JP2742418B2 - Method for producing oxide superconducting thin film - Google Patents
Method for producing oxide superconducting thin filmInfo
- Publication number
- JP2742418B2 JP2742418B2 JP63025193A JP2519388A JP2742418B2 JP 2742418 B2 JP2742418 B2 JP 2742418B2 JP 63025193 A JP63025193 A JP 63025193A JP 2519388 A JP2519388 A JP 2519388A JP 2742418 B2 JP2742418 B2 JP 2742418B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- superconducting thin
- substrate
- oxide superconducting
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010409 thin film Substances 0.000 title claims description 74
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000758 substrate Substances 0.000 claims description 57
- 238000010438 heat treatment Methods 0.000 claims description 43
- 229910052760 oxygen Inorganic materials 0.000 claims description 28
- 239000001301 oxygen Substances 0.000 claims description 27
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 21
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 239000000470 constituent Substances 0.000 claims description 10
- 230000006698 induction Effects 0.000 claims description 9
- 239000004020 conductor Substances 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 description 31
- 239000000463 material Substances 0.000 description 26
- 238000000034 method Methods 0.000 description 25
- 239000010408 film Substances 0.000 description 23
- 239000013078 crystal Substances 0.000 description 13
- 238000004544 sputter deposition Methods 0.000 description 9
- -1 E R Inorganic materials 0.000 description 8
- 238000001816 cooling Methods 0.000 description 8
- 238000007796 conventional method Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000002887 superconductor Substances 0.000 description 7
- 239000011247 coating layer Substances 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 229910009203 Y-Ba-Cu-O Inorganic materials 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001451 molecular beam epitaxy Methods 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000005477 sputtering target Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052699 polonium Inorganic materials 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【発明の詳細な説明】 「産業上の利用分野」 本発明は、ジョセフソン素子、超電導記憶素子等の超
電導デバイスなどとして適用可能な酸化物超電導薄膜の
製造方法に関する。The present invention relates to a method for producing an oxide superconducting thin film applicable as a superconducting device such as a Josephson device or a superconducting memory device.
「従来の技術」 近年、常電導状態から超電導状態に転位する臨界温度
(Tc)が液体窒素温度を超える高い値を示す酸化物系の
超電導体が発見されている。[Background Art] In recent years, oxide-based superconductors have been discovered in which a critical temperature (Tc) at which a transition from a normal conducting state to a superconducting state is higher than the temperature of liquid nitrogen is high.
従来、この種の酸化物超電導体からなる薄膜を製造す
る方法として、例えば、真空蒸着法、スパッタリング
法、MBE(分子線エピタキシー)法、CVD(化学気相成
長)法、IVD(イオン気相成長)法などの各種の成膜法
が知られている。そして、このような成膜法は、いずれ
も1Torr以下の低圧下において行なわれ、しかも、薄膜
中に酸素を補給することを目的として、その雰囲気を酸
素ガス雰囲気、あるいは、酸素ガスと不活性ガス雰囲気
などの混合ガス雰囲気としている。Conventionally, methods for producing a thin film made of this kind of oxide superconductor include, for example, a vacuum deposition method, a sputtering method, an MBE (molecular beam epitaxy) method, a CVD (chemical vapor deposition) method, and an IVD (ion vapor deposition). Various film forming methods such as the method are known. Each of these film forming methods is performed under a low pressure of 1 Torr or less, and furthermore, in order to supply oxygen to the thin film, the atmosphere is changed to an oxygen gas atmosphere or an oxygen gas and an inert gas. It is a mixed gas atmosphere such as an atmosphere.
ところが前述の従来方法においては、雰囲気中の酸素
の分圧が低いことから、基体上に形成される膜体の結晶
中に所望量の酸素が導入されにくく、その結晶組成が化
学量論組成からずれてしまう問題があり、臨界電流密度
などの超電導特性が低い膜体が生成される傾向があっ
た。However, in the above-mentioned conventional method, since the partial pressure of oxygen in the atmosphere is low, it is difficult to introduce a desired amount of oxygen into the crystal of the film formed on the substrate, and the crystal composition is changed from the stoichiometric composition. There is a problem of deviation, and a film body having low superconducting characteristics such as critical current density tends to be generated.
そこで従来、成膜時あるいは成膜後において、膜体を
酸素雰囲気中において600〜1000℃程度に加熱する熱処
理を施して膜体の結晶構造を整え、酸素濃度を調節して
膜体の超電導特性を向上させる処理を行うようにしてい
る。Therefore, conventionally, at the time of film formation or after film formation, the film body is subjected to a heat treatment of heating to about 600 to 1000 ° C. in an oxygen atmosphere to adjust the crystal structure of the film body, and adjust the oxygen concentration to adjust the superconductivity of the film body. Is performed.
前述の加熱処理を行うには、例えば第4図に示すよう
に、スパッタリングターゲット1に対向して配置された
基板ホルダ2の内部に加熱ヒータ3を設け、基板ホルダ
2に装着した基板4を加熱できるように構成し、この加
熱ヒータ3により基板4を介して膜体を加熱するように
している。In order to perform the above-described heat treatment, for example, as shown in FIG. 4, a heater 3 is provided inside a substrate holder 2 arranged opposite to a sputtering target 1 to heat a substrate 4 mounted on the substrate holder 2. The heater 3 heats the film body through the substrate 4.
また、前述の加熱処理を行う他の方法として、真空チ
ャンバの内部に基板を設置し、この基板上の膜体に対
し、真空チャンバに設けた透明窓を通して真空チャンバ
の外部から赤外線を照射して膜体を加熱する方法、ある
いは、真空チャンバの内部に赤外線ランプを設け、この
赤外線ランプにより膜体を加熱する方法などが知られて
いる。As another method for performing the above-described heat treatment, a substrate is placed inside a vacuum chamber, and a film on the substrate is irradiated with infrared rays from outside the vacuum chamber through a transparent window provided in the vacuum chamber. There are known a method of heating a film, a method of providing an infrared lamp inside a vacuum chamber, and heating the film by the infrared lamp.
「発明が解決しようとする課題」 前記加熱ヒータ3を用いて行う従来方法においては、
酸素の存在する雰囲気で加熱ヒータ3を使用するために
加熱ヒータ3の寿命が短くなる問題がある。また、基板
を十分高温に加熱するためには、熱容量の大きな加熱ヒ
ータ3を使用する必要があるが、加熱ヒータ3の熱容量
が大きい場合、加熱後に超電導薄膜を急冷する際に、通
電を停止したにもかかわらず加熱ヒータ3が余熱を発散
させるために、冷却速度を高めることができない問題が
あり、成膜後に超電導特性が劣化する傾向があった。こ
のため従来、超電導薄膜を形成した後に別工程で超電導
薄膜に熱処理を施し、超電導薄膜の結晶構造を整え、酸
素濃度を調整する必要があった。更に加熱ヒータ3を用
いて加熱を行った場合、加熱ヒータ3の構成材料の一部
が蒸発して基板4上の超電導薄膜に不純物として混入
し、超電導薄膜の超電導特性を劣化させる問題があっ
た。“Problem to be Solved by the Invention” In the conventional method performed using the heater 3,
Since the heater 3 is used in an atmosphere where oxygen is present, there is a problem that the life of the heater 3 is shortened. Further, in order to heat the substrate to a sufficiently high temperature, it is necessary to use the heater 3 having a large heat capacity. However, when the heat capacity of the heater 3 is large, the power supply is stopped when the superconducting thin film is rapidly cooled after heating. Nevertheless, there is a problem that the cooling rate cannot be increased because the heater 3 dissipates residual heat, and the superconductivity tends to deteriorate after film formation. For this reason, conventionally, it has been necessary to heat-treat the superconducting thin film in a separate step after forming the superconducting thin film, adjust the crystal structure of the superconducting thin film, and adjust the oxygen concentration. Furthermore, when heating is performed using the heater 3, a part of the constituent material of the heater 3 evaporates and mixes as an impurity in the superconducting thin film on the substrate 4, which causes a problem of deteriorating the superconducting characteristics of the superconducting thin film. .
一方、赤外線を用いて加熱を行う従来方法において
は、真空チャンバに形成した透明窓を介して膜体に赤外
線を照射する関係から、透明窓の寸法によって照射範囲
の制限を受けるために、膜体の温度を十分高温に加熱す
ることが困難になり、特に、赤外線の照射範囲が狭い場
合には、均一な加熱ができなくなる問題がある。更に、
真空チャンバに透明窓を形成する関係から真空チャンバ
の内部の真空度を上げることができず、場合によっては
透明窓が原因となって真空チャンバの真空度が低下する
問題がある。On the other hand, in the conventional method of heating using infrared light, the irradiation range is limited by the size of the transparent window because the film is irradiated with infrared light through the transparent window formed in the vacuum chamber. Is difficult to heat to a sufficiently high temperature, and in particular, when the irradiation range of infrared rays is narrow, there is a problem that uniform heating cannot be performed. Furthermore,
Due to the formation of the transparent window in the vacuum chamber, the degree of vacuum inside the vacuum chamber cannot be increased, and in some cases, the degree of vacuum in the vacuum chamber is reduced due to the transparent window.
なお、真空チャンバの内部に赤外線ランプを設けて加
熱する場合、真空チャンバの内部スペースに限度がある
ために設置可能な赤外線ランプの大きさに限界を生じ、
これが原因となって加熱できる最高温度に限界を生じ、
所望の温度に加熱できない問題がある。When an infrared lamp is provided inside the vacuum chamber and heating is performed, the size of the infrared lamp that can be installed is limited due to the limitation of the internal space of the vacuum chamber,
This limits the maximum temperature that can be heated,
There is a problem that it cannot be heated to a desired temperature.
本発明は、前記課題を解決するためになされたもの
で、結晶の形を整えて超電導特性の向上が可能な程度の
高温度に加熱することができ、温度制御も容易で急冷処
理も可能であって、不純物の混入なども生じることもな
い酸化物超電導薄膜の製造方法の提供を目的とする。The present invention has been made in order to solve the above-mentioned problems, and can be heated to a temperature high enough to improve the superconducting properties by adjusting the crystal shape, and it is also easy to control the temperature and to perform a rapid cooling process. Accordingly, it is an object of the present invention to provide a method for manufacturing an oxide superconducting thin film without mixing impurities.
「課題を解決するための手段」 第1の発明は前記課題を解決するために、少なくとも
一部が導体あるいは誘電体から形成された基材を用い、
この基材を高周波誘導加熱した状態で酸化物超電導薄膜
構成元素の供給源と酸素の供給源の双方を用いて基材上
に酸化物超電導薄膜を形成し、酸化物超電導薄膜の形成
後に基材の加熱を停止して基材を冷却するものである。"Means for solving the problem" The first invention uses a base material at least partially formed of a conductor or a dielectric,
In a state where the base material is subjected to high-frequency induction heating, an oxide superconducting thin film is formed on the base material using both the source of the constituent elements of the oxide superconducting thin film and the supply source of oxygen. Is stopped to cool the substrate.
第2の発明は前記課題を解決するために、少なくとも
一部が導体あるいは誘電体から形成された基材を用い、
この基材上に酸化物超電導薄膜を形成するとともに、こ
の後に基材を高周波誘導加熱して酸化物超電導薄膜を加
熱し、所要時間加熱した後に高周波誘導加熱を停止して
基材を冷却するものである。The second invention uses a substrate formed at least in part from a conductor or a dielectric to solve the problem,
Forming an oxide superconducting thin film on this substrate, then heating the substrate by high-frequency induction heating to heat the oxide superconducting thin film, stopping the high-frequency induction heating after cooling for a required time, and cooling the substrate. It is.
「作用」 基材を高周波誘導加熱することにより超電導薄膜の加
熱処理を行い、超電導薄膜の結晶構造を整え、超電導薄
膜中の酸素量を調節する。また、基材自身を発熱させる
ために、基材の近傍に熱容量の大きな加熱ヒータを設け
る必要がなくなり、加熱後に超電導薄膜を急冷すること
が可能になる。更に、基材の近傍に加熱ヒータを設ける
必要がなくなるために超電導薄膜に対する不純物の混入
もなくなる。[Function] Heat treatment of the superconducting thin film is performed by high-frequency induction heating of the base material, the crystal structure of the superconducting thin film is adjusted, and the amount of oxygen in the superconducting thin film is adjusted. Further, it is not necessary to provide a heater having a large heat capacity in the vicinity of the substrate in order to generate heat in the substrate itself, and the superconducting thin film can be rapidly cooled after heating. Furthermore, since there is no need to provide a heater near the base material, impurities do not enter the superconducting thin film.
以下に本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.
第1図は、イオン源を用いたスパッタリング法を適用
して本発明を実施し、酸化物超電導薄膜を形成する場合
に用いられる装置の一例を示すもので、図中11は酸化物
超電導薄膜が形成される板状の基材を示している。FIG. 1 shows an example of an apparatus used for forming an oxide superconducting thin film by applying the sputtering method using an ion source to form an oxide superconducting thin film. 2 shows a plate-like base material to be formed.
この基材11は、第2図に示すように、ステンレス、ハ
ステロイ、スーパーアロイ等のニッケル基合金などの金
属材料などからなる板状の本体部12と、この本体部12の
上面に形成されたMgO,ZrO,BaTiO3などからなる被覆層13
とから構成されている。なお、被覆層13の構成材料は、
後述するように基材11上に形成される酸化物超電導薄膜
Hの構成元素と反応性が低く、化学的に安定な材料が選
択され、被覆層13は、高周波マグネトロンスパッタリン
グ法などの成膜法により本体部12の上面に形成されてい
る。また、前記本体部12と被覆層13の少なくとも一方
は、高周波誘導加熱法によって発熱する導体あるいは誘
電体から形成されている。なお、基材11の形状は板状に
限るものではなく、線状、テープ状、筒状などの任意の
形状を用いることができる。As shown in FIG. 2, the base material 11 is formed on a plate-shaped main body 12 made of a metal material such as a nickel-based alloy such as stainless steel, Hastelloy, and superalloy, and on the upper surface of the main body 12. coating layer 13 made MgO, ZrO, etc. BaTiO 3
It is composed of The constituent material of the coating layer 13 is as follows:
As described later, a material having low reactivity with constituent elements of the oxide superconducting thin film H formed on the substrate 11 and being chemically stable is selected, and the coating layer 13 is formed by a film forming method such as a high-frequency magnetron sputtering method. Thereby, it is formed on the upper surface of the main body 12. At least one of the main body 12 and the coating layer 13 is formed of a conductor or a dielectric that generates heat by a high-frequency induction heating method. Note that the shape of the base material 11 is not limited to a plate shape, and any shape such as a linear shape, a tape shape, and a tubular shape can be used.
一方、第2図に示すように前記基材11上に形成される
酸化物超電導薄膜Hは、具体的にはA−B−C−D(た
だしAは、Sc,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,E
r,Tm,Yb,Lu等の周期律法IIIa族元素のうち、1種以上を
示し、BはSr,Ba,Ca,Be,Mg,Raなどの周期律表IIa族元素
のうち、1種以上を示し、Cは、Cu,Ag,Auなどの周期律
表Ib族元素とNbのうち、CuあるいはCuを含む2種以上の
元素を示し、Dは、O,S,Se,Te,Poなどの周期律表VIb族
元素およびF,Br,I,Atなどの周期律表VIIb族元素のう
ち、OあるいはOを含む2種以上の元素を示す。)系の
ものが用いられる。そして、この酸化物系超電導体の各
構成元素の組成比は、例えばY−Ba−Cu−O系超電導体
の場合、Y:Ba:Cu:O=1:(2〜3):(3〜4):(7
〜δ)が好ましく、δは0〜5の範囲が好ましい。On the other hand, as shown in FIG. 2, the oxide superconducting thin film H formed on the base material 11 is specifically ABCD (where A is Sc, Y, La, Ce, Pr). , Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, E
R, Tm, Yb, Lu, etc., represent at least one group IIIa element of the periodic law, and B represents one of the group IIa elements of the periodic table, such as Sr, Ba, Ca, Be, Mg, Ra. In the above, C represents two or more elements including Cu or Cu among elements of the group Ib of the periodic table such as Cu, Ag, and Au and Nb, and D represents O, S, Se, Te, Po. And O or two or more elements containing O among the Group VIb elements of the periodic table such as F and Br, I, and At. ) System. For example, in the case of a Y-Ba-Cu-O-based superconductor, the composition ratio of each constituent element of this oxide-based superconductor is Y: Ba: Cu: O = 1: (2-3) :( 3-3 4): (7
To δ) are preferable, and δ is preferably in the range of 0 to 5.
なお、前記基板11に超電導薄膜Hを形成する手段とし
ては、真空蒸着法、スパッタリング法、MBE(分子線エ
ピタキシー)法、CVD化学気相成長)法、IVD(イオン気
相成長)法、クラスタイオンビーム法などの種々の成膜
法を適用することができるが、この例においてはイオン
源を用いたスパッタリング法を行う。Means for forming the superconducting thin film H on the substrate 11 include a vacuum evaporation method, a sputtering method, an MBE (molecular beam epitaxy) method, a CVD chemical vapor deposition (IVD) method, an IVD (ion vapor deposition) method, a cluster ion Various film formation methods such as a beam method can be applied. In this example, a sputtering method using an ion source is performed.
第1図に示す装置は、真空容器の内部に、基材11とタ
ーゲット15(酸化物超電導薄膜構成元素の供給源)が対
向状態で配置され、基材11の側方にターゲット15に対向
するように第1イオン源16(酸化物超電導薄膜構成元素
の供給源)が設けられ、ターゲット15の側方に基材11に
対向するように第2イオン源17(酸素の供給源)が設け
られ、更に、基材11の近傍に高周波誘導加熱装置18の高
周波コイル19が付設され、基材11を高周波加熱できるよ
うに構成されている。In the apparatus shown in FIG. 1, a substrate 11 and a target 15 (a supply source of the constituent elements of the oxide superconducting thin film) are arranged inside a vacuum vessel so as to face each other. The first ion source 16 (supply source for the constituent elements of the oxide superconducting thin film) is provided as described above, and the second ion source 17 (supply source for oxygen) is provided on the side of the target 15 so as to face the substrate 11. Furthermore, a high-frequency coil 19 of a high-frequency induction heating device 18 is provided in the vicinity of the substrate 11 so that the substrate 11 can be heated by high-frequency.
前記ターゲット15は、前述の酸化物超電導体を構成す
る元素を含む材料が用いられる。従ってA−B−C−D
系の各元素を含む混合粉末を仮焼し、焼結して製造され
るA−B−C−D系の超電導体からなるターゲット、あ
るいは、A元素とB元素とC元素とD元素を所定の比率
で含有させた酸化物ターゲットなどを用いることができ
る。The target 15 is made of a material containing an element constituting the above-described oxide superconductor. Therefore, ABCD
A target composed of an ABCD-based superconductor produced by calcining and sintering a mixed powder containing each element of the system, or a target consisting of A, B, C and D , Etc. can be used.
前記第1イオン源16は、ターゲット15に対して加速さ
れたイオンを照射してターゲット15の構成原子を叩き出
し、基材11上に成膜させるための装置である。また、第
2イオン源17は、酸素をイオン、原子状、分子状などに
して基材11に照射する装置である。なお、これらのイオ
ン源16,17はイオン発生機とイオンの引出電極を具備し
て構成され、イオン発生機で発生させたイオンを引出電
極で加速して照射できるように構成されている。The first ion source 16 is a device for irradiating the target 15 with accelerated ions to strike out constituent atoms of the target 15 and form a film on the substrate 11. The second ion source 17 is a device that irradiates the substrate 11 with oxygen in the form of ions, atoms, molecules, or the like. These ion sources 16 and 17 are provided with an ion generator and an ion extraction electrode, and are configured so that ions generated by the ion generator can be accelerated and irradiated by the extraction electrode.
次に第1図に示す装置を用いて酸化物超電導薄膜を製
造する場合について説明する。Next, a case of manufacturing an oxide superconducting thin film using the apparatus shown in FIG. 1 will be described.
第1図に示す装置を用いて酸化物超電導薄膜を製造す
るには、まず、基材11とターゲット15を真空容器の内部
の所定位置にセットし、真空容器の内部を真空引きして
内圧を10-1Pa以上の高い圧力にした後に、イオン源16,1
7を作動させる。更に、高周波コイル19によって基材11
に高周波を印加して基材11の温度を600〜1000℃程度に
加熱する。In order to manufacture an oxide superconducting thin film using the apparatus shown in FIG. 1, first, the base material 11 and the target 15 are set at predetermined positions inside a vacuum vessel, and the inside of the vacuum vessel is evacuated to reduce the internal pressure. After increasing the pressure to 10 -1 Pa or higher, the ion source
Activate 7 Further, the base material 11 is
The substrate 11 is heated to about 600 to 1000 ° C. by applying a high frequency to the substrate 11.
以上の操作によってイオン源16はターゲット15にイオ
ンを照射してスパッタリングを行い、基材11上にA−B
−C−D系の超電導薄膜Hを生成させる。By the above operation, the ion source 16 irradiates the target 15 with ions to perform sputtering, and AB on the substrate 11.
-A superconducting thin film H of the CD type is generated.
また、イオン源17による酸素イオン照射によって十分
な量の酸素を供給しながら酸化物超電導薄膜Hを生成さ
せることができる。なお、成膜時に真空容器の内圧を10
-1Paより低い値にすると、基材11に高周波を印加した場
合に真空容器の内部でグロー放電によりプラズマが発生
し、プラズマのイオン電子が基板上に形成される超電導
薄膜Hに衝突し超電導薄膜Hに格子欠陥や組成ずれを導
入してしまう問題があり、更に成膜速度も低下するの
で、真空容器内の圧力は、10-1Pa以上の高い値にするこ
とが好ましい。Further, the oxide superconducting thin film H can be generated while supplying a sufficient amount of oxygen by irradiating the ion source 17 with oxygen ions. During film formation, the internal pressure of the vacuum
When the value is lower than -1 Pa, when a high frequency is applied to the base material 11, plasma is generated by glow discharge inside the vacuum vessel, and ion ions of the plasma collide with the superconducting thin film H formed on the substrate and become superconductive. There is a problem that a lattice defect or a composition deviation is introduced into the thin film H, and the film formation rate is further reduced. Therefore, it is preferable to set the pressure in the vacuum chamber to a high value of 10 -1 Pa or more.
基材11上に所定の厚さの超電導薄膜Hを生成したなら
ば、イオン源16,17によるイオン照射を停止するととも
に、成膜直後あるいは所定時間経過後に基材11に対する
高周波加熱を停止して基材11を冷却する。When the superconducting thin film H having a predetermined thickness is formed on the base material 11, the irradiation of ions by the ion sources 16 and 17 is stopped, and the high-frequency heating of the base material 11 is stopped immediately after film formation or after a predetermined time has elapsed. The substrate 11 is cooled.
なお、酸素イオン源17からの酸素イオンの照射を行わ
ない場合、生成された超電導薄膜の結晶の内部に酸素が
不足して目的の化学量論組成からずれた超電導薄膜が生
成されるおそれがある。このように酸素が不足した超電
導薄膜は超電導特性に劣る欠点がある。この点において
イオン源17から酸素イオンを供給するならば、酸素不足
を解消して化学量論組成に合致した目的の組成の特性の
優れた超電導薄膜Hを得ることができる。When the irradiation of oxygen ions from the oxygen ion source 17 is not performed, there is a possibility that a superconducting thin film deviating from a desired stoichiometric composition may be generated due to a lack of oxygen inside crystals of the generated superconducting thin film. . Such a superconducting thin film lacking oxygen has a disadvantage that the superconducting properties are inferior. If oxygen ions are supplied from the ion source 17 at this point, the oxygen deficiency can be eliminated and the superconducting thin film H excellent in characteristics of the target composition conforming to the stoichiometric composition can be obtained.
また、基材11に対する高周波加熱を行つつ超電導薄膜
Hを形成するために、超電導薄膜Hを十分高温に加熱で
きる効果がある。そして、高周波加熱後に超電導薄膜H
を冷却する場合、熱容量の大きな加熱ヒータで加熱して
いた従来方法に比較して、基材11の近傍に熱容量の大き
な部材がないために、基材11を容易に急冷することがで
きる。従って、形成した超電導薄膜Hの結晶構造を整え
ることができるとともに結晶中の酸素の割合を所望の値
にすることができるので臨界温度の高い特性の優れた酸
化物超電導薄膜Hを製造できる効果がある。更に本発明
方法によれば従来方法で用いられていた加熱ヒータを用
いる必要がないために、超電導薄膜Hに不純物が混入す
ることもなくなる。なお、超電導薄膜Hの加熱のために
赤外線を用いる必要がないために真空容器の外壁に赤外
線透過用の透明窓を設ける必要がなくなり真空容器の真
空度が低下することもない。Further, since the superconducting thin film H is formed while performing high-frequency heating on the base material 11, there is an effect that the superconducting thin film H can be heated to a sufficiently high temperature. Then, after high-frequency heating, the superconducting thin film H
Is cooled, the base material 11 can be rapidly cooled because there is no member having a large heat capacity in the vicinity of the base material 11 as compared with the conventional method of heating with a heater having a large heat capacity. Therefore, the crystal structure of the formed superconducting thin film H can be adjusted, and the ratio of oxygen in the crystal can be set to a desired value. is there. Further, according to the method of the present invention, since it is not necessary to use the heater used in the conventional method, no impurities are mixed into the superconducting thin film H. In addition, since it is not necessary to use infrared rays for heating the superconducting thin film H, it is not necessary to provide a transparent window for transmitting infrared rays on the outer wall of the vacuum vessel, and the degree of vacuum of the vacuum vessel does not decrease.
一方、第2の発明では、超電導薄膜Hを形成した後に
高周波加熱によって基板11を加熱して目的を達成する。On the other hand, in the second invention, the object is achieved by heating the substrate 11 by high frequency heating after forming the superconducting thin film H.
即ち、高周波加熱を停止した状態において、赤外線ラ
ンプなどの加熱装置で基材11を所要の温度に加熱した状
態で超電導薄膜Hを形成し、超電導薄膜Hの形成後に赤
外線ランプなどによる加熱を停止し、次いで基板11に高
周波加熱を行い、超電導薄膜Hの結晶構造を整えて酸素
の量を調節する。このような方法を行うことによっても
超電導薄膜Hの酸素量を調節し、超電導薄膜Hの結晶構
造を整えることができる。That is, in a state where the high-frequency heating is stopped, the superconducting thin film H is formed in a state where the base material 11 is heated to a required temperature by a heating device such as an infrared lamp, and after the superconducting thin film H is formed, the heating by the infrared lamp or the like is stopped. Then, high-frequency heating is performed on the substrate 11 to adjust the crystal structure of the superconducting thin film H and adjust the amount of oxygen. By performing such a method, the amount of oxygen in the superconducting thin film H can be adjusted, and the crystal structure of the superconducting thin film H can be adjusted.
第3図は、本発明方法に用いる基材の他の例を示すも
のである。FIG. 3 shows another example of the substrate used in the method of the present invention.
第3図に示す基材20は、超電導薄膜の構成元素と反応
性の低い元素で、化学的に安定な金属材料からなるもの
であり、この基材11を用いて本発明を実施することも可
能である。The base material 20 shown in FIG. 3 is an element having low reactivity with the constituent elements of the superconducting thin film, and is made of a chemically stable metal material. It is possible.
なお、前述の例において、真空容器に超電導薄膜Hの
予熱用の赤外線ランプなどを設けることは自由であり、
真空容器の内部全体の温度を調節する温度制御装置など
を設けても良いのは勿論である。In the above-described example, it is free to provide an infrared lamp or the like for preheating the superconducting thin film H in the vacuum container.
Of course, a temperature control device or the like for adjusting the temperature of the entire inside of the vacuum vessel may be provided.
「実施例」 ステンレス製の幅10mm、厚さ0.5mmのテープ状の本体
部に、厚さ1μmの被覆層を形成してなるテープ状の基
材を用意した。次に、第1図に示す構成の装置を用い、
Y−Ba−Cu−O系の複合酸化物をスパッタリングターゲ
ットに用い、イオン源を用いたスパッタリング法を実施
して前記基板上にY−Ba−Cu−Oで示される酸化物超電
導体を構成する元素をスパッタリングし、同時に酸素イ
オンを照射するとともに、基板に30〜100kHzの高周波を
印加して基板を発熱させて基板を700℃に加熱し、超電
導薄膜を形成した。この際、イオン源のイオン加速電圧
を1000V、イオン電流を100mA、雰囲気の真空度を5×10
-1Paとした。"Example" A tape-shaped base material was prepared by forming a coating layer having a thickness of 1 µm on a tape-shaped main body made of stainless steel and having a width of 10 mm and a thickness of 0.5 mm. Next, using the apparatus having the configuration shown in FIG.
Using a Y-Ba-Cu-O-based composite oxide as a sputtering target, a sputtering method using an ion source is performed to form an oxide superconductor represented by Y-Ba-Cu-O on the substrate. The elements were sputtered and simultaneously irradiated with oxygen ions, and a high frequency of 30 to 100 kHz was applied to the substrate to generate heat and the substrate was heated to 700 ° C. to form a superconducting thin film. At this time, the ion acceleration voltage of the ion source is 1000 V, the ion current is 100 mA, and the degree of vacuum of the atmosphere is 5 × 10
-1 Pa.
前述の条件でスパッタリングを4時間行ったならば、
スパッタリングと通電を停止し、基板を冷却して超電導
薄膜を得た。この場合、基板温度を700℃から100℃まで
下降させるために必要な時間と、形成された超電導薄膜
の臨界温度(Tc)を測定し、後記する第1表に示した。After sputtering for 4 hours under the above conditions,
The sputtering and energization were stopped, and the substrate was cooled to obtain a superconducting thin film. In this case, the time required for lowering the substrate temperature from 700 ° C. to 100 ° C. and the critical temperature (Tc) of the formed superconducting thin film were measured and are shown in Table 1 below.
また、第4図に示す構成の従来装置にイオン源を付加
して構成した装置を用い、Y−Ba−Cu−O系のスパッタ
リングターゲットを使用するとともに基板を加熱ヒータ
によって700℃に加熱し、先の例と同等の条件でイオン
スパッタリングと酸素イオン照射を同時に行って酸化物
超電導体薄膜を形成し、成膜後に加熱ヒータへの通電を
停止して基板を冷却して酸化物超電導薄膜を得た。Further, using an apparatus configured by adding an ion source to the conventional apparatus having the configuration shown in FIG. 4, using a Y-Ba-Cu-O-based sputtering target and heating the substrate to 700 ° C. with a heater, Under the same conditions as in the previous example, ion sputtering and oxygen ion irradiation are simultaneously performed to form an oxide superconducting thin film, and after film formation, the power to the heater is stopped and the substrate is cooled to obtain an oxide superconducting thin film. Was.
この場合、基板の温度を700℃から100℃まで低下させ
るために必要な時間と、形成された酸化物超電導薄膜の
臨界温度を測定し、第1表に示した。In this case, the time required for lowering the temperature of the substrate from 700 ° C. to 100 ° C. and the critical temperature of the formed oxide superconducting thin film were measured and are shown in Table 1.
第1表から明らかなように、基板を高周波加熱した場
合は、加熱ヒータを用いて加熱した場合に比較して冷却
時間を大幅に短縮でき、急冷処理が可能であることが判
明した。なお、冷却時間を大幅に短縮できるために、超
電導薄膜の製造効率が向上することも明らかになった。
また、高周波加熱した後に急冷して製造された酸化物超
電導薄膜は臨界温度が高いことが判明した。 As is clear from Table 1, when the substrate was heated at a high frequency, it was found that the cooling time could be greatly reduced as compared with the case where the substrate was heated using a heater, and that rapid cooling treatment was possible. In addition, it was also found that the manufacturing time of the superconducting thin film was improved because the cooling time could be significantly reduced.
In addition, it was found that the oxide superconducting thin film manufactured by rapid cooling after high-frequency heating had a high critical temperature.
「発明の効果」 以上説明したように本発明は、基材に対する高周波加
熱によって酸化物超電導薄膜を加熱するために、超電導
薄膜を十分高温に加熱することができるとともに、加熱
後に冷却する場合、熱容量の大きな加熱ヒータで加熱し
ていた従来方法に比較して、基材の近傍に熱容量の大き
な部材をなくすことができるために、基材を急冷するこ
とができる。従って、酸化物超電導薄膜の結晶の形を整
えることができ、しかも、酸素の供給源を用いることで
酸素不足が生じることなく結晶中の酸素量を調節するこ
とができるので、臨界温度の高い特性の優れた酸化物超
電導薄膜を製造できる効果がある。また、加熱ヒータを
用いる必要がないために、超電導薄膜に雰囲気中から不
純物元素が混入することもなくなる。更に、超電導薄膜
の加熱のために赤外線を用いる必要がないために、真空
容器の外壁に透明窓を設ける必要がなくなり、真空容器
の真空度が低下することもないために、所望の圧力で成
膜を実施できる効果がある。[Effects of the Invention] As described above, the present invention can heat the oxide superconducting thin film by high-frequency heating of the base material, so that the superconducting thin film can be heated to a sufficiently high temperature. Since a member having a large heat capacity can be eliminated in the vicinity of the substrate as compared with the conventional method in which the substrate is heated by a large heater, the substrate can be rapidly cooled. Therefore, the crystal shape of the oxide superconducting thin film can be adjusted, and the amount of oxygen in the crystal can be adjusted by using an oxygen supply source without causing oxygen shortage. This has the effect of producing an oxide superconducting thin film excellent in the above. Further, since it is not necessary to use a heater, no impurity element is mixed into the superconducting thin film from the atmosphere. Further, since there is no need to use infrared rays for heating the superconducting thin film, it is not necessary to provide a transparent window on the outer wall of the vacuum vessel, and the vacuum degree of the vacuum vessel does not decrease. There is an effect that the film can be implemented.
第1図は、本発明方法を実施するために用いる装置の一
例を示す構成図、第2図は本発明方法の実施に用いる基
板の一例を示す断面図、第3図は本発明の実施に用いる
基板の他の例を示す断面図、第4図は、従来方法を説明
するための構成図である。 11,20……基材、12……本体部、 13……被覆層、15……ターゲット、 16……第1イオン源、17……第2イオン源、 18……高周波加熱装置、19……高周波コイル、 H……超電導薄膜。FIG. 1 is a structural view showing an example of an apparatus used for carrying out the method of the present invention, FIG. 2 is a cross-sectional view showing an example of a substrate used for carrying out the method of the present invention, and FIG. FIG. 4 is a cross-sectional view showing another example of a substrate to be used, and FIG. 4 is a configuration diagram for explaining a conventional method. 11,20 Base material, 12 Body part, 13 Coating layer, 15 Target, 16 First ion source, 17 Second ion source, 18, High frequency heating device, 19 ... High frequency coil, H ... Superconducting thin film.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01B 13/00 565 H01B 13/00 565D H01L 39/24 ZAA H01L 39/24 ZAAB (72)発明者 河野 宰 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (56)参考文献 特開 昭62−1154(JP,A) 特開 昭61−104077(JP,A) JAPANESE JOURNAL OF APPLIED PHYSIC S.VOL.26,NO.7,JULY, 1987,PP.L1199−L1201 通商産業省工業技術院編、「超電導の すべて」丸善株式会社,昭和63年1月31 日,p.109−123────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification symbol FI H01B 13/00 565 H01B 13/00 565D H01L 39/24 ZAA H01L 39/24 ZAAB (72) Inventor Satoshi Kono Kiba, Koto-ku, Tokyo 1-5-1, Fujikura Electric Wire Co., Ltd. (56) References JP-A-62-1154 (JP, A) JP-A-61-104077 (JP, A) JAPANESE JOURNAL OF APPLIED PHYSIC S.S. VOL. 26, NO. 7, JULY, 1987, PP. L1199-L1201 edited by the Ministry of International Trade and Industry, Ministry of Industry and Industry, “All about Superconductivity” Maruzen Co., Ltd., January 31, 1988, p. 109−123
Claims (2)
形成された基材を用い、この基材を高周波誘導加熱した
状態で酸化物超電導薄膜構成元素の供給源と酸素の供給
源の双方を用いて基材上に酸化物超電導薄膜を形成し、
酸化物超電導薄膜の形成後に基材の加熱を停止して基材
を冷却することを特徴とする酸化物超電導薄膜の製造方
法。1. A substrate, at least a part of which is formed of a conductor or a dielectric, is used, and both the supply source of the constituent elements of the oxide superconducting thin film and the supply source of oxygen are used in a state where the substrate is subjected to high-frequency induction heating. To form an oxide superconducting thin film on the substrate,
A method for producing an oxide superconducting thin film, wherein heating of the substrate is stopped after the formation of the oxide superconducting thin film to cool the substrate.
形成された基材を用い、この基材上に酸化物超電導薄膜
を形成するとともに、この後に基材を高周波誘導加熱し
て酸化物超電導薄膜を加熱し、所要時間加熱した後に高
周波誘導加熱を停止して基材を冷却することを特徴とす
る酸化物超電導薄膜の製造方法。2. An oxide superconducting thin film is formed by using a substrate formed at least in part of a conductor or a dielectric, forming an oxide superconducting thin film on the substrate, and thereafter heating the substrate by high-frequency induction heating. A method for producing an oxide superconducting thin film, comprising heating a substrate, heating for a required time, and then stopping high-frequency induction heating to cool the substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63025193A JP2742418B2 (en) | 1988-02-05 | 1988-02-05 | Method for producing oxide superconducting thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63025193A JP2742418B2 (en) | 1988-02-05 | 1988-02-05 | Method for producing oxide superconducting thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01201009A JPH01201009A (en) | 1989-08-14 |
JP2742418B2 true JP2742418B2 (en) | 1998-04-22 |
Family
ID=12159127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63025193A Expired - Fee Related JP2742418B2 (en) | 1988-02-05 | 1988-02-05 | Method for producing oxide superconducting thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2742418B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0244012A (en) * | 1988-08-03 | 1990-02-14 | Dowa Mining Co Ltd | Method for forming superconducting thin film |
-
1988
- 1988-02-05 JP JP63025193A patent/JP2742418B2/en not_active Expired - Fee Related
Non-Patent Citations (2)
Title |
---|
JAPANESE JOURNAL OF APPLIED PHYSICS.VOL.26,NO.7,JULY,1987,PP.L1199−L1201 |
通商産業省工業技術院編、「超電導のすべて」丸善株式会社,昭和63年1月31日,p.109−123 |
Also Published As
Publication number | Publication date |
---|---|
JPH01201009A (en) | 1989-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1989008605A1 (en) | Process for producing thin-film oxide superconductor | |
DE68918489T2 (en) | Production of superconducting oxide films by pre-oxygen nitrogen annealing treatment. | |
US4916116A (en) | Method of adding a halogen element into oxide superconducting materials by ion injection | |
JPH01157579A (en) | Manufacture of superconductor and superconductive circuit | |
JP2742418B2 (en) | Method for producing oxide superconducting thin film | |
JP2583552B2 (en) | Method for producing oxide superconducting thin film | |
JPH0825742B2 (en) | How to make superconducting material | |
EP0349341A2 (en) | Method of improving and/or producing oxide superconductor | |
US5731270A (en) | Oxide superconductor and method and apparatus for fabricating the same | |
JP2713343B2 (en) | Superconducting circuit fabrication method | |
JPH01203203A (en) | Formation of superconducting material layer | |
JP2502344B2 (en) | Method for producing complex oxide superconductor thin film | |
JPH01261204A (en) | Production of oxide based superconductor | |
JP2529347B2 (en) | Preparation method of superconducting thin film | |
JPH0764678B2 (en) | Method for producing superconducting thin film | |
JPS63299019A (en) | Manufacture of thin film superconductive material | |
JPH0812936B2 (en) | Method for manufacturing oxide-based superconducting thin film | |
JP2668532B2 (en) | Preparation method of superconducting thin film | |
JP2525852B2 (en) | Preparation method of superconducting thin film | |
JPH06140675A (en) | Ultrathin film of bi oxide high-temperature superconductor and manufacture thereof | |
JP2854648B2 (en) | Manufacturing method of oxide superconducting film | |
JPH03197306A (en) | Equipment for producing oxide superconducting thin film and method therefor | |
JP2501615B2 (en) | Preparation method of superconducting thin film | |
JP2736062B2 (en) | Method for producing oxide superconductor thin film | |
JPH0714816B2 (en) | Method for forming superconducting oxide thin film containing rare earth element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |