JP2740342B2 - Flow control valve and mass flow controller for high temperature range and laminated displacement element for high temperature range - Google Patents
Flow control valve and mass flow controller for high temperature range and laminated displacement element for high temperature rangeInfo
- Publication number
- JP2740342B2 JP2740342B2 JP2211405A JP21140590A JP2740342B2 JP 2740342 B2 JP2740342 B2 JP 2740342B2 JP 2211405 A JP2211405 A JP 2211405A JP 21140590 A JP21140590 A JP 21140590A JP 2740342 B2 JP2740342 B2 JP 2740342B2
- Authority
- JP
- Japan
- Prior art keywords
- valve
- displacement element
- control valve
- temperature range
- flow control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000006073 displacement reaction Methods 0.000 title claims description 83
- 239000000463 material Substances 0.000 claims description 31
- 239000012530 fluid Substances 0.000 claims description 19
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 10
- 238000000576 coating method Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000010030 laminating Methods 0.000 claims description 7
- 229910000679 solder Inorganic materials 0.000 claims description 6
- 239000007769 metal material Substances 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical group [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 3
- 239000011347 resin Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 31
- 238000010586 diagram Methods 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000000843 powder Substances 0.000 description 8
- 230000006835 compression Effects 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 229910010293 ceramic material Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 125000002524 organometallic group Chemical group 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 2
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- AXAZMDOAUQTMOW-UHFFFAOYSA-N dimethylzinc Chemical compound C[Zn]C AXAZMDOAUQTMOW-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000007610 electrostatic coating method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- VXKWYPOMXBVZSJ-UHFFFAOYSA-N tetramethyltin Chemical compound C[Sn](C)(C)C VXKWYPOMXBVZSJ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Electrically Driven Valve-Operating Means (AREA)
- Flow Control (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,例えば半導体工業においてガス流量を精密
に制御するために多用される流量制御バルブに関するも
のであり,特に積層型変位素子を駆動源とし,かつ常温
より高い温度領域における使用に適した高温域用流量制
御バルブおよびマスフローコントローラならびにこれら
の用途に適した高温域用積層型変位素子に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow control valve frequently used for precisely controlling a gas flow rate in, for example, a semiconductor industry, and particularly relates to a drive source for a stacked displacement element. The present invention relates to a flow control valve and a mass flow controller for a high temperature range suitable for use in a temperature range higher than room temperature, and a stacked displacement element for a high temperature range suitable for these uses.
従来の積層型変位素子を駆動源とする流量制御バルブ
としては,例えば特開昭61−127983号公報に開示されて
いるような構成のものがある。2. Description of the Related Art As a conventional flow control valve using a laminated displacement element as a drive source, for example, there is a flow control valve disclosed in Japanese Patent Application Laid-Open No. 61-127983.
第9図は上記流量制御バルブの一例を示す要部縦断面
図であり,所謂ノーマルオープン型と称されるものであ
る。第9図において11は本体であり,例えばステンレス
鋼のような構造材料によりブロック状に形成すると共
に,上方に開口する弁室12と,この弁室12に連通する流
入流路13および流出流路14に設ける。15は弁座であり,
弁室12の下部に設けると共に,流出流路14に連通する弁
口16を設ける。次に17はダイヤフラムであり,金属材料
によって薄板状に形成し,弁室12の上方を密閉するよう
に設けると共に,その下面に弁体18を前記弁口16に臨む
ように一体に固着する。次に19はハウジングであり,前
記本体11と同様な材料により,中空筒状に形成して,弁
室12を密閉するように本体11の上方に押さえ金20を介し
て固着する。21は積層型変位素子であり,下端部に弁棒
22を接着剤等により固着すると共に,弁棒22がダイヤフ
ラム17と接触するようにハウジング19内に装着するか,
または接着剤等を用いて弁棒22がダイヤフラム17に固着
するようにハウジング19内に装着する。23は開度調整ね
じであり,その下端部が積層型変位素子21と接触するよ
うにハウジング19の上端部に螺着する。FIG. 9 is a longitudinal sectional view of a main part showing an example of the flow control valve, which is a so-called normally open type. In FIG. 9, reference numeral 11 denotes a main body, which is formed in a block shape from a structural material such as stainless steel and has a valve chamber 12 which opens upward, an inflow channel 13 and an outflow channel which communicate with the valve chamber 12. Provided at 14. 15 is a valve seat,
A valve port 16 is provided below the valve chamber 12 and communicates with the outflow channel 14. Next, reference numeral 17 denotes a diaphragm, which is formed of a metal material in a thin plate shape, is provided so as to seal the upper part of the valve chamber 12, and a valve body 18 is integrally fixed to the lower surface thereof so as to face the valve port 16. Next, reference numeral 19 denotes a housing, which is formed of a material similar to that of the main body 11 into a hollow cylindrical shape, and is fixed above the main body 11 via a presser foot 20 so as to seal the valve chamber 12. 21 is a laminated displacement element having a valve stem at the lower end.
22 is fixed with an adhesive or the like, and the valve stem 22 is mounted in the housing 19 so as to contact the diaphragm 17 or
Alternatively, it is mounted in the housing 19 so that the valve stem 22 is fixed to the diaphragm 17 using an adhesive or the like. Reference numeral 23 denotes an opening adjusting screw which is screwed to the upper end of the housing 19 so that the lower end thereof comes into contact with the laminated displacement element 21.
上記の構成により,弁座15と弁体18との間には所定の
間隙が確保されるから,流入流路13から弁室21および弁
口16を介して流出流路14にガス等の流体が流れる。次に
積層型変位素子21に,直流電圧を印加すると,積層方向
に伸長する。従って弁棒22が下方に押し下げられ,更に
弁体18が下方に変位する。これにより弁体18と弁座15と
の間隙,すなわち弁口16の開度が小さくなる。一方積層
型変位素子21に印加した直流電圧を除去すると,積層型
変位素子21は,前記電圧印加による伸長分だけ収縮す
る。従って弁体18はダイヤフラム17の復元力によって元
の位置に復帰し,弁口16の開度もまた元の状態に復帰す
る。以上のようにして積層型変位素子21に印加する直流
電圧によって弁口16の開度を調整することができ,この
結果流出流路14からのガス等の流体の流量を制御するこ
とができるのである。With the above configuration, a predetermined gap is secured between the valve seat 15 and the valve element 18. Therefore, fluid such as gas flows from the inflow channel 13 to the outflow channel 14 through the valve chamber 21 and the valve port 16. Flows. Next, when a DC voltage is applied to the laminated displacement element 21, it expands in the laminating direction. Therefore, the valve stem 22 is pushed down, and the valve element 18 is further displaced downward. As a result, the gap between the valve element 18 and the valve seat 15, that is, the opening of the valve port 16 is reduced. On the other hand, when the DC voltage applied to the multilayer displacement element 21 is removed, the multilayer displacement element 21 contracts by the extension due to the voltage application. Therefore, the valve element 18 returns to the original position by the restoring force of the diaphragm 17, and the opening of the valve port 16 also returns to the original state. As described above, the opening of the valve port 16 can be adjusted by the DC voltage applied to the laminated displacement element 21, and as a result, the flow rate of the fluid such as gas from the outflow passage 14 can be controlled. is there.
次に上記流量制御バルブに使用されている積層型変位
素子について記述する。Next, the laminated displacement element used in the flow control valve will be described.
最近は積層型変位素子として例えば特公昭59−32040
号公報に記載のように,原料粉末にバインダーを添加,
混練したペースト状の圧電セラミック材料を,所定の厚
さの薄板に形成し,この薄板の一方の面若しくは両面に
銀−パラジウム等の導電材料を塗布して内部電極を形成
し,上記薄板を所定枚数積層して圧着し,更に所定の形
状に加工した後,焼成することによってセラミック化
し,積層体の両側面に外部電極を形成した積層チップコ
ンデンサ構造方式のものが実用化されている。上記構成
の積層型変位素子は,圧電セラミック材料からなる薄板
と内部電極の接合部の密着性に優れ,長期間に亘って劣
化が極めて少ない等の利点がある。Recently, as a stacked displacement element, for example, Japanese Patent Publication No. 59-32040
As described in the official gazette, a binder is added to the raw material powder,
A kneaded paste-like piezoelectric ceramic material is formed into a thin plate having a predetermined thickness, and a conductive material such as silver-palladium is applied to one or both surfaces of the thin plate to form internal electrodes. A multilayer chip capacitor structure type in which a plurality of sheets are laminated, pressure-bonded, processed into a predetermined shape, and then fired to be ceramicized, and external electrodes are formed on both side surfaces of the laminate has been put to practical use. The stacked displacement element having the above-described configuration has advantages such as excellent adhesion between a thin plate made of a piezoelectric ceramic material and an internal electrode, and extremely little deterioration over a long period of time.
第10図は上記積層型変位素子の構成の例であり,所謂
交互電極型と称されるものである。第10図において,31
は薄板であり圧電セラミック材料によって形成し,正負
の内部電極32a,32bを交互に挟着して積層し,積層体35
を形成する。内部電極32a,32bは各々一方の端縁部が外
方に突出若しくは露出するように形成し,各々積層方向
に延設した外部電極33a,33bと接続し,はんだ37を介し
てリード線36を接続する。FIG. 10 shows an example of the configuration of the above-mentioned stacked displacement element, which is called a so-called alternating electrode type. In Fig. 10, 31
Is a thin plate, made of a piezoelectric ceramic material, and laminated by alternately sandwiching positive and negative internal electrodes 32a and 32b.
To form The internal electrodes 32a and 32b are formed so that one edge portion protrudes or is exposed to the outside. The internal electrodes 32a and 32b are connected to the external electrodes 33a and 33b, respectively, extending in the laminating direction. Connecting.
以上の構成により,外部電極33a,33bに正負の電圧を
印加すると,前記内部電極32a,32b間に電界が発生し,
薄板31は圧電セラミック材料の縦効果により厚さ方向に
伸びて変位を生ずる。With the above configuration, when positive and negative voltages are applied to the external electrodes 33a and 33b, an electric field is generated between the internal electrodes 32a and 32b,
The thin plate 31 is displaced by extending in the thickness direction due to the longitudinal effect of the piezoelectric ceramic material.
次に第11図に示すものは他の積層型変位素子の例であ
り,圧電変位効率を向上させた所謂全面電極型と称され
るものである(例えば特開昭58−196068号公報参照)。
第11図において同一部分は前記第10図と同一の参照符号
で示すが,内部電極32a,32bは薄板31の表面全域に及ぶ
ように形成して,所要枚数を前記同様に積層する。次に
上記のようにして形成した積層体35の一方の側面におい
て,内部電極32a,32bの端縁に一層おきに(例えば内部
電極32bのみに)絶縁材料からなる被覆34を設けるとと
もに,被覆34の上から導電性材料からなる外部電極32a
を被着させる。一方積層体35の他の側面においては,上
記被覆34を設けなかった内部電極(例えば32a)の端縁
に前記と同様に被覆34を設け,その上から外部電極33b
を被着させるのである。以上の構成による作用は前記第
10図におけるのと同様である。Next, what is shown in FIG. 11 is another example of a laminated displacement element, which is a so-called full-surface electrode type in which the piezoelectric displacement efficiency is improved (for example, see Japanese Patent Application Laid-Open No. 58-196068). .
In FIG. 11, the same parts are denoted by the same reference numerals as in FIG. 10, but the internal electrodes 32a and 32b are formed so as to cover the entire surface of the thin plate 31, and the required number of sheets are laminated in the same manner as described above. Next, on one side surface of the laminated body 35 formed as described above, a coating 34 made of an insulating material is provided at every other edge (for example, only on the internal electrode 32b) at the edges of the internal electrodes 32a and 32b. External electrode 32a made of conductive material from above
Is adhered. On the other hand, on the other side surface of the laminate 35, the coating 34 is provided on the edge of the internal electrode (for example, 32a) where the coating 34 is not provided in the same manner as described above, and the external electrode 33b
Is applied. The operation of the above configuration is
The same as in FIG.
上記第9図に示す従来の流量制御バルブにおいては,
ガスが流通する弁室12内に弁体18が存在し,この弁体18
は弁座15に設けた弁口16内に出入することによって流量
制御を行うような構成である。そして弁体18はガス流の
遮断時においては,弁口16の端部と接触し,また流量制
御時においては弁口16の端部,内周面と摺動するから,
摩耗によって発生する金属粉がガスに混入するという問
題点がある。また本バルブの二次側が負圧になった場
合,弁室12内は同時に負圧になり,ダイヤフラム17は下
方に引かれる。その結果,弁棒22とダイヤフラム17とが
固着されている場合には,積層型変位素子21には大きな
引張荷重が加わる。積層型変位素子21は,一般的に圧縮
方向の荷重には強いが,引張方向の荷重には弱いため,
上記のような態様においては耐久性が著しく劣化してし
まう。従って上記構造のものでは,積層型変位素子21の
寿命および信頼性が低下し,同時にバルブの駆動耐久性
も劣化してしまう。なお図示を省略したが,ノーマルク
ローズ型の流量制御バルブにおいては,上記弁体18と弁
口16との接触,摺動の頻度はノーマルオープン型と比較
して遥かに大であるため,摩耗による金属粉の発生量も
また大であり,上記問題点は更に深刻となる。In the conventional flow control valve shown in FIG.
A valve element 18 exists in the valve chamber 12 through which gas flows.
Is configured to control the flow rate by moving into and out of a valve port 16 provided in a valve seat 15. The valve element 18 contacts the end of the valve port 16 when the gas flow is shut off, and slides on the end of the valve port 16 and the inner peripheral surface when controlling the flow rate.
There is a problem that metal powder generated by abrasion is mixed into the gas. Also, when the secondary side of the valve has a negative pressure, the inside of the valve chamber 12 also has a negative pressure at the same time, and the diaphragm 17 is pulled downward. As a result, when the valve stem 22 and the diaphragm 17 are fixed, a large tensile load is applied to the laminated displacement element 21. The laminated displacement element 21 is generally strong against a load in the compression direction, but weak against a load in the tension direction.
In such an embodiment, the durability is significantly deteriorated. Therefore, with the above structure, the life and reliability of the stacked displacement element 21 are reduced, and at the same time, the driving durability of the valve is also deteriorated. Although not shown, in the normally closed type flow control valve, the frequency of contact and sliding between the valve element 18 and the valve port 16 is much higher than that of the normally open type, so that the flow control valve may be worn. The amount of generated metal powder is also large, and the above problem becomes more serious.
上記問題点を解消するために,本出願人は弁体18を省
略し,ダイヤフラム17を直接に弁座15と当接離脱自在に
形成した流量制御バルブについてすでに出願している
(例えば特願平1−94492号)。In order to solve the above problem, the present applicant has already filed an application for a flow control valve in which the valve element 18 is omitted and the diaphragm 17 is formed so as to be able to be brought into and out of contact with the valve seat 15 (see, for example, Japanese Patent Application No. Hei 10-26138). No. 1-94492).
第1図は上記流量制御バルブを示す要部縦断面図であ
り,同一部分は前記第9図と同一の参照符号で示す。第
1図において,26はダイヤフラム押さえであり,ハウジ
ング19と本体11との間に挟着し,ダイヤフラム17を固着
する。27は圧縮コイルばねであり,弁棒22とダイヤフラ
ム押さえ26との間に弁棒22を上方に押圧するように介装
する。FIG. 1 is a longitudinal sectional view of a main part showing the flow control valve, and the same parts are denoted by the same reference numerals as in FIG. In FIG. 1, reference numeral 26 denotes a diaphragm retainer which is sandwiched between the housing 19 and the main body 11 to fix the diaphragm 17 thereto. A compression coil spring 27 is interposed between the valve stem 22 and the diaphragm retainer 26 so as to press the valve stem 22 upward.
上記の構成により,弁座15とダイヤフラム17との間に
は所定の間隔が確保されるから,流入流路13から弁口16
および弁室12を介して流出流路14にガスが流れる。そし
て積層型変位素子21に積層方向に伸長するように直流電
圧を印加すると,圧縮コイルばね27の反発力に抗して弁
棒22を介してダイヤフラム17の中央部を下方に押し下
げ,ダイヤフラム17と弁座15との間隔を縮小させ,すな
わち弁口16の開度を縮小するから,ガスの流量を減少す
ることができる。積層型変位素子21への印加電圧を解除
すれば,圧縮コイルばね27の復元力により弁棒22は元の
位置に復帰し,ダイヤフラム17も元の位置に復帰する。
本構造によれば,二次側が負圧となり,ダイヤフラム17
を下方に引く力が増大しても,その反力として圧縮コイ
ルばね27が働き,積層型変位素子21への引張荷重が軽減
されるため,その寿命および信頼性を確保することがで
きる。従って前記第9図におけるものと同様にガスの流
量を制御することができる。With the above configuration, a predetermined distance is ensured between the valve seat 15 and the diaphragm 17, so that the inflow passage 13 is connected to the valve port 16.
The gas flows into the outflow channel 14 via the valve chamber 12. Then, when a DC voltage is applied to the laminated displacement element 21 so as to extend in the laminating direction, the central portion of the diaphragm 17 is pushed downward through the valve rod 22 against the repulsive force of the compression coil spring 27, and the diaphragm 17 is Since the distance from the valve seat 15 is reduced, that is, the opening of the valve port 16 is reduced, the gas flow rate can be reduced. When the voltage applied to the laminated displacement element 21 is released, the valve stem 22 returns to the original position by the restoring force of the compression coil spring 27, and the diaphragm 17 also returns to the original position.
According to this structure, the secondary side has a negative pressure and the diaphragm 17
Even if the force of pulling downward is increased, the compression coil spring 27 acts as a reaction force, and the tensile load on the laminated displacement element 21 is reduced, so that its life and reliability can be secured. Accordingly, the flow rate of the gas can be controlled in the same manner as in FIG.
上記第1図に示すものにおいては,ダイヤフラム17は
弁座15と当接離脱するのみで,両者間には摺動作用は存
在しないため,第9図に示すものにおけるような摩耗に
よる金属粉が発生せず,また圧縮コイルばね27もガス流
路外に設けられているため,その作動による金属粉の発
生もなく,従って金属粉がガスに混入することがない。
しかしながら,従来の流量制御バルブにおいて使用され
ている積層型変位素子21の変位量は積層方向の長さが40
mmのものであっても30〜40μm程度にすぎない。この種
の圧電バルブにおけるガスの流量は弁座15とダイヤフラ
ム17との間隙寸法によって定まるため,上記変位量によ
っては微少流量しか確保できない。従って流量の大なる
圧電バルブを実現するためには,積層型変位素子21を構
成する薄板31および内部電極32a,32bの積層数を増大さ
せる必要があり、必然的に圧電バルブが大型になり,占
有空間を増大させるという問題点がある。このため従来
の圧電バルブは微少流量用のものに限定され,大流量用
のものには不適とされていた。また大流量用に使用する
場合,若しくは広範囲の流量制御用として使用する場合
には,数個の圧電バルブを必要とし,占有空間若しくは
占有床面積の増大を招来するのみならず,保守点検およ
び管理が煩雑であるという問題点も併存する。1, the diaphragm 17 only comes into contact with and separates from the valve seat 15, and there is no sliding action between the two. Therefore, metal powder due to abrasion as shown in FIG. Since no gas is generated and the compression coil spring 27 is also provided outside the gas flow path, no metal powder is generated by its operation, and therefore, the metal powder does not mix with the gas.
However, the displacement amount of the laminated displacement element 21 used in the conventional flow control valve has a length of 40 in the lamination direction.
mm is only about 30 to 40 μm. Since the gas flow rate in this type of piezoelectric valve is determined by the gap size between the valve seat 15 and the diaphragm 17, only a very small flow rate can be secured depending on the displacement amount. Therefore, in order to realize a piezoelectric valve having a large flow rate, it is necessary to increase the number of laminations of the thin plates 31 and the internal electrodes 32a and 32b constituting the laminated displacement element 21, and the piezoelectric valve becomes inevitably large in size. There is a problem that the occupied space is increased. For this reason, the conventional piezoelectric valve is limited to a valve for a small flow rate, and is not suitable for a valve for a large flow rate. When used for a large flow rate or for a wide range of flow rate control, several piezoelectric valves are required, which not only increases the occupied space or the occupied floor area, but also causes maintenance, inspection and management. Is also complicated.
また近年半導体製造分野においては,より高純度,高
温度の反応ガスを使用することが検討されており,その
ためその機器類も高温に耐えるものが要望されている。
しかるに上記従来の流量制御バルブを例えば100℃以上
のような高い温度領域において使用する場合には,薄板
31を形成する電気機械変換材料の変位量や静電容量が温
度によって大幅に変化するため,所定の機能を発揮でき
ないという問題点がある。すなわち,例えば一般に使用
されている電気機械変換材料のキュリー温度(圧電特性
を喪失する温度)は150℃前後であるため,素子の温度
が100℃を超えると圧電歪定数d33が急激に減少し,変位
量が激減し,所定の変位量を確保することができなくな
るという問題点がある。特に近年においては,上記流量
制御バルブの用途が200℃前後の高温度領域にまで拡大
すると共に,従来以上の厳しい仕様が要求されており,
仕様雰囲気温度の如何に拘わらず,安定した制御機能を
具有する流量制御バルブの出現が強く望まれている。In recent years, in the field of semiconductor manufacturing, the use of a higher-purity, higher-temperature reaction gas has been studied, and therefore, it has been demanded that the equipment be able to withstand high temperatures.
However, when the above conventional flow control valve is used in a high temperature range, for example, 100 ° C or higher, a thin plate
Since the displacement and the capacitance of the electromechanical conversion material forming 31 greatly change with temperature, there is a problem that a predetermined function cannot be exhibited. That is, for example because the commonly used Curie temperature of the electromechanical conversion material (temperature at which loss of piezoelectric properties) is around 0.99 ° C., the piezoelectric strain constant d 33 when the temperature of the element exceeds 100 ° C. decreases abruptly In addition, there is a problem that the amount of displacement is drastically reduced, and a predetermined amount of displacement cannot be secured. In particular, in recent years, the use of the flow control valve has been expanded to a high temperature range around 200 ° C, and stricter specifications than before have been required.
There is a strong demand for a flow control valve having a stable control function regardless of the specified ambient temperature.
また上記のような温度上昇により,外部電極33a,33b
とリード線36とを接続するはんだ37の溶融による導通不
良等の不都合を招来する。更に例えば高湿度雰囲気によ
る絶縁破壊防止および強度向上のために,素子の表面に
エポキシ樹脂材料(エポキシ−芳香族ジアミン,ポリア
ミン,ナイロンおよび脂肪族アミン系)からなる被膜を
設けた構成のものにおいては,被膜が溶融若しくは剥離
して,素子の機能を阻害するという問題点がある。Also, the external electrodes 33a, 33b
This leads to inconveniences such as poor conduction due to melting of the solder 37 connecting the lead 36 and the lead wire 36. Further, for example, in order to prevent dielectric breakdown and improve strength in a high-humidity atmosphere, a device provided with a coating made of an epoxy resin material (epoxy-aromatic diamine, polyamine, nylon, and aliphatic amine) on the surface of the device. In addition, there is a problem in that the film is melted or peeled off, thereby impairing the function of the element.
本発明は上記従来技術に存在する問題点を解決し,使
用雰囲気温度が高い温度であっても,変位量および静電
容量等の特性を所定の水準に確保し得ると共に,安定性
があり,かつ信頼性の高い高温域用流量制御バルブを提
供することを目的とする。The present invention solves the above-mentioned problems in the prior art, and can secure characteristics such as displacement and capacitance to a predetermined level even at a high use atmosphere temperature, and have stability. It is another object of the present invention to provide a high-temperature range flow control valve having high reliability.
また本発明は上記高温域用流量制御バルブを使用した
マスフローコントローラを提供することを目的とする。Another object of the present invention is to provide a mass flow controller using the above-mentioned high temperature range flow control valve.
更に本発明は高温雰囲気において使用しても圧電歪定
数d33が充分に大きくなる値を保持し,導通不良その他
の不都合を発生することなく,所定の変位を安定して発
生し得る高温域用積層型変位素子を提供することを目的
とする。The invention further holds a value of piezoelectric strain constant d 33 becomes sufficiently large even when used in high temperature atmosphere, without causing a conduction failure and other disadvantages, for high-temperature range capable of stably generating a predetermined displacement An object is to provide a stacked displacement element.
上記目的を達成するため,第1の発明においては,開
口端を有する弁室と一端をこの弁室と通じ他端を開口す
るように形成した流入流路および流出流路とを設けた本
体と,流入流路または流出流路の弁室に通じる端部に設
けた弁座と,前記弁室の開口端を密閉するように設けた
金属材料からなる薄板状のダイヤフラムと,前記本体の
弁室開口端に配設したハウジングと,このハウジング内
に設けた積層型変位素子とを有する流量制御バルブにお
いて,積層型変位素子を重量比で,PbO61〜66%,SrCO32
〜5%,TiO210.5〜12%,ZrO220〜22%,Sb2O30.1〜2.0%
の組成からなり,100℃以上の温度領域において圧電歪定
数d33が645×10-12m/v以上の最大値を示すような電気機
械変換材料によって形成し,前記ダイヤフラムを前記弁
座に当接離脱自在に駆動するように構成する,という技
術的手段を採用した。In order to achieve the above object, according to a first aspect of the present invention, there is provided a body provided with a valve chamber having an open end and an inflow channel and an outflow channel formed so that one end communicates with the valve chamber and the other end is opened. A valve seat provided at an end of the inflow passage or the outflow passage that communicates with the valve chamber; a thin diaphragm made of a metal material provided to seal an open end of the valve chamber; In a flow control valve having a housing arranged at an open end and a laminated displacement element provided in the housing, the laminated displacement element is composed of PbO 61 to 66% by weight, SrCO 3 2
~5%, TiO 2 10.5~12%, ZrO 2 20~22%, Sb 2 O 3 0.1~2.0%
Consists of a composition, formed in a temperature range above 100 ° C. by an electromechanical converter material, such as a piezoelectric strain constant d 33 is 645 × 10 -12 m / v or more of the maximum value, those of the diaphragm to said valve seat A technical means was adopted in which it is configured to be driven so that it can be freely connected and detached.
次に第2の発明においては,前記第1の発明に電気機
械変換材料の圧電歪定数d33が最大値を示す温度領域近
傍の温度で積層型変位素子が作動するように加熱手段を
設ける,という技術的手段を付加した。Next, in the second invention, the first electromechanical conversion material to the invention of the piezoelectric strain constant d 33 is stacked displacement element at a temperature in a temperature region near to the maximum value of providing a heating means to operate, Technical means were added.
第3の発明においては,流体の流量を制御する流量制
御バルブと,この流量制御バルブの流入流路または流出
流路にバイパス的に設けられたセンサ用の流路内を流れ
る流体の流量を検出する流量センサと,この流量センサ
の出力に応じて前記流量制御バルブを制御する制御手段
とを有するマスフローコントローラにおいて,前記流量
制御バルブを,開口端を有する弁室と一端をこの弁室と
通じ他端を開口するように形成した流入流路および流出
流路とを設けた本体と,流入流路または流出流路の弁室
に通じる端部に設けた弁座と,前記弁室の開口端を密閉
するように設けた金属材料からなる薄板状のダイヤフラ
ムと,前記本体の弁室開口端に配設したハウジングと,
このハウジング内に設けられ前記ダイヤフラムを前記弁
座側に押圧させる積層型変位素子とによって形成すると
共に,前記積層型変位素子を重量比で,PbO61〜66%,SrC
O32〜5%,TiO210.5〜12%,ZrO220〜22%,Sb2O30.1〜2.
0%の組成からなり,100℃以上の温度領域において圧電
歪定数d33が645×10-12m/v以上の最大値を示すような電
気機械変換材料によって形成し,前記ダイヤフラムを前
記弁座に当接離脱自在に駆動するように構成する,とい
う技術的手段を採用した。According to a third aspect of the present invention, a flow control valve for controlling a flow rate of a fluid, and a flow rate of the fluid flowing in a sensor flow path provided in a bypass manner in an inflow or outflow flow path of the flow control valve is detected. A mass flow controller having a flow sensor to be controlled and control means for controlling the flow control valve in accordance with the output of the flow sensor, wherein the flow control valve is connected to a valve chamber having an open end and one end to the valve chamber. A main body provided with an inflow channel and an outflow channel formed to have open ends, a valve seat provided at an end communicating with the valve chamber of the inflow channel or the outflow channel, and an open end of the valve chamber. A thin plate-shaped diaphragm made of a metal material provided so as to be hermetically sealed, a housing arranged at an opening end of a valve chamber of the main body,
A laminated displacement element is provided in the housing and presses the diaphragm toward the valve seat. The laminated displacement element is composed of PbO 61-66% by weight and SrC
O 3 2~5%, TiO 2 10.5~12 %, ZrO 2 20~22%, Sb 2 O 3 0.1~2.
Becomes 0% of the composition, at a temperature range above 100 ° C. to form the electromechanical transducer material, such as a piezoelectric strain constant d 33 is 645 × 10 -12 m / v or more of the maximum value, the valve seat the diaphragm A technical means is adopted in which it is configured to be driven so as to be able to come into and out of contact with.
更に第4の発明においては,電気機械変換材料からな
る薄板と導電材料からなる内部電極とを各々複数個交互
に積層して積層体を形成し,この積層体の側面に前記内
部電極と1層おきに接続する1対の外部電極を設けてな
る積層型変位素子において,電気機械変換材料として,
重量比で,PbO61〜66%,SrCO32〜5%,TiO210.5〜12%,Z
rO220〜22%,Sb2O30.1〜2.0%の組成からなり,100℃以
上の温度領域において圧電歪定数d33が645×10-12m/v以
上の最大値を示す材料を使用する,という技術的手段を
採用した。Further, in the fourth invention, a laminate is formed by alternately laminating a plurality of thin plates made of an electromechanical conversion material and internal electrodes made of a conductive material, and the internal electrode and one layer are formed on side surfaces of the laminate. In a laminated displacement element having a pair of external electrodes connected every other
By weight ratio, PbO 61-66%, SrCO 3 2-5%, TiO 2 10.5-12%, Z
rO 2 20~22%, Sb 2 O 3 consists of 0.1% to 2.0% of the composition, a material of a piezoelectric strain constant d 33 is 645 × 10 -12 m / v or more of the maximum value in the temperature range above 100 ° C. Technical means of doing so.
第5の発明においては,上記第4の発明に,積層体の
表面に耐熱絶縁性樹脂材料からなる被膜を設ける,とい
う技術的手段を付加した。In the fifth invention, a technical means of providing a coating made of a heat-resistant insulating resin material on the surface of the laminate is added to the fourth invention.
第6の発明においては,前記第4の発明若しくは第5
の発明に,液相温度200℃以上のはんだにより外部電極
にリード線を接続する,という技術的手段を付加した。In the sixth invention, the fourth invention or the fifth invention
In addition to the invention, the technical means of connecting a lead wire to an external electrode using a solder having a liquidus temperature of 200 ° C. or higher has been added.
上記の構成により,第1の発明ないし第3の発明にお
いては,ダイヤフラムを弁座に対して当接離脱自在とす
ることができ,流量制御ができると共に,常温より高い
温度領域においても流量制御バルブ若しくはマスフロー
コントローラとしての所定の機能を充分に発揮させるこ
とができるのである。With the above configuration, in the first to third aspects of the present invention, the diaphragm can be brought into and out of contact with the valve seat so that the flow rate can be controlled, and the flow control valve can be controlled even in a temperature range higher than room temperature. Alternatively, a predetermined function as a mass flow controller can be sufficiently exhibited.
また第4の発明ないし第6の発明においては,常温よ
り高い温度領域においても導通不良その他の不都合を招
来することなく,積層型変位素子としての所定の変位を
充分に確保しつつ,安定した作動を行い得るのである。Further, in the fourth to sixth aspects of the present invention, even in a temperature range higher than room temperature, stable operation is ensured while ensuring a predetermined displacement as a stacked displacement element without causing conduction failure and other inconveniences. You can do it.
第2図(a)ないし(d)は夫々本発明の実施例にお
ける積層型変位素子を構成する積層体の例を示す斜視図
である。まず第2図(a)において薄板31を次のように
して形成する。化学組成式において Pbx、Sr1-xZryTi1-yO3+Zwt%Sb2O3 となるようにPbO,SrCO3,TiO2,ZrO2,Sb2O3からなる原材
料を第1表に示すように配合する。なおNo.6は従来から
積層型変位素子用圧電材料として広く使用されている0.
5Pb(Ni1/3Nb2/3)O3−0.35PbTiO3−0.15PbZrO3を示
す。2 (a) to 2 (d) are perspective views each showing an example of a laminated body constituting the laminated displacement element according to the embodiment of the present invention. First, in FIG. 2A, the thin plate 31 is formed as follows. The raw material composed of PbO, SrCO 3 , TiO 2 , ZrO 2 , and Sb 2 O 3 is the first such that Pb x , Sr 1-x Zr y Ti 1-y O 3 + Zwt% Sb 2 O 3 in the chemical composition formula. Mix as shown in the table. No. 6 has been widely used as a piezoelectric material for multilayer displacement elements.
5Pb (Ni1 / 3Nb2 / 3) O 3 -0.35PbTiO 3 -0.15PbZrO 3 is shown.
一般に流量制御バルブにおいては,駆動源である積層
型変位素子の変位量が大であることが要求されており,
従ってこれに使用される圧電材料の圧電歪定数d33が大
であることが必要である。なお圧電歪定数d33は次式に
よって算出される。 In general, a flow control valve is required to have a large displacement amount of a stacked displacement element as a driving source.
It is necessary that the piezoelectric strain constant d 33 of the piezoelectric material used for this is the large therefore. Note piezoelectric constant d 33 is calculated from the following equation.
上式のうち,弾性コンプライアンス▲SE 33▼は圧電
セラミックスにおいては略15×10-12m2/Nであり,電気
機械結合係数K33は,従来材料では0.6〜0.7程度が限界
であることから,通常圧電セラミックスのキュリー温度
Tcを低くして,室温近傍における比誘電率▲εE 33▼を
大きくすることによって圧電歪定数d33を大きくする手
段が採られていた。 In the above equation, the elastic compliance SS E 33あ り is approximately 15 × 10 -12 m 2 / N for piezoelectric ceramics, and the electromechanical coupling coefficient K 33 is limited to about 0.6 to 0.7 for conventional materials. From the Curie temperature of normal piezoelectric ceramics
By lowering the tc, it was taken a means for increasing the piezoelectric strain constant d 33 by increasing the ▼ dielectric constant ▲ epsilon E 33 in the vicinity of room temperature.
上記の原材料を24時間ボールミルで混合後,800℃で1
時間仮焼する。仮焼粉末を粉砕後,この仮焼粉末にポリ
ビニールブチラールを添加し,トリクレン中に分散させ
てスラリー化し,この混合材料をドクターブレード法に
より,厚さ100μmのシート状の薄板31に形成する。次
にこの薄板31の表面全域に内部電極32a,32bを形成する
白金導電ペースト若しくは銀−パラジウムペーストをス
クリーン印刷する。上記のように形成した内部電極32a,
32bを有する薄板31を交互に例えば100枚積層して圧着し
た後,所定の寸法形状に切断して積層体とし,500℃で脱
バインダーを行った後,酸素中1050〜1200℃で1〜5時
間焼結して,所定寸法に切断して積層体35を形成する。
この積層体35の寸法は例えば5×5×10l(m)若しく
は10×10×10l(mm)である。次にこの積層体35の相隣
る側面に絶縁材料からなる被覆37a,37bを,内部電極32
a,32bを横断するように設ける。第2図(b)において3
8a,38bは溝であり,例えばダイサー等により,被覆37a,
37bの内部電極32a,32bに対応する位置に刻設する。第2
図(c)において外部電極33a,33bを被覆37a,37b上に,
前記溝38a,38bを横断するように設ければ,外部電極33
a,33bと内部電極32a,32bとを各々対応して接続すること
ができる。次に外部電極33a,33bと電圧供給用のリード
線をはんだ(何れも図示せず)を介して接続するのであ
るが,はんだとしては,重量比Sn25%,Pb75%からなる
と共に,液相温度260℃のものを使用する。次に第2図
(d)において39は被膜であり,ポリイミド系樹脂を流
動浸漬法若しくは静電塗装法によって外部電極およびは
んだ(何れも図示せず)を含む積層体35の表面に設け
る。上記のように形成した積層体35に1.5kV/mmの分極を
施して特性を測定した結果を表に併記した。No.6は比較
例である従来使用されている材料によって形成した積層
体に対するものである。After mixing the above raw materials in a ball mill for 24 hours,
Calcinate for hours. After pulverizing the calcined powder, polyvinyl butyral is added to the calcined powder, dispersed in trichlene to form a slurry, and this mixed material is formed into a thin sheet 31 having a thickness of 100 μm by a doctor blade method. Next, a platinum conductive paste or a silver-palladium paste for forming the internal electrodes 32a and 32b is screen-printed on the entire surface of the thin plate 31. The internal electrodes 32a formed as described above,
After alternately laminating, for example, 100 thin plates 31 each having 32b and crimping them, they are cut into a predetermined size and shape to form a laminate, debindered at 500 ° C, and 1 to 5 at 1050 to 1200 ° C in oxygen. After sintering for a time, the laminate is cut into a predetermined size to form a laminate 35.
The dimensions of the laminate 35 are, for example, 5 × 5 × 10 l (m) or 10 × 10 × 10 l (mm). Next, coatings 37a and 37b made of an insulating material are applied to adjacent side surfaces of the laminate
a, 32b. In FIG. 2 (b), 3
8a and 38b are grooves, for example, coated with a dicer or the like.
It is engraved at a position corresponding to the internal electrodes 32a and 32b of 37b. Second
In FIG. (C), external electrodes 33a and 33b are coated on coatings 37a and 37b.
If provided so as to cross the grooves 38a and 38b, the external electrodes 33
a, 33b and the internal electrodes 32a, 32b can be connected to each other. Next, the external electrodes 33a and 33b are connected to the voltage supply lead wires via solder (both not shown). The solder consists of a weight ratio of Sn25% and Pb75%, Use 260 ° C. Next, in FIG. 2 (d), reference numeral 39 denotes a film, and a polyimide resin is provided on the surface of the laminate 35 including external electrodes and solder (both not shown) by a flow dipping method or an electrostatic coating method. The results obtained by applying a polarization of 1.5 kV / mm to the laminated body 35 formed as described above and measuring the characteristics are also shown in the table. No. 6 relates to a comparative example, which is a laminate formed of a conventionally used material.
表から明らかなように,従来材によるNo.6においては
キュリー温度が145℃であるのに対して,本発明の圧電
材料であるNo.1〜5に示すようなPbxSr1-xZryTiO1-yO3
+Zwt%Sb2O3系のものは,電気機械結合係数K33が0.8前
後の極めて大なる値を示すことから、キュリー温度Tcを
180℃以上の比較的高温度に保つことが可能であり,従
って150℃以上の高温度領域においても使用が可能であ
る。As is clear from the table, while the Curie temperature of the conventional material No. 6 is 145 ° C., the Pb x Sr 1 -x Zr as shown in Nos. 1 to 5 of the piezoelectric material of the present invention. y TiO 1-y O 3
+ Zwt% Sb 2 O 3 system ones, since the electromechanical coupling coefficient K 33 indicates an extremely large consisting value around 0.8, the Curie temperature Tc
It can be maintained at a relatively high temperature of 180 ° C or higher, and therefore can be used even in a high temperature range of 150 ° C or higher.
第3図は温度と発生変位との関係を示す図であり,同
図中のNo.は前記表中のNo.と対応する。なお第3図にお
ける発生変位(圧電歪定数d33に比例する)は印加電圧1
50Vに対するものである。第3図から明らかなように,
比較例であるNo.6においては,温度の上昇に伴って発生
変位が減少し,特に100℃を越えるとその減少が急激で
ある。これに対して本発明に対応するNo.1〜5において
は,温度の上昇に伴って発生変位(すなわち圧電歪定数
d33)が増大し,100℃以上の温度領域において圧電歪定
数d33が645×10-12m/v以上の最大値を示しており,発生
変位13〜15μmで作動させることができる。FIG. 3 is a diagram showing the relationship between the temperature and the generated displacement, and the numbers in the figure correspond to the numbers in the above table. Note displacement generated in FIG. 3 (proportional to the piezoelectric strain constant d 33) is the applied voltage 1
It is for 50V. As is clear from FIG.
In No. 6, which is a comparative example, the generated displacement decreases with an increase in temperature, and the decrease sharply increases particularly when the temperature exceeds 100 ° C. On the other hand, in Nos. 1 to 5 corresponding to the present invention, the displacement (that is, the piezoelectric strain constant
d 33) is increased, the piezoelectric strain constant d 33 in the temperature range above 100 ° C. is shows a 645 × 10 -12 m / v or more of the maximum value, it can be operated by the generated displacement 13~15Myuemu.
上記構成の本発明による積層体を150℃の高温雰囲気
において,150V,10Hzの条件で1000時間駆動試験を行った
ところ,供試個数夫々100個中発生変位,電気機械変換
材料の機能劣化および導通不良が皆無であることを確認
した。一方前記第10図および第11図に示す構成の積層型
変位素子を,例えば高温雰囲気下で使用する流体制御弁
用アクチュエータ若しくは自動車用燃料噴射弁用アクチ
ュエータ等に使用した場合には,薄板31を形成する電気
機械変換材料の機能の劣化が起こる。これは前記同様に
圧電歪定数が急激に減少することによる。When the laminate having the above-described structure was subjected to a driving test under a condition of 150 V and 10 Hz for 1000 hours in a high-temperature atmosphere of 150 ° C., the displacement generated in each of the 100 test pieces, the functional deterioration of the electromechanical conversion material, and the conduction were reduced. It was confirmed that there were no defects. On the other hand, when the laminated displacement element having the structure shown in FIGS. 10 and 11 is used for, for example, an actuator for a fluid control valve or an actuator for a fuel injection valve for an automobile used in a high-temperature atmosphere, the thin plate 31 is used. Deterioration of the function of the formed electromechanical conversion material occurs. This is because the piezoelectric strain constant sharply decreases as described above.
次に上記積層体(5×5×10l(mm))をポリイミド
系の接着剤を介して4個積層して長さ40mmの積層型変位
素子に形成し,前記第1図に示す流量制御バルブ内に組
み込んで流量の温度依存性を測定した。この場合流体と
してN2ガスを使用し,弁座15のダイヤフラム17との接触
部外径を2.2mm,弁口16の内径を2.0mmとした。すなわ
ち,まず積層型変位素子21に直流150Vを印加し,N2ガス
を流した状態で(差圧3kg/cm2)開度調整ねじ23を下方
にねじ込み,弁棒22を介してダイヤフラム17を弁座15に
当接させ,N2ガスの流量が0になるように調整する。次
に積層型変位素子21への直流電圧の印加を解除すると,
圧縮コイルばね27がその反発力により弁棒22を押し上げ
るから,ダイヤフラム17は弁座15から上方に離脱し,弁
口16を開口する。この時のN2ガス流量は最大値を示す。Next, four laminated bodies (5 × 5 × 10 l (mm)) were laminated via a polyimide adhesive to form a laminated displacement element having a length of 40 mm, and the flow control valve shown in FIG. The temperature dependence of the flow rate was measured. In this case using the N 2 gas as the fluid, and the contact outer diameter of the diaphragm 17 of the valve seat 15 2.2 mm, the inner diameter of the valve port 16 and 2.0 mm. That is, first, a direct current of 150 V is applied to the laminated displacement element 21, and while the N 2 gas is flowing (differential pressure: 3 kg / cm 2 ), the opening adjustment screw 23 is screwed downward, and the diaphragm 17 is moved through the valve rod 22. It is brought into contact with the valve seat 15 and adjusted so that the flow rate of the N 2 gas becomes zero. Next, when the application of the DC voltage to the multilayer displacement element 21 is released,
Since the compression coil spring 27 pushes up the valve rod 22 by the repulsive force, the diaphragm 17 is separated upward from the valve seat 15 and the valve port 16 is opened. At this time, the N 2 gas flow rate shows the maximum value.
第4図は温度と最大流量との関係を示す図であり,同
図中のNo.は前記第3図におけるものと夫々対応する。
第4図から明らかなように,何れも温度の上昇と共に最
大流量が増加し,130〜180℃の高温領域において最大値
を示している。すなわち前記第1図に示すダイヤフラム
17のストロークが高温領域において増大することを示し
ている。これは積層型変位素子21の変位が大であるこ
と,および高温領域において最大値を有することに起因
するものであり,第3図に示す発生変位の温度依存性に
よるものである。このような特性は従来の圧電材料を使
用したものにおいては到底得られないものであり,上記
特性は有機金属ガスの流量制御用のバルブに有効であ
る。すなわち有機金属ガスは沸点が高いため(例えばジ
メチル亜鉛44℃,テトラメチル錫78℃,トリエチルガリ
ウム142.6℃等)給送配管系を加熱保温しておく必要が
あり,必然的に流量制御バルブも高温状態で使用され
る。FIG. 4 is a diagram showing the relationship between the temperature and the maximum flow rate, and the numbers in the figure correspond to those in FIG.
As is clear from FIG. 4, the maximum flow rate increases with increasing temperature in all cases, and shows the maximum value in a high temperature region of 130 to 180 ° C. That is, the diaphragm shown in FIG.
17 shows that the stroke increases in the high temperature region. This is due to the large displacement of the laminated displacement element 21 and the maximum value in the high temperature region, and is due to the temperature dependence of the generated displacement shown in FIG. Such characteristics cannot be obtained at all using a conventional piezoelectric material, and the above characteristics are effective for a valve for controlling the flow rate of an organic metal gas. That is, since the organometallic gas has a high boiling point (for example, dimethylzinc 44 ° C, tetramethyltin 78 ° C, triethylgallium 142.6 ° C, etc.), it is necessary to heat and keep the supply piping system, and the flow control valve is necessarily high temperature Used in state.
第5図は有機金属ガスの温度と蒸気圧との関係を示す
図である。有機金属ガスは蒸気圧によって配管内を流れ
るが,第5図に示すように夫々の有機金属ガスの蒸気圧
は温度に依存して高くなる。蒸気圧が高くなるとガス流
量も増加するが,温度上昇に伴って変位が減少する傾向
のある従来のものによっては,例えば第1図におけるダ
イヤフラム17のストロークが減少してしまうため,充分
なガス流量を得られず,例えば減圧CVD等における製膜
の際に,充分な量のガスが供給できなくなる。この結果
製膜時間が長くなり,量産化が難しくなると共に,不純
物の混入を生ずる可能性がある等の問題がある。FIG. 5 is a diagram showing the relationship between the temperature of the organometallic gas and the vapor pressure. The organic metal gas flows in the pipe by the vapor pressure, but as shown in FIG. 5, the vapor pressure of each organic metal gas increases depending on the temperature. As the vapor pressure increases, the gas flow rate also increases. However, in the conventional type in which the displacement tends to decrease as the temperature increases, for example, the stroke of the diaphragm 17 in FIG. Therefore, for example, a sufficient amount of gas cannot be supplied at the time of film formation by reduced pressure CVD or the like. As a result, there are problems that the film formation time becomes longer, mass production becomes difficult, and impurities may be mixed.
第6図は本発明の他の実施例を示す要部構成図であ
り,上記有機金属ガス制御用のマスフローコントローラ
の例である。第6図において,40は流量制御バルブであ
り,例えば前記第1図に示す構成とし,駆動用の積層型
変位素子21として前記表中のNo.3に示す材料からなるも
のを使用した。41,42は各々流入流路および流出流路で
あり,矢印方向に流体が流れる。43は流量センサであ
り,流入流路41に例えばU字型に接続すると共に,流入
流路41の流体流量は例えば10%が流通するように形成す
る。44は測定素子であり,流量センサ43に巻回すると共
に,ブリッジ回路45と電気的に接続する。次に46,47,4
8,49は夫々増幅回路,位相補償回路,比較回路および駆
動回路であり,前記ブリッジ回路45に直列に接続し,ブ
リッジ回路45の出力信号を順次伝達可能に形成する。50
は設定信号出力部であり,比較回路48と接続する。なお
駆動回路49の出力電圧は流量制御バルブ40を構成する積
層型変位素子40aに入力可能に形成する。FIG. 6 is a configuration diagram of a main part showing another embodiment of the present invention, and is an example of a mass flow controller for controlling the above-mentioned organometallic gas. In FIG. 6, reference numeral 40 denotes a flow control valve, which has, for example, the configuration shown in FIG. 1, and a driving type laminated displacement element 21 made of the material shown in No. 3 in the above table is used. Reference numerals 41 and 42 denote an inflow channel and an outflow channel, respectively, through which fluid flows in the direction of the arrow. Reference numeral 43 denotes a flow sensor, which is connected to the inflow channel 41 in, for example, a U-shape, and is formed so that the fluid flow in the inflow channel 41 is, for example, 10%. A measurement element 44 is wound around the flow sensor 43 and is electrically connected to the bridge circuit 45. Then 46,47,4
Reference numerals 8 and 49 denote an amplification circuit, a phase compensation circuit, a comparison circuit, and a drive circuit, respectively, which are connected in series to the bridge circuit 45 so as to be able to sequentially transmit output signals of the bridge circuit 45. 50
Is a setting signal output unit, which is connected to the comparison circuit 48. The output voltage of the drive circuit 49 is formed so as to be able to be input to the laminated displacement element 40a constituting the flow control valve 40.
上記の構成により,設定信号出力部50から例えば0〜
5Vの信号を比較回路48に入力させると,この信号に対応
する直流電圧を駆動回路49を介して積層型変位素子40a
に印加するから,前記第1図に示すように弁口16が開
き,流体を第6図矢印のように流通させることができ
る。なお流体の流量は,流量センサ43に巻回した測定素
子44と接続したブリッジ回路45の出力信号を増幅回路46
および位相補償回路47を介して出力部50aに出力し,こ
の信号から測定することができる。なおこの信号は比較
回路48にも出力されるから,設定信号との比較により駆
動回路49を介して流量制御バルブ40の開度を制御する。With the above configuration, for example, 0 to 0
When a 5V signal is input to the comparison circuit 48, a DC voltage corresponding to this signal is applied via the drive circuit 49 to the stacked displacement element 40a.
Therefore, the valve port 16 is opened as shown in FIG. 1 and the fluid can be circulated as shown by the arrow in FIG. The output signal of the bridge circuit 45 connected to the measuring element 44 wound around the flow sensor 43 is obtained by amplifying the flow rate of the fluid.
The signal is output to the output unit 50a via the phase compensation circuit 47 and can be measured from this signal. Since this signal is also output to the comparison circuit 48, the opening of the flow control valve 40 is controlled via the drive circuit 49 by comparison with the setting signal.
第7図は設定電圧と制御流量との関係を示す図であ
り,前記第6図に示すようなマスフローコントローラに
より,トリエチルガリウムガス(TEG)の流量制御を行
った場合のものである。この場合マスフローコントロー
ラを160℃に加熱し,ガスの差圧はTEGの蒸気圧として行
った。第7図から明らかなように設定電圧と制御流量と
は完全に比例関係にあることを示している。またマスフ
ローコントローラを構成する流量制御バルブのダイヤフ
ラム(第1図における符号17)のストロークを大にする
ことができるため,目詰まりおよび汚れの付着を防止で
きると共に,低差圧においても充分に大なる流量を得る
ことができる。FIG. 7 is a diagram showing the relationship between the set voltage and the control flow rate, in which the flow rate of triethylgallium gas (TEG) is controlled by the mass flow controller as shown in FIG. In this case, the mass flow controller was heated to 160 ° C., and the gas differential pressure was set as the vapor pressure of TEG. As is clear from FIG. 7, it is shown that the set voltage and the control flow rate are completely proportional. Further, since the stroke of the diaphragm (reference numeral 17 in FIG. 1) of the flow control valve constituting the mass flow controller can be increased, clogging and adhesion of dirt can be prevented, and sufficiently large even at a low differential pressure. The flow rate can be obtained.
第8図は本発明の更に他の実施例における減圧CVD装
置を模式的に示す要部説明図である。第8図において51
は加熱チャンバであり,TEOS(テトラエトキシシラン)
を収容する。52は加熱ヒータであり,加熱チャンバ51を
包囲するように設ける。53は反応炉であり,一次側53a
に前記第6図に示すような構成のマスフローコントロー
ラ54を介して加熱チャンバ51を接続し,二次側53bには
ロータリポンプ(図示せず)を接続する。なお加熱チャ
ンバ51から反応炉53に至るすべての配管系(マスフロー
コントローラ54を含む)を150℃に加熱した。FIG. 8 is an explanatory view of a main part schematically showing a reduced pressure CVD apparatus according to still another embodiment of the present invention. In FIG. 8, 51
Is a heating chamber, TEOS (tetraethoxysilane)
To accommodate. Reference numeral 52 denotes a heater, which is provided so as to surround the heating chamber 51. 53 is a reaction furnace, and the primary side 53a
The heating chamber 51 is connected via a mass flow controller 54 having the structure shown in FIG. 6, and a rotary pump (not shown) is connected to the secondary side 53b. Note that all piping systems (including the mass flow controller 54) from the heating chamber 51 to the reaction furnace 53 were heated to 150 ° C.
上記の構成により,反応炉53内にガラス基板を設置
し,300℃に加熱後,反応炉53の二次側53bをロータリポ
ンプ(図示せず)によって10-3Torrに減圧し,ガラス基
板上にSiO2膜を製膜した。なお比較のために従来の構成
のマスフローコントローラを介装して上記同様の製膜を
行った結果を第2表に示す。With the above configuration, a glass substrate is placed in the reaction furnace 53, heated to 300 ° C., and the secondary side 53b of the reaction furnace 53 is depressurized to 10 −3 Torr by a rotary pump (not shown). An SiO 2 film was formed. For comparison, Table 2 shows the results of performing the same film formation as above using a conventional mass flow controller.
第2表から明らかなように,第8図におけるマスフロ
ーコントローラ54として従来品を使用した場合には,駆
動源としての圧電素子の特性上,使用温度としては80℃
が限度であり,蒸気圧が40mmHg,最大流量において300cc
/分しかガスを流すことができない。これに対して本発
明品のマスフローコントローラを使用した場合には,150
℃まで加熱することができ,更にこの温度近傍において
バルブのストロークの最大値を示すため,450mmHgに上昇
した蒸気圧に対し,最大流量も2500cc/分という高い値
が得られた。上記の結果製膜速度において,従来品にお
ける2〜3μm/時間に対し,本発明品においては7〜8
μm/時間という大なる値が得られた。 As is clear from Table 2, when a conventional product is used as the mass flow controller 54 in FIG. 8, the operating temperature is 80 ° C. due to the characteristics of the piezoelectric element as the drive source.
Is the limit, vapor pressure is 40mmHg, and maximum flow rate is 300cc
The gas can only flow per minute. On the other hand, when the mass flow controller of the present invention is used, 150
The maximum flow rate was 2500 cc / min against the steam pressure raised to 450 mmHg because the valve stroke reached the maximum value near this temperature. As a result of the above, the film forming speed was 7 to 8 μm in the product of the present invention, compared with 2-3 μm / hour in the conventional product.
Large values of μm / hour were obtained.
本実施例においては流量制御バルブ全体を加熱する例
について記述したが,積層型変位素子のみを電熱コイル
若しくは面ヒータ等の加熱手段によって加熱してもよ
い。なお加熱手段としては流体自体の保有する熱を利用
してもよい。また流量制御バルブはノーマルオープン型
のみでなく,ノーマルクローズ型であってもよく,更に
対象流体はガスのみでなく液体であってもよく,また高
温流体以外に低温流体および常温流体にも適用できる。
次に積層型変位素子は第2図および第11図に示す全面電
極型素子のみでなく,所謂交互電極型素子であっても,
また薄板の両面に内部電極を設け,それらを積重ねある
いは接着した方式の素子にも当然に適用可能である。ま
た薄板および内部電極の平面投影形状は矩形以外に,正
方形,円形,楕円形その他の幾何学的形状とすることが
できる。あるいはより大きな変位を得るために,前記素
子を耐熱性接着剤で複数本接着して使用することも可能
である。更にリード線を省略し,積層体の上下端面にリ
ード部材を固着する型式のものにも適用できる。なお上
記の実施例においては,内部電極および外部電極の形成
手段としてスクリーン印刷法を使用した例について記述
したが,これに限定せず,メッキ,蒸着,塗布等の他の
手段によっても作用は同一である。更に前記の実施例に
おいては,電気機械変換材料として150℃近傍において
最大発生変位,すなわち圧電歪定数d33が最大値を示す
材料である場合について示したが,組成を選ぶことによ
り,250℃までの他の温度において最大値を示すものも使
用でき,積層型変位素子の使用温度を勘案して適宜選定
可能である。In this embodiment, an example in which the entire flow control valve is heated has been described. However, only the stacked displacement element may be heated by a heating means such as an electric heating coil or a surface heater. The heating means may use the heat of the fluid itself. The flow control valve may be not only a normally open type but also a normally closed type, and the target fluid may be a liquid as well as a gas, and can be applied to a low temperature fluid and a normal temperature fluid in addition to a high temperature fluid. .
Next, the stacked displacement element is not limited to the full electrode type element shown in FIGS. 2 and 11, but may be a so-called alternating electrode type element.
Also, the present invention is naturally applicable to a device in which internal electrodes are provided on both surfaces of a thin plate and stacked or bonded. The planar projection shape of the thin plate and the internal electrode can be a square, a circle, an ellipse, and other geometric shapes in addition to the rectangle. Alternatively, in order to obtain a larger displacement, it is possible to use a plurality of the elements by bonding them with a heat-resistant adhesive. Further, the present invention can be applied to a type in which lead wires are omitted and lead members are fixed to the upper and lower end surfaces of the laminate. In the above embodiment, an example in which the screen printing method is used as the means for forming the internal electrode and the external electrode has been described. It is. In yet above embodiment, the maximum generated displacement at 0.99 ° C. vicinity as an electromechanical converter material, i.e., shows the case the piezoelectric strain constant d 33 is a material that shows a maximum value, by selecting the composition, up to 250 ° C. The one that shows the maximum value at other temperatures can also be used, and can be appropriately selected in consideration of the operating temperature of the stacked displacement element.
なお本実施例においては,耐熱性樹脂としてポリイミ
ド樹脂を使用する例について記述したが,上記以外のも
のでも200℃以上の耐熱性を有する樹脂,例えばエポキ
シフェノール、エポキシノボラック,シリコーン,変性
シリコーン,ポリベンズイミダゾール,フッ素樹脂等も
当然適用可能である。In this embodiment, an example in which a polyimide resin is used as the heat-resistant resin has been described. However, other resins having a heat resistance of 200 ° C. or more, such as epoxy phenol, epoxy novolak, silicone, modified silicone, poly Of course, benzimidazole, fluororesin and the like are also applicable.
本発明の高温域用流量制御バルブおよびそれを使用し
たマスフローコントローラは,以上記述のような構成お
よび作用であるから,例えば沸点が50〜150℃である有
機金属ガスを対象としても,積層型変位素子を構成する
材料の圧電歪定数d33が充分に大なる値を保持するた
め,ダイヤフラムのストロークが大であり,充分な流量
を得ることができる。また流体による弁座およびダイヤ
フラムの目詰まり,汚染がなく,信頼性を大幅に向上さ
せ得る。なお積層型変位素子のみを加熱して圧電歪定数
d33が645×10-12m/v以上の最大値を示す100℃以上の温
度領域で作動させれば,常温若しくは低温より大なるダ
イヤフラムストロークが得られるから,対象流体として
低温および常温のものにも適用可能であり,用途を拡大
することができるという効果がある。The flow rate control valve for a high temperature range and the mass flow controller using the same according to the present invention have the above-described configuration and operation. Therefore, for example, even when an organic metal gas having a boiling point of 50 to 150 ° C. for holding the piezoelectric strain constant d 33 becomes large enough values of the material of the element, the stroke of the diaphragm is large, it is possible to obtain a sufficient flow rate. Further, there is no clogging and contamination of the valve seat and the diaphragm by the fluid, and the reliability can be greatly improved. Note that only the stacked displacement element is heated to obtain the piezoelectric strain constant.
If brought into operation at d 33 is 100 ° C. over a temperature region showing a maximum value of more than 645 × 10 -12 m / v, since the diaphragm stroke consisting large normal temperature or low temperature is obtained, the low temperature and room temperature as the target fluid that The present invention is also applicable to the present invention, and has an effect that the use can be expanded.
また本発明の高温域用積層型変位素子は,以上記述の
ような構成および作用であるから,例えば100〜250℃の
ような高温雰囲気において使用しても,圧電歪定数d33
が充分に大なる値を保持し,導通不良その他の不都合を
発生することなく,所定の変位を安定して発生すること
ができると共に,積層型変位素子の信頼性を大幅に向上
させ,かつ用途を拡大することができるという効果があ
る。Further, since the laminated displacement element for high temperature region of the present invention has the configuration and operation as described above, even when used in a high temperature atmosphere such as 100 to 250 ° C., the piezoelectric strain constant d 33 is obtained.
Can maintain a sufficiently large value, can stably generate a predetermined displacement without causing conduction failure and other inconveniences, greatly improve the reliability of the stacked displacement element, and There is an effect that can be expanded.
第1図は本発明の実施例を示す要部縦断面図,第2図
(a)ないし(d)は夫々本発明の実施例における積層
型変位素子を構成する積層体の例を示す斜視図,第3図
は温度と発生変位との関係を示す図,第4図は温度と最
大流量との関係を示す図,第5図は有機金属ガスの温度
と蒸気圧との関係を示す図,第6図は本発明の他の実施
例を示す要部構成図,第7図は設定電圧と制御流量との
関係を示す図,第8図は本発明の更に他の実施例におけ
る減圧CVD装置を模式的に示す要部説明図,第9図は従
来の流量制御バルブを示す要部縦断面図,第10図および
第11図は各々従来の積層型変位素子の例を模式的に示す
側面図である。 11:本体,15:弁座,17:ダイヤフラム,21:積層型変位素子,
31:薄板,35:積層体,39:被膜,40:流量制御バルブ,54:マ
スフローコントローラ。FIG. 1 is a longitudinal sectional view of an essential part showing an embodiment of the present invention, and FIGS. 2 (a) to 2 (d) are perspective views each showing an example of a laminated body constituting a laminated displacement element in an embodiment of the present invention. , FIG. 3 is a diagram showing the relationship between the temperature and the generated displacement, FIG. 4 is a diagram showing the relationship between the temperature and the maximum flow rate, FIG. 5 is a diagram showing the relationship between the temperature of the organometallic gas and the vapor pressure, FIG. 6 is a diagram showing a main part of another embodiment of the present invention, FIG. 7 is a diagram showing a relationship between a set voltage and a control flow rate, and FIG. 8 is a low-pressure CVD apparatus in still another embodiment of the present invention. 9 is a longitudinal sectional view schematically showing a conventional flow control valve, and FIGS. 10 and 11 are side views each schematically showing an example of a conventional laminated displacement element. FIG. 11: body, 15: valve seat, 17: diaphragm, 21: laminated displacement element,
31: thin plate, 35: laminate, 39: coating, 40: flow control valve, 54: mass flow controller.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 染次 孝博 埼玉県熊谷市三ヶ尻5200番地 日立金属 株式会社磁性材料研究所内 (56)参考文献 特開 昭48−46900(JP,A) 特開 昭63−266706(JP,A) 実開 平1−77175(JP,U) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takahiro Sometsugi 5200 Sankajiri, Kumagaya-shi, Saitama Hitachi Metals, Ltd. Magnetic Materials Research Laboratory (56) References JP-A-48-46900 (JP, A) JP-A-63 −266706 (JP, A) Actually open 1-77175 (JP, U)
Claims (6)
じ他端を開口するように形成した流入流路および流出流
路とを設けた本体と,流入流路または流出流路の弁室に
通じる端部に設けた弁座と,前記弁室の開口端を密閉す
るように設けた金属材料からなる薄板状のダイヤフラム
と,前記本体の弁室開口端に配設したハウジングと,こ
のハウジング内に設けた積層型変位素子とを有する流量
制御バルブにおいて,積層型変位素子を重量比で,PbO61
〜66%,SrCO32〜5%,TiO210.5〜12%,ZrO220〜22%,Sb
2O30.1〜2.0%の組成からなり,100℃以上の温度領域に
おいて圧電歪定数d33が645×10-12m/v以上の最大値を示
すような電気機械変換材料によって形成し,前記ダイヤ
フラムを前記弁座に当接離脱自在に駆動するように構成
したことを特徴とする高温域用流量制御バルブ。A body provided with a valve chamber having an open end, an inflow channel and an outflow channel formed with one end communicating with the valve chamber and having the other end opened; A valve seat provided at an end communicating with the valve chamber, a thin diaphragm made of a metal material provided so as to seal an opening end of the valve chamber, a housing disposed at an opening end of the valve chamber of the main body, In the flow control valve having the stacked displacement element provided in the housing, the stacked displacement element is PbO61
~ 66%, SrCO 3 2 ~ 5%, TiO 2 10.5 ~ 12%, ZrO 2 20 ~ 22%, Sb
2 O 3 consists of 0.1% to 2.0% of the composition, formed at 100 ° C. or higher temperature range by an electromechanical converter material, such as a piezoelectric strain constant d 33 is 645 × 10 -12 m / v or more of the maximum value, the A flow control valve for a high temperature range, wherein the diaphragm is configured to be driven to come into contact with and detach from the valve seat.
値を示す温度領域近傍の温度で積層型変位素子が作動す
るように加熱手段を設けたことを特徴とする請求項
(1)記載の高温域用流量制御バルブ。2. A method according to claim piezoelectric strain constant d 33 of the electromechanical conversion material temperature multilayer displacement element temperature region near showing the maximum value, characterized in that a heating means to operate (1) The flow control valve for high temperature range as described.
この流量制御バルブの流入流路または流出流路にバイパ
ス的に設けられたセンサ用の流路内を流れる流体の流量
を検出する流量センサと,この流量センサの出力に応じ
て前記流量制御バルブを制御する制御手段とを有するマ
スフローコントローラにおいて,前記流量制御バルブ
を,開口端を有する弁室と一端をこの弁室と通じ他端を
開口するように形成した流入流路および流出流路とを設
けた本体と,流入流路または流出流路の弁室に通じる端
部に設けた弁座と,前記弁室の開口端を密閉するように
設けた金属材料からなる薄板状のダイヤフラムと,前記
本体の弁室開口端に配設したハウジングと,このハウジ
ング内に設けられ前記ダイヤフラムを前記弁座側に押圧
させる積層型変位素子とによって形成すると共に,前記
積層型変位素子を重量比で,PbO61〜66%,SrCO32〜5%,
TiO210.5〜12%,ZrO220〜22%,Sb2O30.1〜2.0%の組成
からなり,100℃以上の温度領域において圧電歪定数d33
が645×10-12m/v以上の最大値を示すような電気機械変
換材料によって形成し,前記ダイヤフラムを前記弁座に
当接離脱自在に駆動するように構成したことを特徴とす
るマスフローコントローラ。3. A flow control valve for controlling a flow rate of a fluid,
A flow sensor for detecting a flow rate of a fluid flowing in a sensor flow path provided in an inflow passage or an outflow passage of the flow control valve in a bypass manner, and the flow control valve according to an output of the flow sensor; A mass flow controller having control means for controlling the flow rate control valve, wherein the flow control valve is provided with a valve chamber having an open end and an inflow channel and an outflow channel formed so that one end communicates with the valve chamber and the other end is opened. A valve seat provided at an end of the inflow channel or the outflow channel communicating with the valve chamber; a thin diaphragm made of a metal material provided to seal an open end of the valve chamber; And a laminated displacement element provided in the housing for pressing the diaphragm toward the valve seat, and the laminated displacement element is weighted. Ratio, PbO61~66%, SrCO 3 2~5% ,
TiO 2 10.5~12%, ZrO 2 20~22 %, Sb 2 O 3 consists of 0.1% to 2.0% of the composition, the piezoelectric strain constant d 33 in the temperature range above 100 ° C.
A mass flow controller formed of an electromechanical conversion material having a maximum value of 645 × 10 −12 m / v or more, and configured to drive the diaphragm so as to be capable of coming into and out of contact with the valve seat. .
からなる内部電極とを各々複数個交互に積層して積層体
を形成し,この積層体の側面に前記内部電極と1層おき
に接続する1対の外部電極を設けてなる積層型変位素子
において,電気機械変換材料として,重量比で,PbO61〜
66%,SrCO32〜5%,TiO210.5〜12%,ZrO220〜22%,Sb2O
30.1〜2.0%の組成からなり,100℃以上の温度領域にお
いて圧電歪定数d33が645×10-12m/v以上の最大値を示す
材料を使用したことを特徴とする高温域用積層型変位素
子。4. A laminate is formed by alternately laminating a plurality of thin plates made of an electromechanical conversion material and internal electrodes made of a conductive material, and connecting the internal electrodes to every other layer on the side surface of the laminate. In a laminated displacement element provided with a pair of external electrodes, the weight ratio of PbO61 ~
66%, SrCO 3 2-5%, TiO 2 10.5-12%, ZrO 2 20-22%, Sb 2 O
3 consists 0.1% to 2.0% of the composition, laminating the high temperature zone, characterized in that the piezoelectric strain constant d 33 in the temperature range above 100 ° C. has a material showing a 645 × 10 -12 m / v or more of the maximum value Type displacement element.
る被膜を設けたことを特徴とする請求項(4)記載の高
温域用積層型変位素子。5. A high temperature range laminated displacement element according to claim 4, wherein a coating made of a heat-resistant insulating resin material is provided on the surface of the laminated body.
極にリード線を接続したことを特徴とする請求項(4)
若しくは(5)記載の高温域用積層型変位素子。6. A lead wire connected to an external electrode by a solder having a liquidus temperature of 200 ° C. or higher.
Or, the stacked displacement element for a high temperature range according to (5).
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/611,735 US5092360A (en) | 1989-11-14 | 1990-11-13 | Flow rated control valve using a high-temperature stacked-type displacement device |
GB9024772A GB2239553B (en) | 1989-11-14 | 1990-11-14 | Flow rate control valve |
DE19904036287 DE4036287C2 (en) | 1989-11-14 | 1990-11-14 | Flow rate regulating valve |
US07/967,536 US5281885A (en) | 1989-11-14 | 1992-10-28 | High-temperature stacked-type displacement device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29533989 | 1989-11-14 | ||
JP2-43374 | 1990-02-23 | ||
JP1-295339 | 1990-02-23 | ||
JP4337490 | 1990-02-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03272373A JPH03272373A (en) | 1991-12-04 |
JP2740342B2 true JP2740342B2 (en) | 1998-04-15 |
Family
ID=26383130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2211405A Expired - Lifetime JP2740342B2 (en) | 1989-11-14 | 1990-08-09 | Flow control valve and mass flow controller for high temperature range and laminated displacement element for high temperature range |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2740342B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102553754A (en) * | 2012-01-13 | 2012-07-11 | 吉林大学 | Piezoelectric-gas mixture control type fluid jet device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7790325B2 (en) | 2004-03-31 | 2010-09-07 | Canon Kabushiki Kaisha | Valve having valve element displaced by at least one of a movement of a diaphragm and a movement of an actuator, and fuel cell using the valve |
JP5029303B2 (en) * | 2006-11-13 | 2012-09-19 | 東京エレクトロン株式会社 | Process gas supply method, process gas supply system, and object processing system |
WO2015110179A1 (en) * | 2014-01-27 | 2015-07-30 | Hewlett-Packard Indigo B.V. | Valve |
JP6782537B2 (en) * | 2015-10-29 | 2020-11-11 | シンフォニアテクノロジー株式会社 | Air injection mechanism and parts feeder |
JP6796919B2 (en) * | 2015-10-29 | 2020-12-09 | シンフォニアテクノロジー株式会社 | Air injection mechanism and parts feeder |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4846900A (en) * | 1971-10-18 | 1973-07-04 | ||
JPH0177175U (en) * | 1987-11-11 | 1989-05-24 |
-
1990
- 1990-08-09 JP JP2211405A patent/JP2740342B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102553754A (en) * | 2012-01-13 | 2012-07-11 | 吉林大学 | Piezoelectric-gas mixture control type fluid jet device |
Also Published As
Publication number | Publication date |
---|---|
JPH03272373A (en) | 1991-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5092360A (en) | Flow rated control valve using a high-temperature stacked-type displacement device | |
US5281885A (en) | High-temperature stacked-type displacement device | |
US7728493B2 (en) | Piezoelectric/electrostrictive material, piezoelectric/electrostrictive body, and piezoelectric/electrostrictive element | |
JP4039029B2 (en) | Piezoelectric ceramics, piezoelectric element, and multilayer piezoelectric element | |
EP0561616A2 (en) | Piezoelectric/electrostrictive element having auxiliary electrode disposed between piezoelectric/electrostrictive layer and substrate | |
US20070176516A1 (en) | Piezoelectric sensor | |
EP1835554B1 (en) | Piezoelectric ceramic device and method of manufacturing the same | |
EP1677370B1 (en) | Multilayer piezoelectric device | |
EP2012374B1 (en) | Multi-layer piezoelectric element | |
US20050212388A1 (en) | Piezoelectric ceramic and piezoelectric device | |
JP2740342B2 (en) | Flow control valve and mass flow controller for high temperature range and laminated displacement element for high temperature range | |
JP2010177448A (en) | Piezoelectric/electrostrictive element and manufacturing method of the same | |
EP2579350A1 (en) | Method for manufacturing piezoelectric element | |
JP2009007236A (en) | Piezoelectric/electrostrictive ceramic composition, piezoelectric/electrostrictive device, and method of producing the same | |
Yoshikawa et al. | Multilayer Piezoelectric Actuators--Structures and Reliability | |
EP0444204B1 (en) | Piezoelectric ceramic composition for actuator | |
JP2509068B2 (en) | Valve device and method of using the same | |
JPH07131086A (en) | Piezoelectric film type element and its treatment method and drive method | |
JP4804709B2 (en) | PZT composition capable of low-temperature sintering and piezoelectric ceramic device using the same | |
JPH03244882A (en) | Flow quantity control valve | |
KR950000114B1 (en) | Plzt gradient funtional piezo electirc actuator and manufacturing method thereof | |
JP4389230B2 (en) | Piezoelectric ceramic composition and piezoelectric element | |
JP2002141568A (en) | Actuator | |
JPH04239187A (en) | Piezoelectric of gradient functional type | |
JP3729781B2 (en) | Actuator control method |