JP2744672B2 - Superconducting magnet device - Google Patents
Superconducting magnet deviceInfo
- Publication number
- JP2744672B2 JP2744672B2 JP12112790A JP12112790A JP2744672B2 JP 2744672 B2 JP2744672 B2 JP 2744672B2 JP 12112790 A JP12112790 A JP 12112790A JP 12112790 A JP12112790 A JP 12112790A JP 2744672 B2 JP2744672 B2 JP 2744672B2
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- coil
- electromagnetic force
- magnet
- superconducting magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Particle Accelerators (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] この発明は、超電導マグネットを組み合わせて使用す
る装置、特に各超電導マグネット間に電磁力の相互作用
がある場合の超電導マグネット装置に関するものであ
る。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device using a combination of superconducting magnets, and more particularly to a superconducting magnet device in a case where there is an interaction of electromagnetic force between the superconducting magnets.
[従来の技術] 第3図は、例えば特開昭64−2300号公報に示された従
来の超電導マグネット装置を用いた電子蓄積リングの全
体平面図である。図において、超電導偏向マグネット
(1)は、鉄心(2)および超電導コイル(3)からな
っている。4極電磁石(4)、高周波加速空洞(5)は
真空チェンバ(6)内を通過して周回する電子ビームの
平衡軌道(7)に沿って配置されている。(8)はイン
フレクタである。[Prior Art] FIG. 3 is an overall plan view of an electron storage ring using a conventional superconducting magnet device disclosed in, for example, JP-A-64-2300. In the figure, a superconducting deflection magnet (1) comprises an iron core (2) and a superconducting coil (3). The quadrupole electromagnet (4) and the high-frequency accelerating cavity (5) are arranged along the equilibrium orbit (7) of the electron beam orbiting through the vacuum chamber (6). (8) is an inflector.
以上の構成により、電子蓄積リングは線形加速器や電
子シンクロトロン等で加速した高速電子を長時間蓄える
装置である。インフレクタ(8)から入射した荷電粒子
はレーストラック形のチェンバ(6)内部を高速で回転
する。偏向マグネット(1)は電子を曲げる働きをす
る。しかし、偏向マグネット(1)だけでは電子は偏向
軌道(7)から広がって離れてしまい、たちまち真空チ
ェンバ(6)の内壁に衝突して無くなってしまう。その
ため電子を平衡軌道に集束させる働きをする4極電磁石
(4)が必要となる。高周波加速空洞(5)は蓄積リン
グ内を周回する電子の運動エネルギーの低下を補う装置
であり、インフレクタ(8)は蓄積リング内へ電子を導
入するための装置である。With the above configuration, the electron storage ring is a device for storing high-speed electrons accelerated by a linear accelerator, an electron synchrotron, or the like for a long time. Charged particles incident from the inflector (8) rotate inside the race-track-shaped chamber (6) at high speed. The deflection magnet (1) functions to bend the electrons. However, if the deflection magnet (1) alone is used, the electrons spread and move away from the deflection orbit (7), and immediately collide with the inner wall of the vacuum chamber (6) and disappear. Therefore, a quadrupole electromagnet (4) that functions to focus electrons on an equilibrium orbit is required. The high-frequency accelerating cavity (5) is a device for compensating for a decrease in the kinetic energy of electrons circulating in the storage ring, and the inflector (8) is a device for introducing electrons into the storage ring.
以上のように、各コンポーネントを平衡軌道(7)上
に配置することで、従来の超電導小型SOR装置の基本型
が成立っている。以上の他の構成機器として、各種の計
測装置や真空ポンプなどが必要であり、また電子蓄積リ
ングの設計方法によっては、電子の収差を補正する働き
をもつ6極電磁石が必要となるが、この発明の内容とは
かけ離れるので、説明は省略する。As described above, by arranging the components on the balanced orbit (7), the basic type of the conventional superconducting small SOR device is established. As other components described above, various measuring devices and vacuum pumps are required, and depending on the design method of the electron storage ring, a six-pole electromagnet having a function of correcting electron aberration is required. The description is omitted because it is far from the content of the invention.
超電導偏向マグネット(1)を構成する鉄心(2)と
超電導コイル(3)とは至近距離にあるため、超電導コ
イル(3)が励磁されて強烈な電磁力が働き、超電導コ
イル(3)は鉄心(2)に強く引かれる。超電導コイル
(3)は、通常、鉄心(2)の上下方向に対して対称位
置にあるので、超電導コイル(3)と鉄心(2)上部に
働く電磁力と、超電導コイル(3)と鉄心(2)下部に
働く電磁力とはつりあっている。しかし、側辺部の鉄心
は電子蓄積リングの外周側に主として存在しているの
で、超電導コイル(3)の励磁により発生する磁束は、
その大部分が電子蓄積リングの外周側を通り、その結果
として超電導コイル(3)には電子蓄積リングの外周側
に強烈な水平方向の電磁力が働く。これらの電磁力を支
持するために、超電導マグネット(1)には常温領域か
ら極低温領域までを貫くように電磁力支持材が取付けら
れている。電磁力が大きい場合にはこの支持材が太いも
のになり、その結果として極低温領域への熱伝導による
熱侵入量が著しく増大する。超電導コイル(3)は、1
気圧での沸点温度が4.2Kの液体ヘリウム中に浸漬されて
いるが、極低温領域への熱侵入量が大きいと液体ヘリウ
ムの蒸発量が著しい。Since the iron core (2) and the superconducting coil (3) constituting the superconducting deflection magnet (1) are located at a close distance, the superconducting coil (3) is excited and an intense electromagnetic force acts. I am strongly drawn to (2). Since the superconducting coil (3) is usually symmetrical with respect to the vertical direction of the iron core (2), the electromagnetic force acting on the superconducting coil (3) and the iron core (2) and the superconducting coil (3) and the iron core (2) 2) The electromagnetic force acting on the lower part is balanced. However, since the core of the side portion is mainly present on the outer peripheral side of the electron storage ring, the magnetic flux generated by the excitation of the superconducting coil (3) is
Most of it passes through the outer periphery of the electron storage ring, and as a result, a strong horizontal electromagnetic force acts on the superconducting coil (3) on the outer periphery of the electron storage ring. In order to support these electromagnetic forces, an electromagnetic force supporting member is attached to the superconducting magnet (1) so as to penetrate from a normal temperature region to a very low temperature region. When the electromagnetic force is large, the support member becomes thick, and as a result, the amount of heat that enters the cryogenic region by heat conduction increases significantly. The superconducting coil (3)
Although it is immersed in liquid helium with a boiling point temperature of 4.2K at atmospheric pressure, the evaporation of liquid helium is remarkable if the amount of heat entering the cryogenic region is large.
[発明が解決しょうとする課題] 従来の超電導マグネット装置は以上のように構成され
ているので、高価な液体ヘリウムを大量に消費したり、
さらに、液体ヘリウムの注液回数が増すなど、装置のラ
イニングコストが極めて増大していた。また、各超電導
マグネット毎に液体ヘリウムを液入れしなければならな
いなどの問題点があった。[Problems to be Solved by the Invention] Since the conventional superconducting magnet device is configured as described above, it consumes a large amount of expensive liquid helium,
Further, the lining cost of the apparatus has been extremely increased, for example, the number of injections of liquid helium has been increased. Further, there is another problem that liquid helium must be filled in each superconducting magnet.
超電導マグネットの運転方法としては、液体ヘリウム
の液入れの代わりとしてヘリウム冷凍機を設置する場合
もあり得る。この場合には、熱侵入量が大きいと大容量
の冷凍機が必要となったり、あるいは、それぞれの超電
導マグネットに独立して冷凍機を取付けねばならないな
どの問題点があった。As a method of operating the superconducting magnet, a helium refrigerator may be installed instead of a liquid helium reservoir. In this case, if the heat penetration amount is large, there is a problem that a large-capacity refrigerator is required, or a refrigerator must be independently attached to each superconducting magnet.
この発明は上記のような問題点を解消するためになさ
れたもので、電磁力支持材からの伝導による熱侵入が小
さく、ライニングコストが極めて安価な超電導マグネッ
ト装置を得ることを目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide a superconducting magnet device in which heat penetration due to conduction from an electromagnetic force supporting material is small and a lining cost is extremely low.
[課題を解決するための手段] この発明に係る超電導マグネット装置は、複数個の超
電導マグネットが極低温領域中で連結されている。[Means for Solving the Problems] In a superconducting magnet device according to the present invention, a plurality of superconducting magnets are connected in a cryogenic region.
[作用] この発明においては、強大な電磁力の支持材を常温部
から低温部間に取付ける必要がなく、極低温領域間のみ
の連結でよいので、電磁力支持材を伝わってくる常温部
から極低温部への熱侵入が解消される。[Operation] In the present invention, there is no need to attach a strong electromagnetic force supporting member between the normal temperature portion and the low temperature portion, and only the connection between the cryogenic regions is sufficient. Heat intrusion into the cryogenic part is eliminated.
[実施例] 第1図,第2図はこの発明の一実施例を示し、図にお
いて、(23)は常温空間、(24)は真空容器、(25)は
真空領域、(26)は窒素シールド、(27)はヘリウム容
器、(28)はコイル巻枠、(29)は連結棒である。その
他、第3図と同一符号は同一または相当部分を示す。[Embodiment] FIGS. 1 and 2 show an embodiment of the present invention, wherein (23) is a room temperature space, (24) is a vacuum vessel, (25) is a vacuum region, and (26) is nitrogen. A shield, (27) is a helium container, (28) is a coil bobbin, and (29) is a connecting rod. In addition, the same reference numerals as those in FIG. 3 indicate the same or corresponding parts.
図に示すように、常温空間(23)を挟み込むように、
常温空間(23)の内側には真空容器(25)があり、逆に
外側には磁気シールド用の鉄心(2)が相対している。
真空容器(24)の内側には超電導コイル(3)を機能さ
せる様々な構成要素が含まれている。真空容器(24)そ
のものは、常温空間(23)との真空断熱機能をもたせる
ためにあり、真空容器(24)の内層は真空領域(25)に
なっている。As shown in the figure, sandwich the room temperature space (23)
A vacuum vessel (25) is provided inside the room temperature space (23), and a magnetic shield iron core (2) is provided outside the room.
Various components for operating the superconducting coil (3) are included inside the vacuum vessel (24). The vacuum vessel (24) itself has a vacuum insulation function with the room temperature space (23), and the inner layer of the vacuum vessel (24) is a vacuum area (25).
以上の構成により、真空領域(25)の内側は、窒素シ
ールド(26)であり、この窒素シールド(26)は液体窒
素との熱交換により約80Kの温度に冷却される。外部か
らの熱侵入、特に、輻射による熱侵入に対しては、この
窒素シールド(26)が効果的である。With the above configuration, the inside of the vacuum region (25) is the nitrogen shield (26), and the nitrogen shield (26) is cooled to a temperature of about 80K by heat exchange with liquid nitrogen. This nitrogen shield (26) is effective against heat intrusion from the outside, particularly, heat intrusion by radiation.
窒素シールド(26)の内側にはヘリウム容器(27)が
あり、その内側は液体ヘリウムにより、ヘリウムの沸点
(4.2K,1気圧時)付近の極低温に保たれる。ヘリウム容
器(27)には、超電導コイル(3)と、この超電導コイ
ル(3)を固定するコイル巻枠(28)があり、コイル巻
枠(28)は連結棒(29)を介して異なるコイル巻枠と強
固に固定されている。また、巻枠(28)と連結棒(29)
は極低温領域中で連結されている。この実施例では、1
つのヘリウム容器(27)内に2個のコイル巻枠(28)が
収納され、巻枠と同一の温度レベルの連結棒(29)で結
合されている。連結棒(29)の周囲には、通常のマグネ
ットに必要な断熱構造体が備えられている。また、ヘリ
ウム容器(27)の自重支持と、超電導コイル(3)が設
計位置からずれたために生じる非平衡力の支持の両者の
支持構造は、この図では省略している。Inside the nitrogen shield (26) is a helium container (27), which is kept at a very low temperature near the boiling point of helium (4.2K, 1 atm) by liquid helium. The helium container (27) has a superconducting coil (3) and a coil bobbin (28) for fixing the superconducting coil (3). It is firmly fixed to the reel. In addition, reel (28) and connecting rod (29)
Are connected in a cryogenic region. In this embodiment, 1
Two coil winding frames (28) are housed in one helium container (27), and are connected to the winding frames by connecting rods (29) at the same temperature level. A heat insulating structure required for a normal magnet is provided around the connecting rod (29). In addition, a supporting structure for supporting the helium container (27) by its own weight and supporting a non-equilibrium force generated when the superconducting coil (3) is displaced from a design position is omitted in FIG.
以上のように、超電導体マグネット(1)どうしが極
低温下で連結されているので、超電導体コイル(3)と
鉄心(2)間に作用する電磁力を、きわめて低損失で支
持することができる。As described above, since the superconductor magnets (1) are connected at extremely low temperatures, it is possible to support the electromagnetic force acting between the superconductor coil (3) and the iron core (2) with extremely low loss. it can.
[発明の効果] 以上のように、この発明によれば、異なる超電導体マ
グネットを極低温状態で互いに連結した。各コイルと鉄
心間に働く強大な電磁力をつりあわせて、ヘリウム容器
外に伝わる電磁力を小さくしたので、電磁力支持棒は、
コイルが設計位置からずれた場合に生じる非平衡力を対
象としたものだけでよいので、支持棒が細くて足り、液
体ヘリウムの損失に対してきわめて低損失で支持するこ
とができ、液体ヘリウムの蒸発率を低減することができ
る。[Effects of the Invention] As described above, according to the present invention, different superconductor magnets are connected to each other in a cryogenic state. The strong electromagnetic force acting between each coil and the iron core was balanced to reduce the electromagnetic force transmitted to the outside of the helium container.
Since only the target for the non-equilibrium force generated when the coil deviates from the design position is sufficient, the support rod is thin enough to support the liquid helium with very low loss and to support the liquid helium. The evaporation rate can be reduced.
第1図はこの発明の一実施例の横断面図、第2図は第1
図のII−II線に沿う平面での断面図、第3図は従来の電
子蓄積リングの平面図である。 (1)……超電導偏向マグネット、(2)……鉄心、
(3)……超電導コイル、(27)……ヘリウム容器、
(28)……コイル巻枠、(29)……連結棒。 なお、各図中、同一符号は同一又は相当部分を示す。FIG. 1 is a cross-sectional view of one embodiment of the present invention, and FIG.
FIG. 3 is a sectional view taken on a plane along the line II-II in FIG. 3, and FIG. 3 is a plan view of a conventional electron storage ring. (1) ... superconducting deflection magnet, (2) ... iron core,
(3) ... superconducting coil, (27) ... helium container,
(28)… Coil winding frame, (29)… Connecting rod. In the drawings, the same reference numerals indicate the same or corresponding parts.
Claims (1)
ットのコイルと強磁性体との間に働く電磁力と、 この超電導マグネットとは別に設置された超電導マグネ
ットBを構成する超電導コイルBと、 超電導コイルBを固定する巻枠Bと、 このコイルBと巻枠Bを囲む強磁性体Bから成る超電導
マグネットBのコイルBと強磁性体Bとの間に働く電磁
力Bとからなるものにおいて、 超電導マグネットの電磁力と、 超電導マグネットBの電磁力Bの一部または全部をつり
あわせて相殺するように、 超電導コイル巻枠と超電導コイル巻枠Bとを、 超電導コイルと同一の温度の連結棒で連結したことを特
徴とする超電導マグネット装置。1. A superconducting coil, a bobbin for fixing the superconducting coil, an electromagnetic force acting between the ferromagnetic body and a coil of a superconducting magnet made of a ferromagnetic material surrounding the coil and the bobbin, A superconducting coil B constituting a superconducting magnet B installed separately from the magnet, a winding frame B for fixing the superconducting coil B, and a coil B of the superconducting magnet B comprising the coil B and a ferromagnetic material B surrounding the winding frame B And an electromagnetic force B acting between the superconducting magnet B and a superconducting coil, so that the electromagnetic force of the superconducting magnet and the part or all of the electromagnetic force B of the superconducting magnet B are balanced and canceled. A superconducting magnet device, wherein the frame and the superconducting coil winding frame B are connected by a connecting rod having the same temperature as the superconducting coil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12112790A JP2744672B2 (en) | 1990-05-14 | 1990-05-14 | Superconducting magnet device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12112790A JP2744672B2 (en) | 1990-05-14 | 1990-05-14 | Superconducting magnet device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0418713A JPH0418713A (en) | 1992-01-22 |
JP2744672B2 true JP2744672B2 (en) | 1998-04-28 |
Family
ID=14803551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12112790A Expired - Fee Related JP2744672B2 (en) | 1990-05-14 | 1990-05-14 | Superconducting magnet device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2744672B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10052856A1 (en) * | 2000-10-24 | 2002-04-25 | Linde Ag | Storage container for cryogenic media has inner and outer containers and a further storage space connected to emptying pipe of storage container through active connection e.g. heat exchanger |
-
1990
- 1990-05-14 JP JP12112790A patent/JP2744672B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0418713A (en) | 1992-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5219420B2 (en) | A cryostat having a cryogenic vessel supported within an external vacuum vessel | |
CN101226809B (en) | Superconducting magnet and magnetic resonance imaging apparatus | |
JPS63200500A (en) | Synchrotron radiation source | |
JPH09190913A (en) | Superconducting magnet device and magnetic resonance imaging apparatus using this device | |
US10383206B1 (en) | Superconductor cyclotron regenerator | |
JP2000294399A (en) | Superconducting high-frequency acceleration cavity and particle accelerator | |
JPH09120912A (en) | Open structure conductive cooling magnetic resonance imagingmagnet | |
US6323749B1 (en) | MRI with superconducting coil | |
JP2001224571A (en) | Open type superconductive magnetic and magnetic resonance imaging instrument using it | |
JP2744672B2 (en) | Superconducting magnet device | |
EP1530058A2 (en) | Superconducting magnetic resonance imaging apparatus with reduced vibrations | |
US4651117A (en) | Superconducting magnet with shielding apparatus | |
JP2002065635A (en) | Magnet for generating uniform magnetic field and magnetic resonance imaging apparatus using the same | |
US5691678A (en) | Electromagnets | |
JPH09276246A (en) | Superconducting magnet device | |
JP2005144132A (en) | Superconductive magnet device and magnetic resonance imaging device using the same | |
EP0460601A2 (en) | Superconducting magnet apparatus having circulating path for coolant | |
JP3693439B2 (en) | Superconducting wiggler with dual beam chamber | |
JP2001006920A (en) | Superconducting wiggler magnet equipment | |
JP3559659B2 (en) | Electron beam cooling device | |
JP3097993B2 (en) | Magnet structure for superconducting wiggler | |
JP2010258376A (en) | Superconducting magnet device | |
Kellams et al. | Superconducting sector dipole for a strong focusing cyclotron | |
JPH0442511A (en) | Superconducting magnet | |
JP6460922B2 (en) | Superconducting deflection electromagnet for beam and beam deflection apparatus using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |