japanese (ja)
Other versions
JPH01266014A (en
Inventor
忍 柿崎
史之 山岡
茂 菊島
順一 江村
Original Assignee
株式会社ユニシアジェックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニシアジェックス filed Critical 株式会社ユニシアジェックス
Priority to JP9280088A priority Critical patent/JP2748121B2/en
Priority to US07/337,349 priority patent/US4984819A/en
Priority to EP19890303704 priority patent/EP0337797B1/en
Priority to DE1989619510 priority patent/DE68919510T2/en
Publication of JPH01266014A publication Critical patent/JPH01266014A/en
Application granted granted Critical
Publication of JP2748121B2 publication Critical patent/JP2748121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0152Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • B60G17/01941Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof characterised by the use of piezoelectric elements, e.g. sensors or actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/202Piston speed; Relative velocity between vehicle body and wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • B60G2400/518Pressure in suspension unit in damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • B60G2400/518Pressure in suspension unit in damper
    • B60G2400/5182Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/10Piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/60Signal noise suppression; Electronic filtering means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車等車両の減衰力可変型液圧緩衝装置
に係り、詳しくは、路面振動のサイクル毎に減衰力を可
変できる減衰力可変型液圧緩衝装置に関する。
Description: TECHNICAL FIELD The present invention relates to a variable damping force type hydraulic shock absorber for a vehicle such as an automobile, and more particularly, to a variable damping force capable of changing a damping force for each cycle of road surface vibration. The present invention relates to a mold hydraulic shock absorber.

(従来の技術) 近時、車両に対する要求の高度化に伴い快適さおよび
走行安定性の両立が求められる傾向にある。そのため、
走行状態に応じて減衰力を増減操作し、通常走行時には
乗り心地を良くする低い減衰力を、車体のロール発生時
には走行安定性を高めるような高い減衰力をそれぞれ発
生する減衰力可変型液圧緩衝装置も普及している。
(Prior Art) In recent years, there has been a tendency for compatibility between comfort and running stability to be required in accordance with sophistication of requirements for vehicles. for that reason,
A damping force variable type hydraulic pressure that increases or decreases the damping force according to the running condition and generates a low damping force that improves riding comfort during normal driving and a high damping force that enhances running stability when a vehicle roll occurs Shock absorbers are also widespread.

従来のこの種の減衰力可変型液圧緩衝装置としては、
例えば特開昭61−85210号公報に記載のものが知られて
いる。この装置では、4本のショックアブソーバ内に各
々設けられた単一の圧電素子(すなわち、4個)が路面
振動に応じて発生するシリンダ内の液圧を検出し、コン
トローラが液圧の大きさに基づいて圧電素子に電圧を引
火して減衰力をソフトからハードに切り換える。減衰力
のソフトとハードの切り換えは、車体の変位が生じるよ
うな低い振動周波数で、かつ4個の圧電素子のうち2個
で発生する起電力の大きさが設定値を越えると行われ、
所定時間継続される。
As this kind of conventional variable damping force type hydraulic shock absorber,
For example, one described in JP-A-61-85210 is known. In this device, a single piezoelectric element (that is, four) provided in each of the four shock absorbers detects the hydraulic pressure in the cylinder generated in response to the road surface vibration, and the controller determines the magnitude of the hydraulic pressure. Based on the above, the voltage is ignited to the piezoelectric element to switch the damping force from software to hardware. The switching of the damping force between software and hardware is performed at a low vibration frequency that causes displacement of the vehicle body and when the magnitude of the electromotive force generated by two of the four piezoelectric elements exceeds a set value,
It is continued for a predetermined time.

すなわち、減衰力は所定時間内は圧行程、伸行程に拘
らずハードに維持され、所定時間内において液圧は検出
されない。
That is, the damping force is maintained hard during the predetermined time regardless of the pressure stroke and the extension stroke, and the hydraulic pressure is not detected within the predetermined time.

(発明が解決しようとする課題) しかしながら、このような従来の減衰力可変型液圧緩
衝装置にあっては、単一の圧電素子を液圧のセンシング
と電圧印加による減衰力増減のアクチュエータとに切り
換えて使用し、かつ検出信号に応じて所定時間は減衰力
特性をハードにする構成となっていたため、上記所定時
間内ではセンシングできないことから、圧行程、伸行程
それぞれに独立した制御が行えば、路面からの連続入力
のうち2つ目以降の入力振動に対して十分な制御が行え
ないという問題点があった。例えば、初回以後の圧側の
入力に対しては高い減衰力が逆に加振源となり、制振性
が悪化し、結局、乗り心地と走行安定性の両立が図れな
い。
(Problems to be Solved by the Invention) However, in such a conventional variable damping force type hydraulic pressure buffer device, a single piezoelectric element is used as a hydraulic pressure sensing device and an actuator for increasing and decreasing the damping force by applying a voltage. Since it is configured to switch and use and make the damping force characteristic hard for a predetermined time according to the detection signal, it is not possible to perform sensing within the above-mentioned predetermined time, so if independent control is performed for each of the pressure stroke and the extension stroke, In addition, there is a problem that sufficient control cannot be performed on the second and subsequent input vibrations among the continuous input from the road surface. For example, for the pressure-side input after the first time, a high damping force acts as a vibration source on the contrary, and the vibration damping property is deteriorated. As a result, it is impossible to achieve both riding comfort and running stability.

また、液圧の大きさ、すなわち振動の速度を振動情報
として利用し、振動の大小判別を行っていたため、液圧
が設定値以上のときハードを維持することから、悪路走
行時のように振動速度の大きな振動が連続して入力され
ると液圧が高いまま維持されて、長時間に亘ってハード
が維持されてしまい、乗り心地を悪化させることとな
る。
In addition, since the magnitude of the hydraulic pressure, that is, the speed of the vibration is used as the vibration information, and the magnitude of the vibration is determined, the hardware is maintained when the hydraulic pressure is equal to or higher than the set value. If the vibration having a large vibration speed is continuously input, the hydraulic pressure is maintained at a high level, and the hardware is maintained for a long time, thereby deteriorating the riding comfort.

(発明の目的) そこで本発明は、圧側および伸側の液圧を別個に検出
し、該液圧の検出値又は該検出値とその変化率に基づい
て減衰力を可変にすることにより、初期応答性を向上し
て、車両の振動のサイクル毎に減衰力を精密に変化さ
せ、連続的な振動入力に対しても乗り心地と走行安定化
を両立させるうる構成の液圧緩衝装置を提供する。こと
を目的としている。
(Objects of the Invention) Accordingly, the present invention detects the hydraulic pressure on the compression side and the hydraulic pressure on the extension side separately, and makes the damping force variable based on the detected value of the hydraulic pressure or the detected value and the rate of change thereof. Provided is a hydraulic pressure absorbing device having a configuration that improves responsiveness, precisely changes a damping force for each vibration cycle of a vehicle, and achieves both riding comfort and running stability even with continuous vibration input. . It is intended to be.

(課題を解決するための手段) 本発明による減衰力可変型液圧緩衝装置は、上記目的
達成のため、請求項1において、ショックアブソーバの
圧側の液圧のみを独立して第1圧力信号として検出する
第1の検出手段と、ショックアブソーバの伸側の液圧の
みを独立して第2圧力信号として検出する第2の検出手
段と、ショックアブソーバの圧側の減衰力を変える第1
の操作手段と、ショックアブソーバの伸側の減衰力を変
える第2の操作手段と、前記第1又は第2検出手段が検
出した前記第1又は第2圧力信号を入力し、該第1又は
第2圧力信号の変化率を演算で求めると共に、これら変
化率とこれに対応する前記第1又は第2圧力信号に基づ
いて、前記第1又は第2の操作手段のうち一方を選択的
に駆動・停止させる制御値を出力する制御手段とを備え
いる。
(Means for Solving the Problems) In order to achieve the above object, a variable damping force type hydraulic shock absorber according to the present invention is characterized in that, in claim 1, only the hydraulic pressure on the pressure side of the shock absorber is independently used as a first pressure signal. A first detecting means for detecting, a second detecting means for independently detecting only a hydraulic pressure on the extension side of the shock absorber as a second pressure signal, and a first for changing the damping force on the compression side of the shock absorber.
Operating means, a second operating means for changing the extension-side damping force of the shock absorber, and the first or second pressure signal detected by the first or second detecting means, and (2) calculating the rate of change of the pressure signal and selectively driving one of the first or second operating means based on the rate of change and the first or second pressure signal corresponding thereto; Control means for outputting a control value to be stopped.

また、請求項2の発明は、前記制御手段が、演算で求
めた前記変化率から該変化率の大きさを連続して判断
し、極値になったことを確認したとき前記第1又は第2
の操作手段のいずれか一方に通電し、前記変化率が所定
値以下になったことを確認したとき前記第1又は第2の
操作手段の通電を停止するように構成されている。
Further, the invention according to claim 2 is characterized in that the control means continuously determines the magnitude of the change rate from the change rate obtained by calculation, and when the control means confirms that the extreme value has been reached, the first or the second is performed. 2
Is energized, and when it is confirmed that the rate of change is equal to or less than a predetermined value, the energization of the first or second operating means is stopped.

更に、請求項3の発明は、前記所定値が零であること
を特徴としてる。
Further, the invention according to claim 3 is characterized in that the predetermined value is zero.

(作用) 圧行程中の圧側の液圧は第1の検出手段によって独立
して検出され、伸行程中の伸側の液圧は第2の検出手段
によって独立して検出される。
(Operation) The hydraulic pressure on the compression side during the compression stroke is independently detected by the first detection means, and the hydraulic pressure on the compression side during the extension stroke is independently detected by the second detection means.

このようにして検出された液圧信号を入力した制御手
段は、該液圧信号を時間微分して液圧の変化率、即ち振
動の加速度を演算して求め、この変化率に応じて第1又
は第2の操作手段のうちの一方の対して通電・停止を行
い、減衰力をハード又はソフトに切換える。このとき、
第1又は第2の操作手段のどちらかを駆動させるか液圧
信号自体が零になるか否かで、行程が変わるか否かを判
断して行う。このように判断して各操作手段を駆動する
ことにより、伸・圧行程中に連続して検出される液圧に
基づいて連続して減衰力を制御する。
The control means, which has received the hydraulic pressure signal detected in this manner, differentiates the hydraulic pressure signal with respect to time to calculate the rate of change of hydraulic pressure, that is, the acceleration of vibration. Alternatively, energization / stop is performed for one of the second operation means, and the damping force is switched between hardware and software. At this time,
The determination is made based on whether the first or second operating means is driven or whether the hydraulic pressure signal itself becomes zero to determine whether the stroke changes. By driving each operating means in this way, the damping force is continuously controlled based on the hydraulic pressure detected continuously during the extension / pressure stroke.

(実施例) 以下、本発明を図面に基づいて説明する。Hereinafter, the present invention will be described with reference to the drawings.

第2〜5図は本発明に係る減衰力可変型液圧緩衝装置
の一実施例を示す図である。
2 to 5 are views showing one embodiment of a variable damping force type hydraulic pressure buffer device according to the present invention.

まず、構成を説明する。第2図はショックアブソーバ
の全体構成図、第3図はその要部断面図、第4図はシス
テムの全体構成図、第5図はその一部分の制御回路を示
す図である。
First, the configuration will be described. FIG. 2 is an overall configuration diagram of the shock absorber, FIG. 3 is a sectional view of a main part thereof, FIG. 4 is an overall configuration diagram of the system, and FIG. 5 is a diagram showing a control circuit of a part thereof.

第2図において、1は減衰力可変型のショックアブソ
ーバである。ショックアブソーバ1は密封された外筒2
と、外筒2に内蔵されたシリンダ3と、シリンダ3の内
壁を軸方向に摺動するピストン4と、シリンダ3の下端
に設けられたボトムバルブ5と、ピストン4を支持する
ピストンロッド6と、外筒2の内壁およびシリンダ3に
よって形成されるリザーバ室7と、ピストンロッド6を
支持するロッドガイド8と、ロッドガイド8の上部に設
けられたピストンシール9と、外筒2の上部を閉止する
ストッパプレート10と、を含んで構成されている。
In FIG. 2, reference numeral 1 denotes a variable damping force type shock absorber. The shock absorber 1 is a sealed outer cylinder 2
A cylinder 3 built in the outer cylinder 2, a piston 4 sliding axially on the inner wall of the cylinder 3, a bottom valve 5 provided at a lower end of the cylinder 3, and a piston rod 6 supporting the piston 4. , A reservoir chamber 7 formed by the inner wall of the outer cylinder 2 and the cylinder 3, a rod guide 8 for supporting the piston rod 6, a piston seal 9 provided on the upper part of the rod guide 8, and closing the upper part of the outer cylinder 2 And a stopper plate 10.

シリンダ3は下端に連通孔11を有するボトムボディ12
を備え、上記開口部がロッドガイド8で閉塞されてい
る。シリンダ3の内部はピストン4によって上側液室14
および下側液室15の2室に区画され、該2室内の作動液
はピストン4に設けられた後述の連通孔46〜48を介して
相互に流動する。
The cylinder 3 has a bottom body 12 having a communication hole 11 at a lower end.
The opening is closed by the rod guide 8. The inside of the cylinder 3 is moved by the piston 4 to the upper liquid chamber 14.
And the lower liquid chamber 15, and the hydraulic fluid in the two chambers mutually flows through communication holes 46 to 48 provided in the piston 4, which will be described later.

ピストン4には伸行程で減衰力を発生する伸側バルブ
16および伸側バルブ16を上方に付勢するスプリング17が
設けられている。スプリング17の下端はアジャストナッ
ト18およびロックナット19によってピストン4に固定さ
れ、ピストン4の下端にはアジャストナット20が螺合さ
れている。
The piston 4 has an extension valve that generates damping force during the extension stroke.
A spring 17 for urging the expansion valve 16 and the extension side valve 16 upward is provided. The lower end of the spring 17 is fixed to the piston 4 by an adjust nut 18 and a lock nut 19, and an adjust nut 20 is screwed to the lower end of the piston 4.

ボトムバルブ5は伸行程で開くチェックバルブ21と、
チェックバルブ21が開くとき作動液を流入させるポート
22と、圧行程で開く圧側バルブ23と、圧側バルブ23が開
くとき、下部液室15からリザーバ室7の作動液を流通さ
せるオリフィス24と、チェックバルブ21の開度を規制す
るストッパプレート25と、ボトムボディ12にチェックバ
ルブ21等を固定するカシメピン26と、を含んで構成され
る。伸行程において、リザーバ室7内の作動液は、下側
液室15内の負圧力によりチェックバルブ21を開き、下側
液室15に流入する。このとき、チェックバルブ21はスト
ッパプレート25によってある一定以上開かないよう規制
される。また、圧行程では、下側液室15内の作動液は圧
側バルブ23を開いて下側液室15内の正圧力に対応した減
衰力を発生し、連通孔11を通ってリザーバ室7に流入す
る。上側液室14および下側液室15内の圧力は車両の振動
の大きさに応じて発生し、その圧力を検出すれば車両へ
の振動の入力状況、すなわち走行状態を検出できる。
The bottom valve 5 includes a check valve 21 that opens during the extension stroke,
Port through which hydraulic fluid flows in when check valve 21 opens
22, a pressure side valve 23 that opens in the pressure stroke, an orifice 24 that allows the hydraulic fluid in the reservoir chamber 7 to flow from the lower liquid chamber 15 when the pressure side valve 23 opens, and a stopper plate 25 that regulates the opening of the check valve 21. And a caulking pin 26 for fixing the check valve 21 and the like to the bottom body 12. In the extension stroke, the hydraulic fluid in the reservoir chamber 7 opens the check valve 21 by the negative pressure in the lower liquid chamber 15 and flows into the lower liquid chamber 15. At this time, the check valve 21 is regulated by the stopper plate 25 so as not to open more than a certain amount. In the pressure stroke, the hydraulic fluid in the lower liquid chamber 15 opens the pressure valve 23 to generate a damping force corresponding to the positive pressure in the lower liquid chamber 15, and passes through the communication hole 11 to the reservoir chamber 7. Inflow. The pressure in the upper liquid chamber 14 and the lower liquid chamber 15 is generated according to the magnitude of the vibration of the vehicle. By detecting the pressure, the input state of the vibration to the vehicle, that is, the running state can be detected.

また、ピストンロッド6にはリテーナ27が固定され、
リテーナ27は上部に設けられた弾性体のリバウンドスト
ッパ28とともにピストン4とロッドガイド8との衝突が
緩和される。
A retainer 27 is fixed to the piston rod 6,
The collision between the piston 4 and the rod guide 8 is mitigated by the retainer 27 together with the elastic rebound stopper 28 provided on the upper part.

ストッパプレート10はシリンダ3の上端に下部が嵌合
し、中央の貫通孔10aをピストンロッド6が貫通する。
The lower portion of the stopper plate 10 is fitted to the upper end of the cylinder 3, and the piston rod 6 passes through the central through hole 10a.

外筒2は内部にシリンダ3、ロッドガイド8およびピ
ストンシール9を収容し、上端を加締めて形成されてい
る。ピストンシール9を内周部にはピストンロッド6に
弾接し、内部の液密を維持するメインリップ29と、外部
からの泥水等を阻止するダストリップ30とが形成されて
いる。また、外筒2の下端部には、車両の車軸等に取り
付けるためのアイブッシュ31およびアイ32が固着されて
いる。なお、ピストンロッド6の上端から引き出された
配線35はコントロールユニット100と接続されている。
The outer cylinder 2 accommodates the cylinder 3, the rod guide 8 and the piston seal 9 inside, and is formed by caulking the upper end. The inner periphery of the piston seal 9 is provided with a main lip 29 which elastically contacts the piston rod 6 to maintain the liquid tightness inside and a dust lip 30 for preventing muddy water and the like from the outside. An eye bush 31 and an eye 32 for attachment to an axle or the like of a vehicle are fixed to the lower end of the outer cylinder 2. The wiring 35 drawn from the upper end of the piston rod 6 is connected to the control unit 100.

第3図はピストン4周辺の断面を示しており、図中上
方が車体側であり、図中下方が車輪側である。同図にお
いて、ピストンロッド6の中央には配線35を収容する配
線通路41が設けられ、配線通路41は徐々に拡大した下端
のネジ部41aでピストン4と螺合する。ピストン本体42
は外周に大径部と小径部が形成され、大径部にはテフロ
ン等の低摩擦部材からなるシール部材44が嵌着され、こ
れによって前記の如くシリンダ3内を上下の液室14、15
に隔成している。また、小径部先端部には雄ねじが形成
され、これによって前記の如くピストンロッド6に螺着
されている。更にピストン本体42は中空になっており、
前記小径部側の端部にアジャストナット53が螺着された
アジャストスクリュー52が形成され、この下方に、段部
に続いてやや大径の収容孔49が形成されている。該収容
孔49には、上下をキャップ55とスライダ71に挟持された
第1の圧電素子60が嵌挿され、これらは上部が長さ調整
用のプレート54を介して前記段部に係止している。前記
収容孔49の下方は更に2段になった大径部45となってお
り、2段となった肩部に押し当てられてバルブボディ73
が嵌挿され、大径部45端側に形成された雌ねじ部に螺着
されたスリーブ43によってバルブボディ73は段部との間
に挟持されている。このバルブボディ73の上面側に空間
79が画成され、ピストン本体42に形成された連通孔46に
よって上部液室14と連通する一方、下面側には前記スリ
ーブ43との間に空間80が画成され、スリーブ43に形成さ
れた連通孔48によって下部液室15に連通しており、該連
通孔48の下部液室側の開口部は前記伸側バルブ16に覆わ
れている。前記バルブボディ73の外周には環状溝73aが
形成され、該環状溝73aはピストン本体に形成された連
通孔47によって下部液室15に連通している。またバルブ
ボディ73には上部の空間79と前記環状溝73aを連通する
オリフィス76と、上部の空間79と下部の空間80とを連通
するオリフィス77とが形成され、これらオリフィス76、
77をそれぞれ覆うようにバルブボディ73の上面には圧側
ディスクバルブ74が、下面には伸側ディスクバルブ75が
配設されている。
FIG. 3 shows a cross section around the piston 4. The upper side in the figure is the vehicle body side, and the lower side in the figure is the wheel side. In the figure, a wiring passage 41 for accommodating the wiring 35 is provided at the center of the piston rod 6, and the wiring passage 41 is screwed with the piston 4 with a gradually enlarged lower end screw portion 41a. Piston body 42
A large diameter portion and a small diameter portion are formed on the outer circumference, and a sealing member 44 made of a low friction member such as Teflon is fitted to the large diameter portion, whereby the upper and lower liquid chambers 14 and 15 are formed in the cylinder 3 as described above.
It is segregated. A male screw is formed at the distal end of the small diameter portion, and is screwed to the piston rod 6 as described above. Furthermore, the piston body 42 is hollow,
An adjust screw 52 having an adjust nut 53 screwed therein is formed at the end on the small diameter side, and a slightly larger accommodation hole 49 is formed below the adjust screw 52 following the step. A first piezoelectric element 60 sandwiched between a cap 55 and a slider 71 at the top and bottom is fitted into the accommodation hole 49, and their upper portions are locked to the step portion via a length adjusting plate 54. ing. The lower part of the accommodation hole 49 is a large-diameter portion 45 having two further steps, which are pressed against the two-step shoulders so that the valve body 73 is pressed.
Is inserted, and the valve body 73 is sandwiched between the stepped portion by a sleeve 43 screwed into a female screw portion formed on the end side of the large diameter portion 45. Space on the top side of this valve body 73
79 is defined and communicates with the upper liquid chamber 14 by a communication hole 46 formed in the piston main body 42, while a space 80 is defined between the sleeve 43 on the lower surface side and formed in the sleeve 43. The communication hole 48 communicates with the lower liquid chamber 15, and the opening of the communication hole 48 on the lower liquid chamber side is covered with the extension valve 16. An annular groove 73a is formed on the outer periphery of the valve body 73, and the annular groove 73a communicates with the lower liquid chamber 15 through a communication hole 47 formed in the piston body. The valve body 73 has an orifice 76 communicating the upper space 79 and the annular groove 73a, and an orifice 77 communicating the upper space 79 and the lower space 80.These orifices 76,
A pressure-side disc valve 74 is provided on the upper surface of the valve body 73 and a growth-side disc valve 75 is provided on the lower surface thereof so as to cover the respective 77s.

前記スリーブ43は中空に形成されており、その収容孔
50には上部から順に、バルブコア72、第2の圧電素子9
0、キャップ94が嵌挿され、これらはスリーブ43の下端
に螺設されたアジャストスクリュー20によって、上下方
向移動可能に収容孔50内に収容されている。前記バルブ
コア72は、収容孔50内に嵌挿される大径部の上面中央に
中空軸部が突設され、該中空軸部はバルブボディ73の中
心孔を貫通して、その上部のスライダ71の中心孔に貫入
している。
The sleeve 43 is formed in a hollow shape and has a receiving hole.
50 includes a valve core 72 and a second piezoelectric element 9 in order from the top.
0, a cap 94 is inserted, and these are accommodated in the accommodation hole 50 so as to be vertically movable by an adjusting screw 20 screwed at a lower end of the sleeve 43. The valve core 72 has a hollow shaft portion projecting from the center of the upper surface of the large diameter portion inserted into the housing hole 50. The hollow shaft portion passes through the center hole of the valve body 73, and the upper portion of the slider 71 It penetrates the central hole.

かくして、圧側ディスクバルブ74はバルブボディ73を
介してスライダ71の下面とスリーブ43の上面との間に挟
持され、前記アジャストナット53の調整に応じてバルブ
ボディ73上面にてセット荷重が調整され、スライダ71は
第1の圧電素子60に電圧を印加したときの電歪を圧側デ
ィスクバルブ74に伝えて押圧する伝達部材として作用す
る。また、伸側ディスクバルブ75もバルブボディ73を介
してバルブコア72の上面とピストン本体42の大径部45の
肩部との間に挟持され、前記アジャストクリュー20の調
整に応じてバルブボディ73の下面にてセット荷重が調整
され、バルブコア72は第2の圧力素子90の電歪を伸側デ
ィスクバルブ75に伝える伝達部材として作用する。更に
前記スライダ71の下端には傾斜面71bが設けられて、空
間79に導入される上部液室14の圧力を受圧して第1の圧
電素子60に圧力を伝達するようになっており、該スライ
ダ71は感圧部材として作用する。また、前記アジャスト
スクリュー20の下面には圧力孔95が形成され下部液室15
の圧力をキャップ94の下面に導き、キャップ94を押して
第2の圧電素子90に伝達する感圧部材となっている。な
お、本実施例では、伸側バルブ16に覆われた連通孔48は
一部が切欠が形成されて、常時空間80が下部液室15に連
通しているために、バルブコア72も感圧部材として作用
する。このように感圧部材は1つの電圧圧電素子に1つ
あれば良い。
Thus, the compression-side disc valve 74 is sandwiched between the lower surface of the slider 71 and the upper surface of the sleeve 43 via the valve body 73, and the set load is adjusted on the upper surface of the valve body 73 in accordance with the adjustment of the adjust nut 53, The slider 71 functions as a transmitting member that transmits the electrostriction when a voltage is applied to the first piezoelectric element 60 to the pressure side disk valve 74 and presses it. The extension-side disc valve 75 is also sandwiched between the upper surface of the valve core 72 and the shoulder of the large-diameter portion 45 of the piston body 42 via the valve body 73, and the valve body 73 is adjusted in accordance with the adjustment of the adjust screw 20. The set load is adjusted on the lower surface, and the valve core 72 acts as a transmission member for transmitting the electrostriction of the second pressure element 90 to the extension-side disk valve 75. Further, an inclined surface 71b is provided at the lower end of the slider 71 to receive the pressure of the upper liquid chamber 14 introduced into the space 79 and transmit the pressure to the first piezoelectric element 60. The slider 71 functions as a pressure-sensitive member. Further, a pressure hole 95 is formed on the lower surface of the adjusting screw 20, and the lower liquid chamber 15 is formed.
Is a pressure-sensitive member that guides the pressure to the lower surface of the cap 94 and pushes the cap 94 to transmit the pressure to the second piezoelectric element 90. In the present embodiment, the communication hole 48 covered by the extension side valve 16 is partially notched, and the space 80 always communicates with the lower liquid chamber 15, so that the valve core 72 is also a pressure-sensitive member. Act as Thus, it is sufficient that one pressure-sensitive member is provided for one voltage piezoelectric element.

第1および第2の圧電素子60、90にはそれぞれハーネ
ス61、62および91、92が設けられ、これらバブルコア7
2、ピストン本体42、キャップ55、アジャストナット53
の各中空部、更に配線通路41を通ってピストンロッド6
の上方から外部へ導出されて、ハーネス61、91は接地さ
れ、ハーネス62、92は第4図に示す如くコントロールユ
ニット100のI/Dポート101に接続されている。
The first and second piezoelectric elements 60 and 90 are provided with harnesses 61 and 62 and 91 and 92, respectively.
2, piston body 42, cap 55, adjust nut 53
Of the piston rod 6
The harnesses 61 and 91 are grounded, and the harnesses 62 and 92 are connected to the I / D port 101 of the control unit 100 as shown in FIG.

110、110′はそれぞれ第1の圧電素子60、第2の圧電
素子90からの検出信号が各コンデンサC、Cによって交
流成分のみ入力されて各バッファ112、112によって交流
成分を増幅して演算回路120に伸側信号SP、圧側信号SS
として出力する入力回路である。
110 and 110 'are arithmetic circuits for detecting signals from the first piezoelectric element 60 and the second piezoelectric element 90, respectively, in which only the AC component is input by the capacitors C and C, and the buffers 112 and 112 amplify the AC component. The extension signal S P and the compression signal S S at 120
As an input circuit.

演算回路120は例えばマイクロコンピュータ等で構成
され、内部メモリに書き込まれたプログラムに従って外
部データを取り込み、これら取り込まれたデータおよび
内部メモリに書き込まれているデータなどに基づいて、
減衰力の可変制御に必要な処理値を演算する。すなわ
ち、演算回路120は入力信号に基づいて入力信号の変化
率を演算し、検出信号SP又はSSおよびその変化率ΔSP
はΔSSから所定の判断を行い、判断結果に応じて、圧側
制御信号SAまたは伸側制御信号SBのどちらかを出力す
る。若しくは何も出力しない。例えば、駆動回路130は
バッファ131に圧側制御信号SAが入力されるとトランジ
スタTr1をONとし、駆動用電源回路140の駆動電圧をI/O
ポート101のダイオードD1を介して第1の圧電素子60に
印加し、減衰力をソフトからハードに切換える。また、
駆動回路130はバッファ132に圧側解除信号S′が入力
されるとトランジスタTr2をONとし、第1の圧電素子60
の電荷をI/Oポート101のダイオードD2を介して放電し、
減衰力をハードからソフトに戻す。なお、駆動回路13
0′に伸側制御信号SB、伸側解除信号S′が入力され
た場合も同様である。駆動用電源回路140は例えばDC−D
Cコンバータで形成され、第1および第2の圧電素子6
0、90を伸長可能な直流の高電圧(以下、駆動電圧とい
う)を出力する。
The arithmetic circuit 120 is constituted by, for example, a microcomputer or the like, captures external data according to a program written in the internal memory, and based on the captured data and data written in the internal memory,
The processing value required for the variable control of the damping force is calculated. That is, the arithmetic circuit 120 based on the input signal calculates the rate of change of the input signal, performs a predetermined determination from the detection signal S P or S S and its rate of change [Delta] S P or [Delta] S S, depending on the determination result, the pressure side and outputs one of control signals S a or the extension side control signal S B. Or output nothing. For example, the drive circuit 130 when the compression side control signals S A are input transistor Tr 1 is turned ON in the buffer 131, the drive voltage of the drive power supply circuit 140 I / O
Via the diode D 1 of the port 101 is applied to the first piezoelectric element 60, switched to the hard damping force from the soft. Also,
Driving circuit 130 when the compression side release signal S 'A is input transistor Tr 2 is turned ON in the buffer 132, the first piezoelectric element 60
Discharge through the diode D 2 of the I / O port 101,
Return the damping force from hard to soft. The drive circuit 13
The same applies to the case where the expansion side control signal S B and the expansion side release signal S ′ B are input to 0 ′. The driving power supply circuit 140 is, for example, a DC-D
First and second piezoelectric elements 6 formed by a C converter
It outputs a DC high voltage (hereinafter referred to as a drive voltage) that can extend 0 and 90.

次に第3図によって緩衝器が伸縮行程を行ったときの
作動液の流れ、第1、第2の圧電素子60、90の検出およ
び駆動の作用を説明する。
Next, the flow of the hydraulic fluid when the shock absorber performs the expansion / contraction stroke, and the operation of detecting and driving the first and second piezoelectric elements 60 and 90 will be described with reference to FIG.

いま、車輪が突起等に乗り上げるなどして車体がバウ
ンドし、ピストンロッド6がシリンダ3に対して下方に
移動する圧行程になると、下部液室15の作動液はピスト
ンロッド6の侵入体積分上部液室14に流入する。即ち、
下部液室15から連通孔47、環状溝73a、オリフィス76を
通り、圧側ディスクバルブ74を押し開き、空間79、連通
孔46を通って上部液室14に流入する。このとき圧側ディ
スクバルブ74は通過する流量に応じて撓むので、通過前
後の作動液には撓んだばね力分の差圧が生じて下部液室
15がその分高圧になり、圧側減衰力として作用する。こ
の下部液室15の圧力は圧力孔95からキャップ94の下面に
導入されるので前記の如く、第2の圧電素子90が圧力に
応じて歪み、歪みに応じた電力を圧側信号SSとしてコン
トロールユニット100に出力する。
Now, when the vehicle body bounces due to the wheels riding on the projections or the like and the piston rod 6 moves downward with respect to the cylinder 3, the hydraulic fluid in the lower liquid chamber 15 is filled with the invading body of the piston rod 6. The liquid flows into the liquid chamber 14. That is,
From the lower liquid chamber 15, the pressure-side disc valve 74 is pushed open through the communication hole 47, the annular groove 73a, and the orifice 76, and flows into the upper liquid chamber 14 through the space 79 and the communication hole 46. At this time, the pressure-side disc valve 74 bends in accordance with the flow rate passing therethrough.
15 becomes high pressure by that amount and acts as a compression side damping force. The pressure of the lower liquid chamber 15 is the as so introduced from the pressure hole 95 on the lower surface of the cap 94, the second piezoelectric element 90 is distorted depending on the pressure, control power corresponding to the distortion as compression side signal S S Output to unit 100.

このとき、バルブボディ73は大径凹部45の肩部に係止
しているので、下方から押圧されても上方の第1の圧電
素子60に力を伝えることはない。従って、このとき第1
の圧電素子60は、一応アクチュエータとして作動できる
状態にある。
At this time, since the valve body 73 is engaged with the shoulder of the large-diameter concave portion 45, no force is transmitted to the upper first piezoelectric element 60 even when pressed from below. Therefore, at this time, the first
The piezoelectric element 60 is in a state where it can operate as an actuator for the time being.

また、車輪が突起等に乗り上げた後などに車体が沈ん
だ後のリバンドで、ピストンロッド6がシリンダ3に対
して上方に移動する伸行程になると、上部液室14の作動
液はピストンロッド6の侵入体積分下部液室15に流入す
る。即ち、上部液室14から連通孔46、空間79、オリフィ
ス77を通り、伸側ディスクバルブ75を押し開き、空間8
0、連通孔48を通って下部液室15に流入する。このとき
伸側ディスクバルブ75は通過する流量に応じて撓むの
で、通過前後の作動液には撓んだばね力分の差圧が生じ
て上部液室14がその分高圧になり、伸側減衰力として作
用する。この上部液室14の圧力は空間79からスライダ71
の下面に導入されて、前記傾斜面71bに作用しスライダ7
1を上方に付勢するので、第1の圧電素子60が圧力に応
じて歪み、歪みに応じた電圧を伸側信号SPとしてコント
ロールユニット100に出力する。
When the piston rod 6 moves upward with respect to the cylinder 3 in the rebound after the vehicle body sinks, for example, after the wheel rides on a projection or the like, the hydraulic fluid in the upper liquid chamber 14 becomes the piston rod 6 Flows into the lower liquid chamber 15 of the invading body integral. That is, the upper liquid chamber 14 passes through the communication hole 46, the space 79, and the orifice 77, pushes and opens the extension-side disc valve 75, and
0, flows into the lower liquid chamber 15 through the communication hole 48. At this time, since the expansion-side disk valve 75 bends in accordance with the flow rate passing therethrough, a differential pressure corresponding to the bent spring force is generated in the hydraulic fluid before and after the passage, and the upper liquid chamber 14 becomes high pressure by that amount, and the expansion side Acts as a damping force. The pressure in the upper liquid chamber 14 is increased from the space 79 to the slider 71.
And acts on the inclined surface 71b to move the slider 7
Since biasing the 1 upwards, the first piezoelectric element 60 is distorted depending on the pressure, and outputs to the control unit 100 a voltage corresponding to the distortion as the extension side signal S P.

このとき、バルブボディ73はピストン4の肩部を当接
して、上方から押圧されても、バルブコア72を介して下
方の第2の圧電素子90に力を伝えることはない。従っ
て、このとき第2の圧電素子90は、一応アクチュエータ
として作動できる状態にある。
At this time, even if the valve body 73 abuts the shoulder of the piston 4 and is pressed from above, it does not transmit a force to the lower second piezoelectric element 90 via the valve core 72. Therefore, at this time, the second piezoelectric element 90 is in a state where it can operate as an actuator for the time being.

次に、第6図のタイムチャートに基づいて、本発明に
よる減衰力可変型液圧緩衝器をサスペンションに適用し
たときの適用方法について説明する。
Next, a method of applying the variable damping force type hydraulic shock absorber according to the present invention to a suspension will be described with reference to a time chart of FIG.

第6図(b)は上下液室14、15の圧力の検出値であ
り、各々第1、第2の圧電素子60、90に検出され、区間
ag及び区間kmが伸行程時の圧力で、第1の圧電素子60に
て検出され、区間gkが圧行程時の圧力で、第2の圧電素
子90にて検出される。
FIG. 6B shows the detected values of the pressures of the upper and lower liquid chambers 14 and 15, which are detected by the first and second piezoelectric elements 60 and 90, respectively.
The ag and the section km are the pressures during the extension stroke and are detected by the first piezoelectric element 60, and the section gk is the pressure during the compression stroke and are detected by the second piezoelectric element 90.

この圧力検出値の各行程の受圧面積を乗じたのが第6
図(a)の減衰力である。
The pressure detection area multiplied by the pressure receiving area of each stroke is the sixth
This is the damping force shown in FIG.

図(a)(b)において、(Aa),(Gg),(Kk),
(Mm)の各点で減衰力及び圧力が“0"になり、このう
ち、A,Kは、減衰力が圧行程から伸行程に移る点で振動
の下死点となり、G,Mは同様に上死点となる。これら上
下死点間には、b,d,f,j,lの圧力の極値があるが、この
うちb,j,lはピストンの中立位置(静止時の位置)であ
る。
In the figures (a) and (b), (Aa), (Gg), (Kk),
At each point of (Mm), the damping force and pressure become “0”. Among them, A and K are the bottom dead center of vibration at the point where the damping force moves from the pressure stroke to the extension stroke, and G and M are the same. Becomes top dead center. Between these upper and lower dead points, there are extreme values of the pressures b, d, f, j, l, and among them, b, j, l is the neutral position of the piston (position at rest).

また、d,fはピストンの中立点で極大の速度になった
後、上死点に向かって減速域に入っていることから、c
点にてピストン速度を増速させる外部入力があり、減速
度を弱めて、dで極小値となり、再び増速域にはいっ
て、fで極値となった後に減速していったことを示して
いる。
Since d and f reach the maximum speed at the neutral point of the piston and then enter the deceleration range toward the top dead center, c
There is an external input to increase the piston speed at the point, weakening the deceleration, reaching the minimum value at d, entering the speed increasing region again, indicating that the speed decreased after reaching the extreme value at f ing.

このように、圧力信号が“0"になったことによって伸
行程と圧行程との切換わりが判別できるが、各行程途中
の外部入力におるピストン速度の変動が圧力信号で判別
するのは困難である。
As described above, the switching between the extension stroke and the pressure stroke can be determined by the pressure signal becoming “0”, but it is difficult to determine the fluctuation of the piston speed in the external input during each stroke by the pressure signal. It is.

そこで、図(b)に示す検出信号を時間微分して変化
率(加速度に相当)を求めて、図(c)を作成すると、
図(b)に示す検出信号での極値は全て図(c)に示す
変化率は、“0"となり、上下死点の極値も外部からの複
合入力による極値も全て変化率を“0"として検出でき
る。また、図(b)の変曲点は全て図(c)では極値と
して検出される。
Therefore, when the detection signal shown in FIG. 2B is differentiated with respect to time to obtain a rate of change (corresponding to acceleration), and FIG.
All the extrema in the detection signal shown in FIG. 6B have a change rate of “0” shown in FIG. 9C, and both the extrema of the top and bottom dead center and the extremum due to the composite input from outside have a change rate of “0”. 0 "can be detected. Further, all the inflection points in FIG. 8B are detected as extreme values in FIG.

即ち、図(b)のa,g,k,mは行程切換わりの変曲点で
あり、c,eは行程途中の外部入力に伴う速度の変曲点で
あって、これらは図(c)では、全て極値となる。従っ
て、図(c)の変化率の“0"点及び極値を求め、更に図
(b)の圧力検出信号値を判断に加味すれば、すべての
サスペンション状態が判別できて、適切な減衰力制御が
可能となる。
That is, a, g, k, and m in FIG. 7B are inflection points of the stroke switching, and c and e are inflection points of the speed due to the external input during the stroke. ) Are all extreme values. Therefore, if the "0" point and the extreme value of the rate of change shown in FIG. (C) are obtained and the pressure detection signal value shown in FIG. (B) is added to the judgment, all suspension states can be determined, and an appropriate damping force can be obtained. Control becomes possible.

第6図においては、ピストンの中立位置から上死点ま
での伸行程の速度増加区間(ab),(kl)及び圧行程の
速度増加区間(gj)が図(c)では変化率が極値から
“0"までの区間として検出され、このときピストン速度
を減速させるべく、アクチュエータとして作動可能な圧
電素子に電圧を印加して減衰力をハードにしている。な
お、この場合は図(c)の極値は行程の切換わりに対応
しているので、液圧緩衝器内の上下液室14、15の圧力
も、この極値を境にして切換わるため、電圧を印加する
圧電素子は、これまで検出していな方の圧電素子であ
る。
In FIG. 6, the speed increase sections (ab) and (kl) of the extension stroke from the neutral position of the piston to the top dead center, and the speed increase section (gj) of the compression stroke are extreme values in FIG. In this case, a voltage is applied to a piezoelectric element operable as an actuator so as to harden the damping force in order to reduce the piston speed. In this case, since the extremum in FIG. 9C corresponds to the switching of the stroke, the pressures of the upper and lower fluid chambers 14 and 15 in the hydraulic buffer also switch at the extremum as a boundary. The piezoelectric element to which a voltage is applied is a piezoelectric element that has not been detected so far.

次に、(jk)区間は中立位置から下死点、(lm)区間
は中立位置から上死点までの速度が減速する区間であ
り、これまでアクチュエータとして作動していた圧電素
子への通電を停止して液圧緩衝器の減衰力をソフトにす
る。
Next, the (jk) section is a section where the speed from the neutral position to the bottom dead center is reduced from the neutral position, and the (lm) section is a section where the speed from the neutral position to the top dead center is reduced. Stop and soften the damping force of the hydraulic shock absorber.

また、(bc)区間は、(lm)区間と同様に中立位置か
ら上死点に向けてのピストン速度区間であったが、c点
での入力によって、このc点からピストンの減速割合が
減少する変曲点となり、速度曲線が下に凸に変化する。
これが図(c)において、極値C′(極小値)として検
出され、次の極値E′(極大値)を過ぎて変化率が“0"
になるF′までの間の複合入力による振動区間も、前述
した他の単純振動区間と同じように、減衰力の制御が行
える。
The section (bc) is a section of the piston speed from the neutral position to the top dead center as in the section (lm), but the input at the point c decreases the deceleration rate of the piston from the point c. And the velocity curve changes downwardly convexly.
This is detected as an extreme value C '(minimum value) in FIG. 9C, and after the next extreme value E' (maximum value), the rate of change is "0".
The damping force can be controlled in the vibration section by the composite input until F ′ as in the other simple vibration sections described above.

以上のように、本発明の実施例における減衰力可変型
液圧緩衝器においては、2つの圧電素子60、90によって
各々上下液室14、15の圧力を検出するように構成したの
で、行程が切換わっても常に圧力を検出でき、また常に
他方の圧電素子は圧力を検出しないことから、アクチュ
エータとして作動可能であるために、走行中のあらゆる
状態を連続して検出し、検出結果に応じて適切に制御で
きる。
As described above, in the variable damping force type hydraulic buffer according to the embodiment of the present invention, since the two piezoelectric elements 60 and 90 are configured to detect the pressures of the upper and lower liquid chambers 14 and 15, respectively, the stroke is reduced. Since the pressure can always be detected even when switching, and since the other piezoelectric element does not always detect the pressure, it can be operated as an actuator, so it can continuously detect every state during traveling and according to the detection result Can be properly controlled.

なお、上記実施例では、圧力信号の変化率が“0"にな
ったとき、通電を停止するように制御していたが、これ
に限られるものでなく、当該変化率が“0"に近い所定値
になった時に、通電を停止するようにしてもよい。
In the above embodiment, when the rate of change of the pressure signal becomes “0”, the control is performed such that the energization is stopped. However, the present invention is not limited to this, and the rate of change is close to “0”. When the predetermined value is reached, the energization may be stopped.

(効果) 本発明によれば、圧行程中の圧側の液圧は第1の検出
手段によって独立して検出され、伸行程中の伸側の液圧
は第2の検出手段によって独立して検出され、検出され
た液圧信号を入力した制御手段は、該液圧信号を時間微
分して液圧の変化率、即ち加速度を演算して求め、この
変化率に応じて第1又は第2の操作手段のうちの一方に
対して通電・停止を行い、減衰力をハード又はソフトに
切換え、このとき、第1又は第2の操作手段のどちらか
を駆動させるかは液圧信号自体が零になるか否かで、行
程が変わるか否かを判断して行う。このように判断して
各操作手段を駆動することにより、伸・圧行程中に連続
して検出される液圧に基づいて連続して減衰力を制御す
る。
(Effect) According to the present invention, the hydraulic pressure on the pressure side during the pressure stroke is independently detected by the first detection means, and the hydraulic pressure on the expansion side during the extension stroke is independently detected by the second detection means. The control means, which has received the detected hydraulic pressure signal, calculates the change rate of the hydraulic pressure, that is, the acceleration, by differentiating the hydraulic pressure signal with respect to time, and obtains the first or the second according to the change rate. One of the operating means is energized and stopped, and the damping force is switched between hard and soft. At this time, it is determined whether the first or second operating means is driven by setting the hydraulic pressure signal itself to zero. It is determined whether or not the process changes depending on whether or not it becomes true. By driving each operating means in this way, the damping force is continuously controlled based on the hydraulic pressure detected continuously during the extension / pressure stroke.

この結果、走行中のあらゆる状態を連続して検出し、
検出結果に応じて適切に減衰力制御ができることになっ
て、連続的な振動入力に対する乗り心地と走行安定性を
両立させることができる。
As a result, every state during running is continuously detected,
Damping force control can be appropriately performed in accordance with the detection result, and both riding comfort and running stability with respect to continuous vibration input can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の基本概念図、第2図〜第6図は本発明
に係る減衰力可変型液ある緩衝装置の一実施例を示す図
であり、第2図はそのショックアブソーバの全体構成を
示す断面図、第3図はその要部断面図、第4図はシステ
ム全体構成図、第5図はその一部分の回路図、第6図は
その作用を示すためのタイムチャートである。 1……ショックアブソーバ、3……シリンダ、4……ピ
ストン、60……第1の圧電素子、70……減衰手段、71…
…スライダ、72……バルブコア、73……バルブボディ、
74……圧側バルブ、75……伸側バルブ、76,77……オリ
フィス、90……第2の圧電素子、100……コントロール
ユニット(制御手段)、101……I/Oポート、110……入
力回路、120……演算回路、130……駆動回路、140……
駆動用電源回路。
FIG. 1 is a basic conceptual diagram of the present invention, and FIGS. 2 to 6 are views showing an embodiment of a shock absorber having a variable damping force type liquid according to the present invention. FIG. 2 is an overall view of the shock absorber. FIG. 3 is a cross-sectional view of a main part of the system, FIG. 4 is a diagram of the entire system, FIG. 5 is a circuit diagram of a part of the system, and FIG. 6 is a time chart showing its operation. DESCRIPTION OF SYMBOLS 1 ... Shock absorber, 3 ... Cylinder, 4 ... Piston, 60 ... First piezoelectric element, 70 ... Damping means, 71 ...
... Slider, 72 ... Valve core, 73 ... Valve body,
74: Compression side valve, 75: Extension side valve, 76, 77 ... Orifice, 90 ... Second piezoelectric element, 100 ... Control unit (control means), 101 ... I / O port, 110 ... Input circuit, 120 arithmetic circuit, 130 drive circuit, 140
Power supply circuit for driving.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江村 順一 神奈川県厚木市恩名1370番地 厚木自動 車部品株式会社内 (56)参考文献 特開 昭61−85210(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Junichi Emura 1370 Onna, Atsugi-shi, Kanagawa Prefecture Inside Atsugi Automotive Parts Co., Ltd. (56) References JP-A-61-85210 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ショックアブソーバの圧側の液圧のみを独
立して第1圧力信号として検出する第1の検出手段と、 ショックアブソーバの伸側の液圧のみを独立して第2圧
力信号として検出する第2の検出手段と、 ショックアブソーバの圧側の減衰力を変える第1の操作
手段と、ショックアブソーバの伸側の減衰力を変える第
2の操作手段と、 前記第1又は第2検出手段が検出した前記第1又は第2
圧力信号を入力し、該第1又は第2圧力信号の変化率を
演算で求めると共に、これら変化率とこれに対応する前
記第1又は第2圧力信号に基づいて、前記第1又は第2
の操作手段のうち一方を選択的に駆動・停止させる制御
値を出力する制御手段とを備えたことを特徴とする減衰
力可変型液圧緩衝装置。
1. A first detecting means for independently detecting only the hydraulic pressure on the pressure side of a shock absorber as a first pressure signal, and independently detecting only a hydraulic pressure on the expanding side of the shock absorber as a second pressure signal. A second operating means for changing the damping force on the compression side of the shock absorber, a second operating means for changing the damping force on the extension side of the shock absorber, and the first or second detecting means. The first or second detected
A pressure signal is input, and a change rate of the first or second pressure signal is obtained by calculation, and the first or second pressure signal is calculated based on the change rate and the first or second pressure signal corresponding thereto.
And a control means for outputting a control value for selectively driving / stopping one of the operation means.
【請求項2】前記制御手段は、演算で求めた前記変化率
から該変化率の大きさを連続して判断し、極値になった
ことを確認したとき前記第1又は第2の操作手段のいず
れか一方に通電し、前記変化率が所定値以下になったこ
とを確認したとき前記第1又は第2の操作手段の通電を
停止することを特徴とする請求項1記載の減衰力可変型
液圧緩衝装置。
2. The control means according to claim 1, wherein said control means continuously determines the magnitude of said change rate from said change rate obtained by calculation, and when it is confirmed that said change rate has reached an extreme value, said first or second operation means. 2. The variable damping force according to claim 1, wherein the power supply to any one of the first and second operation means is stopped, and when it is confirmed that the rate of change is equal to or less than a predetermined value, the power supply to the first or second operation means is stopped. Type hydraulic shock absorber.
【請求項3】前記所定値が零であることを特徴とする請
求項2記載の減衰力可変型液圧緩衝装置。
3. The variable damping force type hydraulic shock absorber according to claim 2, wherein said predetermined value is zero.
JP9280088A 1988-04-14 1988-04-14 Variable damping force type hydraulic shock absorber Expired - Lifetime JP2748121B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9280088A JP2748121B2 (en) 1988-04-14 1988-04-14 Variable damping force type hydraulic shock absorber
US07/337,349 US4984819A (en) 1988-04-14 1989-04-13 Automotive suspension system and shock absorber therefor
EP19890303704 EP0337797B1 (en) 1988-04-14 1989-04-14 Automotive suspension system with variable suspension characteristics and variable damping force shock absorber therefor
DE1989619510 DE68919510T2 (en) 1988-04-14 1989-04-14 Motor vehicle suspension system with variable suspension characteristics and shock absorbers with variable damping force therefor.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9280088A JP2748121B2 (en) 1988-04-14 1988-04-14 Variable damping force type hydraulic shock absorber

Publications (2)

Publication Number Publication Date
JPH01266014A JPH01266014A (en) 1989-10-24
JP2748121B2 true JP2748121B2 (en) 1998-05-06

Family

ID=14064490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9280088A Expired - Lifetime JP2748121B2 (en) 1988-04-14 1988-04-14 Variable damping force type hydraulic shock absorber

Country Status (1)

Country Link
JP (1) JP2748121B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5092626A (en) * 1989-03-13 1992-03-03 Monroe Auto Equipment Company Apparatus for controlling the damping of a shock absorber
JP6053602B2 (en) * 2013-04-26 2016-12-27 日立オートモティブシステムズ株式会社 Hydraulic buffer

Also Published As

Publication number Publication date
JPH01266014A (en) 1989-10-24

Similar Documents

Publication Publication Date Title
US4773671A (en) Method of controlling damping force of damper
JP2752668B2 (en) Suspension system
JPH10252803A (en) Shock absorber
US5054813A (en) Rolling suppressive control system for automotive suspension system with enhanced response characteristics
JP2012206685A (en) Suspension apparatus
JP2005024101A (en) Damper
US6148252A (en) Automotive suspension control system utilizing variable damping force shock absorber
US5522482A (en) Suspension control system
JPH06330977A (en) Damping force regulation type hydraulic buffer
US4722546A (en) Rear suspension controller
JPH05162527A (en) Adjusting apparatus for vehicle supporting mechanism
JP3137209B2 (en) Semi-active suspension system
JP2002349630A (en) Friction control hydraulic buffer and suspension control device
JP2748121B2 (en) Variable damping force type hydraulic shock absorber
JP2741030B2 (en) Variable damping force type hydraulic shock absorber
JP2015083469A (en) Suspension device
JP2505232Y2 (en) Variable damping force hydraulic shock absorber
JP2505230Y2 (en) Variable damping force hydraulic shock absorber
JP2505229Y2 (en) Variable damping force hydraulic shock absorber
JP2505231Y2 (en) Variable damping force hydraulic shock absorber
JPH0377087B2 (en)
JP2505228Y2 (en) Variable damping force hydraulic shock absorber
JPH09151980A (en) Hydraulic shock absorber
JPH0742820Y2 (en) Suspension system
JP2576222Y2 (en) Suspension system