JP2745066B2 - Salt rebar for concrete deterioration prevention - Google Patents
Salt rebar for concrete deterioration preventionInfo
- Publication number
- JP2745066B2 JP2745066B2 JP12227889A JP12227889A JP2745066B2 JP 2745066 B2 JP2745066 B2 JP 2745066B2 JP 12227889 A JP12227889 A JP 12227889A JP 12227889 A JP12227889 A JP 12227889A JP 2745066 B2 JP2745066 B2 JP 2745066B2
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- salt
- less
- amount
- rebar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Building Environments (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は海浜地帯に設置されるコンクリート建造物,
海洋に設置されるコンクリート構造物等、海塩粒子,海
水の飛沫に曝らされる鉄筋コンクリート構造物,コンク
リート橋などの劣化防止作用の著しく優れた耐塩鉄筋に
関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to a concrete structure installed in a beach area,
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a salt-resistant rebar having a remarkably excellent effect of preventing deterioration of concrete structures installed in the ocean, such as reinforced concrete structures exposed to sea salt particles and seawater droplets, and concrete bridges.
(従来の技術) 最近、海砂を使用した鉄筋コンクリート建築物や、海
浜地帯に設置されたコンクリート建造物,コンクリート
橋のヒビ割れ劣化が各方面で問題になっており、種々の
防止法が提案されたり実施に移されている。(Prior art) Recently, reinforced concrete buildings using sea sand, concrete structures installed in beach areas, and cracks in concrete bridges have become a problem in various fields, and various prevention methods have been proposed. Have been put into practice.
このコンクリート劣化の最大の原因は海砂中に含まれ
ている塩分や海浜地帯でコンクリート壁を浸透してくる
海塩粒子の塩分によってコンクリート中に埋設された鉄
筋が腐食し、その体積が鉄の約2.2倍になるため、その
膨張力に耐え切れなくなって埋設鉄筋に沿ったコンクリ
ートに亀裂が発生する。その亀裂が0.2mm以上になると
外部の腐食因子たる酸素や塩分、空気中の炭酸ガスがこ
の亀裂を通してより容易に内部の埋設鉄筋付近に浸透
し、さらに一層鉄筋の腐食を助長したり、コンクリート
の中性化を促進してコンクリートの劣化を早めることに
なる。The biggest cause of this concrete deterioration is the salt contained in sea sand and the salt of sea salt particles penetrating the concrete wall in the beach area corroding the reinforcing steel buried in concrete, and the volume of iron Since it becomes about 2.2 times, it cannot withstand the expansion force and cracks occur in the concrete along the buried rebar. When the crack becomes 0.2 mm or more, oxygen or salt, which is an external corrosion factor, and carbon dioxide gas in the air, penetrate through the crack more easily to the vicinity of the buried reinforcing steel inside, and further promote corrosion of the reinforcing steel, It promotes neutralization and hasten the deterioration of concrete.
本発明者らはこのようなコンクリートの劣化を防止す
るために、鉄筋自体の化学組成を制御し、微量の特殊な
添加元素を添加することによって鉄筋自体の耐塩性を向
上する研究を実施し、その成果として先づCuとWを同時
添加した耐海水性に優れたコンクリート用鉄筋(特公昭
55−22546号公報)、さらに耐塩性を著しく向上したコ
ンクリート用鉄筋(特開昭57−48054号公報,特開昭59
−44457号公報)を開発し、これらの内容はすでに他の
各方面でも公表されている(“OFFSHORE GOTEBORG '81"
Paper No.42 Goeteborg SWEDEN 1981年,“セメントコ
ンクリート"No.434(1983)P.23/31,“Corrosion of Re
inforcement in Concrete Construction"P.419,1983
年,“建築の技術施工"1985年 No.229 1月号 P155/164,
彰国社)。The present inventors carried out research to control the chemical composition of the reinforcing bar itself and to improve the salt resistance of the reinforcing bar itself by adding a small amount of a special additive element in order to prevent such deterioration of concrete. As a result, a concrete reinforcing bar with excellent seawater resistance to which both Cu and W are added at the same time.
55-22546), and a reinforcing steel bar for concrete with significantly improved salt resistance (JP-A-57-48054 and JP-A-59-48054).
−44457), and these contents have already been published in other fields (“OFFSHORE GOTEBORG '81”).
Paper No.42 Goeteborg SWEDEN 1981, “Cement Concrete” No.434 (1983) P.23 / 31, “Corrosion of Re
inforcement in Concrete Construction "P.419,1983
Year, “Architectural Engineering Construction,” 1985 No.229 January, P155 / 164,
Shokokusha).
又鉄筋自体の耐塩性向上に寄与する鉄筋の鋼成分の耐
塩機構についてもこれらの公表論文の中に詳細に記され
ており、現在実用化が進んでいるものである。The published papers also describe in detail the mechanism of the salt resistance of the steel component of the reinforcing bar that contributes to the improvement of the salt resistance of the reinforcing bar itself, and its practical use is currently progressing.
(発明が解決しようとする課題) 本発明は従来の本発明者等の開発を軸にして最近、と
くに問題となってきたコンクリート壁を浸透してくる海
塩粒子や海水飛沫等のフリーなCl-の状態で存在する塩
分による鉄筋の腐食とそれに伴なうコンクリートの亀裂
発生を殆ど完全に停止することにある。(Problems to be Solved by the Invention) The present invention is based on the conventional development of the present inventors, and recently, free Cl such as sea salt particles and seawater droplets penetrating concrete walls, which has become a particular problem, has become a problem. The purpose is to almost completely stop the corrosion of the reinforcing steel by the salt existing in the state of-and the accompanying cracking of the concrete.
現在各方面で問題となっている10年以上経過したコン
クリート構造物中の埋設鉄筋近傍のフリー塩分はNaCl換
算で0.15〜0.25%に達して鉄筋の著しい腐食とそれに伴
うコンクリートの亀裂発生、成長をひき起こしている。
したがってフリー塩分0.25%の状態でコンクリートの亀
裂発生を殆ど完全に停止できることが望ましい。The free salt near buried reinforcing bars in concrete structures that have been a problem for more than 10 years now reaches 0.15% to 0.25% in NaCl conversion, causing significant corrosion of the reinforcing bars and accompanying cracking and growth of concrete. It's causing it.
Therefore, it is desirable that cracking of concrete can be almost completely stopped in the state of free salt content of 0.25%.
(課題を解決するための手段) 本発明の前記の目的は、C ;0.001〜1.0%,Mn;0.01〜
0.3%未満,Si;0.01〜0.05%,P ;0.025%未満,S ;0.005
%未満,Cu;0.01〜0.50%,W ;0.01〜0.50%,Al;0.001〜
0.10%を含有し、残部鉄および不可避的不純物よりなる
ことを特徴とするコンクリート用鉄筋、さらには前記成
分に選択成分としてNb,V,Ti,Moを1種又は2種添加した
コンクリート用鉄筋によって達成される。(Means for Solving the Problems) The object of the present invention is to provide C: 0.001 to 1.0%, Mn;
Less than 0.3%, Si: 0.01 to 0.05%, P: less than 0.025%, S: 0.005
%, Cu; 0.01 to 0.50%, W; 0.01 to 0.50%, Al; 0.001 to
0.10%, with the balance consisting of iron and unavoidable impurities, concrete reinforcing bars, and furthermore, concrete reinforcing bars in which Nb, V, Ti, and Mo are added to the above components as optional components. Achieved.
本発明の最大の特徴は鋼中のSi,S量を極端に下げ、か
つCu,W添加により耐塩効果を向上させ、コンクリートの
劣化を防止するものである。The greatest feature of the present invention is that the amount of Si and S in steel is extremely reduced, and the addition of Cu and W enhances the salt resistance effect and prevents the deterioration of concrete.
この原因としては、Si量を下げることによって錆の生
成,成長を抑えると同時に鉄筋自体の錆化に伴って生成
する鉄の腐食抑制剤のWO4 --インヒビターの生成量を飛
躍的に多くすることと、S量の著しい低下にともない錆
発生点となるMnS量が著しく低下することにより耐食性
が飛躍的に向上するものであると推測される。The reason for this is that by reducing the amount of Si, the formation and growth of rust are suppressed, and at the same time, the amount of WO 4 - inhibitor, which is an iron corrosion inhibitor formed with the rusting of the reinforcing bar itself, is increased dramatically. In addition, it is presumed that the corrosion resistance is remarkably improved due to the remarkable decrease in the amount of MnS, which is a rust generation point, with the remarkable decrease in the S amount.
又、Si,Sの極端な低下はコンクリートのアルカリ雰囲
気中における埋設鉄筋表面の不働態被膜が添加したCuに
よって補強されるものと考えられる。In addition, it is considered that the extreme decrease in Si and S is reinforced by Cu added to the passive film on the surface of buried reinforcing steel in an alkaline atmosphere of concrete.
以下に本発明で各成分を限定した理由を説明する。 The reason for limiting each component in the present invention will be described below.
C量を0.001〜1.0%に限定した理由は、C量0.001%
未満では必要強度が得られず、C量1.0%超では脆化を
ひき起こすためである。The reason for limiting the C content to 0.001 to 1.0% is that the C content is 0.001%
If the carbon content is less than 1.0%, the required strength cannot be obtained, and if the carbon content exceeds 1.0%, embrittlement is caused.
又、Mn量を0.01〜0.3%未満に限定した理由はMn量0.0
1%未満では必要強度が得られず0.3%未満では錆生成を
著しく低減させるためである。The reason for limiting the amount of Mn to 0.01 to less than 0.3% is that the amount of Mn is 0.0
If it is less than 1%, the required strength cannot be obtained, and if it is less than 0.3%, rust generation is significantly reduced.
Si量を0.01〜0.05%とした理由は、Si量を下げれば下
げるほど錆生成量を飛躍的に低下させWO4 --イオンの有
効量を飛躍的に増大させるが、Siが0.05%以下でMn量0.
3%未満の場合に錆生成が著しく低減するためである。The reason that the amount of Si is set to 0.01 to 0.05% is that the lower the amount of Si, the more drastically the amount of rust is reduced and the effective amount of WO 4 - ions is drastically increased. Mn amount 0.
This is because when less than 3%, rust generation is significantly reduced.
Pを0.025%未満とした理由はPが0.025%以上ではコ
ンクリートのようなアルカリ性雰囲気で錆成長を抑制す
る効果がなく、むしろ助長する傾向があるためである。The reason why P is set to less than 0.025% is that if P is 0.025% or more, there is no effect of suppressing rust growth in an alkaline atmosphere such as concrete, but rather it tends to promote.
Cuを0.01〜0.5%と限定した理由はCu0.01%未満では
鉄筋表面の不働態被膜補強に効果がなく0.5%超では鋼
の脆化をひき起こすためである。なお、Cuを多く添加し
た場合、熱延スケールの剥離性向上を目的にNiを0.03〜
0.3%添加することがある。The reason for limiting the Cu content to 0.01 to 0.5% is that if the Cu content is less than 0.01%, there is no effect on the reinforcement of the passive film on the rebar surface, and if it exceeds 0.5%, the steel becomes brittle. When a large amount of Cu is added, Ni is added in an amount of 0.03 to 0.03 in order to improve the peelability of the hot-rolled scale.
0.3% may be added.
Wを0.01〜0.5%と限定した理由は0.01%未満ではWO4
--イオンの生成量が少なく耐食効果が認められず、0.5
%超では経済性の点で高価になるからである。The reason for limiting the 0.01~0.5% W WO 4 is less than 0.01%
- not observed production amount less corrosion resistant effect of the ions, 0.5
If it exceeds%, it is expensive in terms of economy.
Alを0.001〜0.10%と限定した理由はAlが0.001%未満
では鋼中に存在する酸素を安定なAlの酸化物として固定
できず、Alが0.10%超では大型の介在物が生成し鋼の脆
化をひき起こすので脱酸効果に必要な量と強度の点から
上記成分範囲に限定した。The reason for limiting Al to 0.001% to 0.10% is that if Al is less than 0.001%, oxygen existing in steel cannot be fixed as a stable oxide of Al, and if Al exceeds 0.10%, large inclusions are formed and steel Since the material causes embrittlement, it is limited to the above component range in terms of the amount and strength required for the deoxidizing effect.
又S量を0.005%未満と限定した理由は錆の発生起源
であるMnS量を減らすことにありこのS量低下のために
脱硫剤として使用されるCa化合物、希土類元素によりMn
Sが(Mn,Ca)S等に変化することによる耐食性向上効果
も期待できる。また鋼中のS量を低下するために上記の
ような操業を行なうことは常識となっているので、若干
のCa,Ce等が混入してくることがあるが、これらの元素
は耐食性などに悪影響を及ぼすものではないのでCa,Ce
量は規定しない。The reason why the amount of S is limited to less than 0.005% is to reduce the amount of MnS, which is a source of rust, due to the use of Ca compounds and rare earth elements used as desulfurizing agents to reduce the amount of S.
The effect of improving corrosion resistance by changing S to (Mn, Ca) S can also be expected. It is common practice to perform the above operations to reduce the amount of S in steel, so some Ca, Ce, etc. may be mixed in, but these elements may cause corrosion resistance and the like. Ca, Ce
The amount is not specified.
又必要に応じてNb,V,Ti,Moを添加するが、鉄筋の強
度,靭性向上のための元素として添加するもので1種又
は2種を合計して0.01〜0.5%添加する。0.01%未満で
は所定の強度,靱性が得られず、0.5%を超えると大型
の介在物が生成し、疵の原因となるので0.01〜0.5%と
した。If necessary, Nb, V, Ti, and Mo are added, but are added as elements for improving the strength and toughness of the rebar, and one or two of them are added in a total amount of 0.01 to 0.5%. If it is less than 0.01%, the desired strength and toughness cannot be obtained, and if it exceeds 0.5%, large inclusions are formed, causing flaws.
本発明に従い前記の化学成分で構成された鋼は転炉,
電気炉等で溶製され、次いで造塊,分塊の工程を経る
か、あるいは連続鋳造後、圧延された後に必要に応じて
パテンティング等の熱処理が施され、線引きされて鉄筋
として供される。又、必要に応じて表面に亜鉛メッキ,
有機被覆を施すこともできる。According to the present invention, the steel composed of the above-mentioned chemical components is a converter,
It is melted in an electric furnace or the like and then passed through ingot making and lumping processes, or after continuous casting and rolling, is subjected to heat treatment such as patenting if necessary, and is drawn and used as a reinforcing bar. . Also, if necessary, galvanize the surface,
Organic coatings can also be applied.
(実施例) 転炉で本発明の成分範囲と鋼を溶製し、造塊,分塊
後、線引きした鉄筋と、比較鋼の鉄筋,従来からの電炉
鋼からなる鉄筋の成分,およびこれらの鉄筋を埋設した
コンクリートの劣化状況,埋設鉄筋の腐食状況の経時変
化を表に示した。(Example) The range of components and the steel of the present invention were melted in a converter, ingot-formed, lumped, and then drawn, the steel of the comparative steel, the components of the steel made of conventional electric furnace steel, and the components of these. The table below shows the deterioration of concrete with embedded reinforcement and the change over time of the corrosion of embedded reinforcement.
表の各種鉄筋は9mmφの熱延鉄筋で表面を機械研磨
後、脱脂し、水・セメント比0.60,砂中の全塩分量をNaC
l換算で0.50%のコンクリートモルタル中に埋設し、第
1図のようなコンクリート供試体を作製し、28日間養生
後、コンクリート供試体を恒温恒湿槽に挿入し、湿潤48
hr,乾燥24hr,湿潤48hr,乾燥48hrで1週間(2サイク
ル)経過するサイクルで56,70,100,138日間曝露してコ
ンクリートの亀裂発生を観察した。第1図中1はコンク
リート供試体,2は埋設鉄筋9mmφ,3はモルタル塗りの上
エポキシシール,lはかぶり厚さを示す。 Various rebars in the table are 9mmφ hot rolled rebars, mechanically polished the surface, degreased, water / cement ratio 0.60, total salt content in sand NaC
The concrete specimen was buried in 0.50% concrete mortar in terms of l, and a concrete specimen as shown in Fig. 1 was prepared. After curing for 28 days, the concrete specimen was inserted into a thermo-hygrostat and wetted.
The concrete was exposed for 56, 70, 100, and 138 days with a cycle of 1 hour (2 cycles) for hr, dry 24 hr, wet 48 hr, and dry 48 hr. In FIG. 1, 1 is a concrete specimen, 2 is a buried reinforcing bar of 9 mmφ, 3 is a mortar-coated epoxy seal, and l is a cover thickness.
なお曝露条件を第2図のように設定したのは水蒸気中
に酸素が最大に固溶している80℃の高温で乾湿くり返し
を実施するという極めて苛酷な環境条件で埋設鉄筋の腐
食を促進するためである。又、同時にこれらコンクリー
ト供試体の空気中の炭酸ガスによる中性化深さの経時変
化、埋設鉄筋の腐食量の経時変化を調べた。コンクリー
ト供試体の亀裂はクラックゲージでその幅の最大値を測
定した。The exposure conditions were set as shown in Fig. 2 to promote the corrosion of buried rebar under extremely harsh environmental conditions of conducting dry and wet repetition at a high temperature of 80 ° C where oxygen is the largest solid solution in steam. That's why. At the same time, the temporal change of the neutralization depth of the concrete specimens due to the carbon dioxide gas in the air and the temporal change of the corrosion amount of the buried reinforcing steel were examined. The maximum value of the width of the crack of the concrete specimen was measured with a crack gauge.
炭酸ガスによる中性化深さはフェノールフタレイン溶
液をコンクリートに散布したコンクリート供試体で赤色
→無色に変化したコンクリート供試体の表層からの深さ
を測定した。The carbonation gas neutralization depth was measured by measuring the depth from the surface layer of the concrete specimen which turned from red to colorless in a concrete specimen in which a phenolphthalein solution was sprayed on concrete.
埋設鉄筋の腐食量はコンクリートを破砕してとり出し
た鉄筋の錆を化学的にとり除いた後重量を測定し腐食前
の重量から差し引いて鉄筋長さ28cm当たりの腐食減量と
して求めた。The amount of corrosion of the buried rebar was determined by chemically removing the rust of the rebar taken out by crushing the concrete, measuring the weight, subtracting it from the weight before corrosion, and obtaining the corrosion loss per 28 cm length of the rebar.
参考までにこの表の鉄筋試料No.1,No.4,No.5,をそれ
ぞれ埋設したコンクリート供試体の劣化状況を第3図に
示す。For reference, Fig. 3 shows the deterioration of the concrete specimens in which the reinforcing bar samples No. 1, No. 4, and No. 5 in this table were embedded.
又、この表の鉄筋試料No.1,No.2,No.3,No.4,No.5をそ
れぞれ埋設したコンクリート供試体を100日間前記の恒
温恒湿槽中に曝露後、鉄筋近傍の全塩分量と冷水で抽出
されてくるフリー塩分量を化学分析して砂中換算NaCl
(%)として求めたところ全塩分量はいずれも約0.50
%、フリー塩分量は約0.25%であった。In addition, after exposing the concrete specimens in which each of the reinforcing bar samples No. 1, No. 2, No. 3, No. 4, and No. 5 of this table were buried for 100 days in the constant temperature and humidity chamber, Chemical analysis of total salt content and free salt content extracted with cold water to convert NaCl in sand
(%), The total salt content was about 0.50
%, Free salt content was about 0.25%.
したがって本発明の鉄筋は鉄筋近傍のフリー塩分が砂
中換算で0.25%に達しても殆んど腐食が進行せず、コン
クリートの劣化を殆んど停止させる効果のあることが判
った。Therefore, it was found that the reinforcing bar of the present invention hardly corrodes even if the free salt content near the reinforcing bar reaches 0.25% in sand, and has the effect of almost stopping the deterioration of concrete.
(発明の効果) 本発明は今後ますます問題になる塩害に曝されるコン
クリート構造物の耐久性を維持するのに飛躍的に有効な
コンクリート用鉄筋として役立つものである。(Effects of the Invention) The present invention is useful as a rebar for concrete which is dramatically effective in maintaining the durability of concrete structures exposed to salt damage, which will become an increasingly important problem in the future.
本発明のコンクリート用鉄筋を使用することにより、
コンクリート構造物の長寿命化,安定性の向上に資する
もので、各種用途向に使用することができる。By using the rebar for concrete of the present invention,
It contributes to extending the life of concrete structures and improving stability, and can be used for various applications.
第1図(a),(b)は鉄筋を埋設したコンクリート供
試体の形状・寸法と配筋状況を示す説明図、第2図は鉄
筋を埋設したコンクリート供試体の発錆促進試験におけ
る試験条件を示す図、第3図はコンクリート供試体の外
観を示す図である。 1:コンクリート供試体、2:埋設鉄筋、3:モルタル塗り上
エポキシシール。1 (a) and 1 (b) are explanatory diagrams showing the shape, dimensions and arrangement of reinforcing bars of a concrete specimen having a reinforcing bar embedded therein, and FIG. 2 is a test condition in a rust acceleration test of a concrete specimen having a reinforcing bar embedded therein. FIG. 3 is a view showing the appearance of a concrete specimen. 1: concrete specimen, 2: buried reinforcing bar, 3: epoxy seal over mortar.
Claims (2)
リート劣化防止用耐塩鉄筋。1. C: 0.001 to 1.0%, Si: 0.01 to 0.05%, Mn: 0.01 to less than 0.3%, P: less than 0.025%, S: less than 0.005%, Cu; 0.01 to 0.5%, W: 0.01 to Salt-resistant steel bar containing 0.5%, Al; 0.001 to 0.10%, with the balance being iron and unavoidable impurities for preventing concrete deterioration.
合計0.01〜0.5%含有し、残部鉄および不可避的不純物
からなるコンクリート劣化防止用耐塩鉄筋。2. C: 0.001 to 1.0%, Si: 0.01 to 0.05%, Mn: 0.01 to less than 0.3%, P: less than 0.025%, S: less than 0.005%, Cu; 0.01 to 0.5%, W: 0.01 to 0.5% Contain 0.5%, Al; 0.001 ~ 0.10%, and further contain any one or two of Nb, V, Ti, Mo in total of 0.01 ~ 0.5%, for concrete deterioration prevention consisting of iron and unavoidable impurities. Salt-resistant rebar.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29581188 | 1988-11-22 | ||
JP5467089 | 1989-03-07 | ||
JP63-295811 | 1989-03-07 | ||
JP1-54670 | 1989-03-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0320441A JPH0320441A (en) | 1991-01-29 |
JP2745066B2 true JP2745066B2 (en) | 1998-04-28 |
Family
ID=26395473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12227889A Expired - Lifetime JP2745066B2 (en) | 1988-11-22 | 1989-05-16 | Salt rebar for concrete deterioration prevention |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2745066B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106929751B (en) * | 2017-02-13 | 2020-06-02 | 北京科技大学 | High-corrosion-resistance low alloy steel suitable for high-temperature coastal environment |
-
1989
- 1989-05-16 JP JP12227889A patent/JP2745066B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0320441A (en) | 1991-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yeomans | Performance of black, galvanized, and epoxy-coated reinforcing steels in chloride-contaminated concrete | |
Das et al. | Effect of cation type of chloride salts on corrosion behaviour of steel in concrete powder electrolyte solution in the presence of corrosion inhibitors | |
Hansson | Concrete: the advanced industrial material of the 21st century | |
Rivera-Corral et al. | Corrosion behavior of steel reinforcement bars embedded in concrete exposed to chlorides: Effect of surface finish | |
Mindess | Resistance of concrete to destructive agencies | |
Sandberg | Critical evaluation of factors affecting chloride initiated reinforcement corrosion in concrete | |
Criado | The corrosion behaviour of reinforced steel embedded in alkali-activated mortar | |
Gómez-Luna et al. | Assessment of corrosion prevention methods for steel reinforcement embedded in concrete exposed to a natural marine environment | |
O’Reilly et al. | Evaluation of multiple corrosion protection systems for reinforced concrete bridge decks | |
Mohammed et al. | Marine durability of 30-year old concrete made with different cements | |
Das et al. | Effect of sodium nitrite on chloride-induced corrosion of steel in concrete | |
Asmara | Concrete Reinforcement Degradation and Rehabilitation: Damages, Corrosion and Prevention | |
Topcu et al. | Experimental investigation of utilizing chemical additives and new generation corrosion inhibitors on reinforced concrete | |
JP2745066B2 (en) | Salt rebar for concrete deterioration prevention | |
Poonguzhali et al. | A review on degradation mechanism and life estimation of civil structures | |
Saraswathy et al. | Corrosion performance of fly ash blended cement concrete: A state-of-art review | |
US4915901A (en) | Reinforcing steel having resistance to salt and capable of preventing deterioration of concrete | |
Cady | Corrosion of reinforcing steel | |
JPS61279657A (en) | Salt resistant iron reinforcing rod for preventing deterioration of concrete | |
Ho | Durability of concrete | |
Srimahajariyaphong et al. | Corrosion prevention of rebar in concrete due to chloride | |
Oba et al. | Chemical thermodynamics determination of corrosion threshold assessment of reinforced concrete structures | |
JPH03183740A (en) | Salt-resistant reinforcing bar for preventing deterioration of concrete | |
O’Reilly | Performance of multiple corrosion protection systems for reinforced concrete bridge decks | |
JPS6310228B2 (en) |